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Abstract 

Background There are known disparities in incidence and outcomes of colorectal cancer (CRC) by race and ethnicity. 
Some of these disparities may be mediated by molecular changes in tumors that occur at different rates across popu-
lations. Genetic ancestry is a measure complementary to race and ethnicity that can overcome missing data issues 
and better capture genetic similarity in admixed populations. We aimed to identify somatic mutations and tumor 
gene expression differences associated with both genetic ancestry and imputed race and ethnicity.

Methods Sequencing was performed with the Tempus xT NGS 648-gene panel and whole exome capture RNA-Seq 
for 8454 primarily late-stage CRC patients. Genetic ancestry proportions for five continental groups—Africa (AFR), 
American indigenous (AMR), East Asia (EAS), Europe (EUR), and South Asia (SAS)—were estimated using ancestry 
informative markers. To address data gaps, race and ethnicity categories were imputed, resulting in assignments 
for 952 Hispanic/Latino, 420 non-Hispanic (NH) Asian, 1061 NH Black, and 5763 NH White individuals. We assessed 
association of genetic ancestry proportions and imputed race and ethnicity categories with somatic mutations in rel-
evant CRC genes and in 2608 expression profiles, as well as 1957 consensus molecular subtypes (CMS).

Results Increased AFR ancestry was associated with higher odds of somatic mutations in APC, KRAS, and PIK3CA 
and lower odds of BRAF mutations. Additionally, increased EAS ancestry was associated with lower odds of muta-
tions in KRAS, EUR with higher odds in BRAF, and the Hispanic/Latino category with lower odds in BRAF. Greater AFR 
ancestry and the NH Black category were associated with higher rates of CMS3, while a higher proportion of Hispanic/
Latino patients exhibited indeterminate CMS classifications.

Conclusions Molecular differences in CRC tumor mutation frequencies and gene expression that may underlie 
observed differences by race and ethnicity were identified. The association of AFR ancestry with increased KRAS muta-
tions aligns with higher CMS3 subtype rates in NH Black patients. The increase of indeterminate CMS in Hispanic/
Latino patients suggests that subtype classification methods could benefit from enhanced patient diversity.
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Background
Overall incidence and mortality of colorectal cancer 
(CRC) has declined over the last several decades due 
to a combination of risk reduction, early detection, and 
advancements in therapy [1]. However, there has been 
a growing burden of CRC among young adults and per-
sistent disparities in outcomes by race and ethnicity 
across all ages [2]. As such, improved CRC outcomes are 
not equally realized across demographics in the United 
States.

The rising incidence of CRC among adults 
aged < 50  years, termed early onset CRC (EOCRC), has 
garnered significant attention by patients, media, and 
clinicians. Patients with EOCRC typically have delayed 
presentation, leading to more advanced disease at time 
of diagnosis [3]. To date, studies have not demonstrated 
consistent, clinically relevant molecular differences in 
early versus average onset CRC (AOCRC) [4–6]. As such, 
the cause for increasing incidence of EOCRC is largely 
attributed to potential environmental and behavioral 
components, with specific factors yet to be elucidated [3].

Racial and ethnic differences in CRC outcomes are 
also multifactorial in etiology. Longstanding disparities 
in access to care have disproportionately affected Black 
populations who have the worst CRC outcomes, regard-
less of clinical factors such as age or stage at diagnosis 
[7–9]. Prior studies have also demonstrated molecular 
differences in CRC by race and ethnicity with predictive 
and prognostic implications, including increased preva-
lence of KRAS mutations among Black patients [8, 10–
12]. Most of these studies use self-reported or observed 
race and ethnicity categories. In healthcare and clinico-
genomic databases, a high proportion of this informa-
tion (30–70%) is often missing, and when it is present, 
it may be based on clinician observations rather than 
self-reported by patients [13–15]. Furthermore, race and 
ethnicity categories may not capture shared ancestry 
well in highly admixed groups such as Black and His-
panic/Latino patients [16]. In contrast, genetic ancestry, 
assessed via a patient’s sequencing or genotyping data, 
can potentially better capture genotypic profiles associ-
ated with risk, though it is important to understand that 
genetic ancestry is also associated with environmental 
risks [17].

Given disparities in incidence and outcome of CRC 
by race, ethnicity, and age, along with the limitations of 
traditionally used race and ethnicity categories based on 
the US government’s Office of Management and Budget 
standard [18], we examined whether genetic ancestry 
proportions were associated with patterns of molecular 
alterations in CRC using a large, cohort from the Tempus 
clinico-genomic database. This database compiles mul-
timodal genomic and clinical data from cancer patient 

care and can facilitate molecular pathological epidemi-
ology studies aimed at exploring the interplay between 
individual factors such as clinical measurements, genetic 
ancestry, or race/ethnicity, and molecular tumor traits, 
environmental influences, and clinical outcomes [19]. 
This is a convenience sample, which, despite its scale 
and diversity surpassing that of research and clinical trial 
studies, may still harbor unknown ascertainment biases 
[20]. Such factors could potentially affect the generaliz-
ability of our findings. To address the missingness of race 
and ethnicity data common in this dataset, we imputed 
these categories from genetic ancestry [21]. We then 
evaluated associations with the imputed categories, both 
to compare to our genetic ancestry proportion findings 
and to prior research using self-reported categories. Fur-
thermore, we assessed whether race and ethnicity asso-
ciations were different in AOCRC versus EOCRC, or by 
primary tumor site.

Methods
Patient cohort
Genomic and clinical data of 8454 patients diagnosed 
with CRC were obtained from the Tempus database, 
which includes de-identified genomic and clinical data 
from cancer patients that underwent tumor profiling as 
part of their healthcare. Selection criteria included tumor 
profiling with the Tempus xT assay (v2–v4) from 2018 
to 2022. Briefly, the assay is a targeted panel that detects 
single nucleotide variants, insertions and/or deletions, 
and copy number variants in 598–648 genes, as well as 
chromosomal rearrangements in 22 genes with high sen-
sitivity and specificity. A subset of those patients with 
sufficient tumor sample material had additional whole 
exome RNA sequencing [22]. Available demographic 
information included patient age at date of specimen col-
lection, age at diagnosis, gender, stated (i.e., either self-
reported or observed) race and ethnicity, and smoking 
status. Primary tumor site, clinical details such as tumor 
grade, microsatellite instability (MSI) status, tumor 
mutational burden count (TMB, number of mutations/
megabase), and sequenced tissue site were included. All 
analyses were performed using de-identified data.

Patient characteristics are summarized in Table  1. 
Among the cohort of 8454 CRC patients, 5169 (61%) 
had a matched normal tissue sample and 2745 (32%) had 
RNA sequencing performed on the tumor sample. The 
median age was 60.7  years (IQR 51.1–69.6) with 1792 
(25.6% of patients with available diagnosis age) diagnosed 
under the age of 50 (i.e., with EOCRC) and 7997 (94.6%) 
with microsatellite stable (MSS) disease. Most patients 
had advanced disease, with 4254 (81% of those with 
known stage) diagnosed with stage IV disease. Onset age 
group differed by imputed race and ethnicity category 
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Table 1 Patient characteristics by imputed race and ethnicity category. Columns contain n (%) for categorical variables or median 
(IQR) for continuous variables. p values for categorical variables with any expected cell count < 5 are from a Fisher’s exact test with a 
simulated p value based on 2000 replicates; p values for categorical variables with all expected cell counts ≥ 5 are from a Pearson’s chi-
squared test; and p values for continuous variables are from a Kruskal-Wallis rank sum test

Characteristic Complex, N = 2581 Hispanic/
Latino, 
N = 9521

NH Asian, N = 4201 NH Black, N = 10,611 NH White, N = 57,631 p value

Stated race  < 0.001

 White 95 (78%) 223 (57%) 9 (4.1%) 23 (3.4%) 3268 (97%)

 American Indian or Alaska 
Native

3 (2.5%) 29 (7.4%) 3 (1.4%) 0 (0%) 2 (< 0.1%)

 Asian 10 (8.2%) 1 (0.3%) 181 (83%) 0 (0%) 2 (< 0.1%)

 Black or African American 0 (0%) 6 (1.5%) 0 (0%) 634 (94%) 9 (0.3%)

 Native Hawaiian or Other 
Pacific Islander

2 (1.6%) 1 (0.3%) 4 (1.8%) 0 (0%) 1 (< 0.1%)

 Other race 12 (9.8%) 129 (33%) 19 (8.8%) 20 (3.0%) 75 (2.2%)

 Race not stated 0 (0%) 1 (0.3%) 1 (0.5%) 0 (0%) 6 (0.2%)

 Unknown 136 562 203 384 2400

Stated ethnicity  < 0.001

 Not Hispanic or Latino 64 (75%) 67 (14%) 120 (99%) 277 (95%) 1717 (98%)

 Hispanic or Latino 21 (25%) 414 (86%) 1 (0.8%) 14 (4.8%) 37 (2.1%)

 Unknown 173 471 299 770 4009

 Age at specimen collection 59 (50, 69) 56 (47, 66) 60 (50, 68) 60 (50, 68) 62 (52, 70)  < 0.001

 Unknown 0 3 0 1 10

 Age at onset 57 (48, 67) 55 (45, 64) 58 (49, 66) 58 (49, 67) 60 (51, 69)  < 0.001

 Unknown 47 142 64 185 1003

Onset age group  < 0.001

 AOCRC 153 (73%) 514 (63%) 255 (72%) 635 (72%) 3664 (77%)

 EOCRC 58 (27%) 296 (37%) 101 (28%) 241 (28%) 1096 (23%)

 Unknown 47 142 64 185 1003

Gender 0.4

 Female 115 (45%) 420 (44%) 179 (43%) 487 (46%) 2455 (43%)

 Male 143 (55%) 528 (56%) 239 (57%) 572 (54%) 3287 (57%)

 Unknown 0 4 2 2 21

xT assay version 0.3

 xT.v2 36 (14%) 120 (13%) 68 (16%) 149 (14%) 857 (15%)

 xT.v3 44 (17%) 194 (20%) 64 (15%) 204 (19%) 1076 (19%)

 xT.v4 178 (69%) 638 (67%) 288 (69%) 708 (67%) 3830 (66%)

Smoking status  < 0.001

 Never smoker 86 (55%) 375 (60%) 184 (67%) 392 (55%) 2007 (51%)

 Ever smoker 70 (45%) 255 (40%) 89 (33%) 323 (45%) 1893 (49%)

 Unknown 102 322 147 346 1863

Cancer stage 0.019

 Stage 1 2 (1.3%) 5 (0.9%) 1 (0.4%) 7 (1.0%) 23 (0.6%)

 Stage 2 11 (7.1%) 24 (4.2%) 7 (2.8%) 32 (4.6%) 163 (4.6%)

 Stage 3 21 (14%) 107 (19%) 40 (16%) 89 (13%) 444 (12%)

 Stage 4 120 (78%) 439 (76%) 202 (81%) 568 (82%) 2925 (82%)

 Unknown 104 377 170 365 2208

Tumor grade 0.002

 Low 7 (4.5%) 78 (12%) 30 (10%) 56 (7.9%) 361 (9.5%)

 Medium 110 (70%) 474 (71%) 199 (69%) 511 (72%) 2549 (67%)

 High 40 (25%) 117 (17%) 61 (21%) 144 (20%) 899 (24%)

 Unknown 101 283 130 350 1954
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(p < 0.001, Table 1). The Hispanic/Latino category had the 
highest proportion of EOCRC (37%), while NH White 
had the lowest proportion (23%). See Additional file  1: 
Tables S2 and S3 for patient characteristics stratified by 
MSI status, and Additional file  1: Tables S4 and S5 for 
patient characteristics stratified by onset age group.

CRC‑relevant genes and mutation types
Genes relevant to CRC were identified from the follow-
ing sources: 187 genes belonging to 10 oncogenic sign-
aling pathways reported by Sanchez-Vega et  al. [23], 72 
genes predicted by the Integrative OncoGenomics pipe-
line to be CRC drivers (IntOGen, release date 2020.02.01) 
[24], 15 genes associated with hereditary colorectal can-
cer syndromes (Lynch, Li Fraumeni, and polyposis syn-
dromes) for which germline variants are reportable in the 
Tempus xT assay, and 22 genes that were investigated in 
a previous CRC study that utilized Tempus data [10, 22]. 
Of these genes, 137 are included in the Tempus xT assay 
gene panels (v2–v4).

Different mutation types were evaluated: (1) protein-
altering somatic mutations, defined as single or multi-
ple nucleotide mutations, short insertions or deletions 
(≤ 50  bp), and other changes that impact protein struc-
ture or splice sites (Sequence Ontology, SO:0001818), 

(2) somatic copy number alterations (SCNAs), defined as 
structural insertions or deletions greater than 500 bp in 
size, and (3) actionable mutations, defined in our study 
as protein-altering mutations with an OncoKB Therapeu-
tic Level of Evidence V2 designation of therapeutic level 
1 or 2, or resistance level R1, irrespective of the type of 
solid cancer [25]. For protein-altering mutations, only 
patients with matched normal tissues were included in 
analyses due to the potential for germline variants to 
be misclassified as somatic when normal tissue is una-
vailable. Patients without matched normal tissues were 
included in analyses of SCNAs and actionable mutations. 
We required a prevalence of at least 1% (and minimum 
10 patients) for a specific mutation type to include a gene 
for evaluation.

Determination of genetic ancestry
Genetic ancestry proportions were estimated using a 
supervised global genetic ancestry estimation algorithm 
[26]. An R script implementation is available at DOI 
10.7303/syn4877977. Proportions for five continental 
ancestry groups—Africa (AFR), American indigenous 
(AMR), East Asia (EAS), Europe (EUR), and South Asia 
(SAS)—were calculated using 654 ancestry informa-
tive markers (AIMs) that overlap targeted regions of 

Table 1 (continued)

Characteristic Complex, N = 2581 Hispanic/
Latino, 
N = 9521

NH Asian, N = 4201 NH Black, N = 10,611 NH White, N = 57,631 p value

MSI status 0.062

 Low/stable 247 (96%) 896 (94%) 405 (96%) 1017 (96%) 5432 (94%)

 High 10 (3.9%) 56 (5.9%) 15 (3.6%) 42 (4.0%) 322 (5.6%)

 Unknown 1 0 0 2 9

 TMB count (mutations/Mb) 3 (2, 5) 3 (2, 5) 3 (2, 5) 4 (2, 6) 3 (2, 5)  < 0.001

 Unknown 0 0 1 2 4

Tumor/normal tissue status 0.022

 Tumor and normal 152 (59%) 626 (66%) 246 (59%) 659 (62%) 3486 (61%)

 Tumor only 105 (41%) 326 (34%) 174 (41%) 401 (38%) 2270 (39%)

 Unknown 1 0 0 1 7

Cancer primary site  < 0.001

 Left colon 34 (13%) 98 (10%) 52 (12%) 88 (8.3%) 524 (9.1%)

 Not specified 153 (59%) 609 (64%) 253 (60%) 712 (67%) 3823 (66%)

 Rectum 46 (18%) 161 (17%) 72 (17%) 128 (12%) 850 (15%)

 Right colon 25 (9.7%) 84 (8.8%) 43 (10%) 133 (13%) 566 (9.8%)

Sequenced tissue site  < 0.001

 CRC (primary) 137 (53%) 554 (58%) 211 (50%) 556 (53%) 2841 (49%)

 Liver 47 (18%) 185 (19%) 75 (18%) 242 (23%) 1270 (22%)

 Lung 11 (4.3%) 43 (4.5%) 39 (9.3%) 41 (3.9%) 347 (6.0%)

 Other 62 (24%) 168 (18%) 95 (23%) 220 (21%) 1285 (22%)

 Unknown 1 2 0 2 20
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the Tempus xT NGS assay [22, 27]. Reference allele fre-
quency data for the AIMs was obtained from the 1000 
Genomes Project [28], The Human Genome Diversity 
Project [29], and the Simons Genome Diversity Project 
databases [30]. AMR allele frequencies were derived from 
22 SDP and 49 HGDP samples encompassing indigenous 
populations from Argentina, Brazil, Mexico, Colom-
bia, and Peru. The accuracy of our methods was evalu-
ated using published ancestry proportions determined 
using the gold standard method, RFMix [31], on whole-
genome sequencing data from the Pan-Cancer Analysis 
of Whole Genomes Project (PCAWG) [32], available at 
DOI 10.7303/syn4877977, and on admixed population 
samples from the 1000 Genomes Project. We calculated 
the mean squared errors (MSE) for comparisons across 
each of the continental groups and computed an aver-
age MSE of 0.121 and 0.0141 for the PCAWG and 1000 
Genomes projects samples, respectively (cf. Additional 
file  1: Supplementary Methods, Table  S1, and Fig. S1). 
Normal specimens were used to determine genotypes 
at the AIMs when available; otherwise, tumor data were 
used.

Imputation of race and ethnicity categories
To overcome missingness of stated race and ethnicity 
in our clinico-genomic data (cf. Table  1), imputation of 
mutually exclusive race and ethnicity categories from 
genetic ancestry proportions were estimated using a 
set of heuristics derived from admixture proportions 
reported in the literature for Black and Hispanic/Latino 
groups in the United States [33], using a method we pre-
viously published [21]. Four categories were defined, 
non-Hispanic (NH) Asian, NH Black, Hispanic/Latino, 
and NH White, with patients remaining unclassified 
under our heuristics termed “complex.” The published 
assessment of the sensitivity and specificity of our impu-
tation method demonstrated high accuracy in our data 
source (correct rate of 96% and weighted error of 0.9%; 
no-call rate ~ 3%), enabling us to use this data for com-
parisons across categories with all patients [21].

Association between genetic ancestry or race and ethnicity 
category and somatic mutations
Tests were stratified by microsatellite instability (MSI) 
status as determined by the Tempus xT algorithm. Like-
lihood ratio tests (LRTs) were used to identify genes in 
which the presence of somatic mutation was associated 
with genetic ancestry proportions or race and ethnic-
ity imputed categories. For each gene, a multivariable 
logistic regression model that included somatic muta-
tion (presence/absence) or copy number alteration as the 
dependent variable and ancestry proportions, assay ver-
sion, gender, and age at sample collection as independent 

variables (full model) was compared to a nested model 
that excluded ancestry proportions. LRT p values were 
corrected for the number of genes tested within each 
somatic mutation type using the Benjamini-Hochberg 
method. For genes with significant LRT p values, specific 
genetic ancestry proportion associations (AMR, AFR, 
EAS, EUR, or SAS) were identified in the full model (any 
uncorrected coefficient p < 0.05 considered significant). 
Because TMB can vary with race and ethnicity category 
and could potentially explain significant results from the 
full model, we repeated the tests within each MSI cat-
egory, including natural log-transformed TMB as a con-
tinuous covariate.

In order to include all five genetic ancestry propor-
tions in the same model, so that each ancestry associa-
tion was adjusted for the remaining four ancestries while 
also properly accounting for data compositionality, pro-
portions were first transformed into an isometric log 
ratio (ILR) representation (“pivot coordinates”) using the 
pivotCoord function in the robCompositions R package 
[34]. Analyses were then repeated using imputed race 
and ethnicity categories in place of ancestry proportions, 
with the “complex” category excluded from further analy-
ses, and the NH White group used as the reference cat-
egory. Odds ratios (ORs) and 95% confidence intervals 
were estimated from the full models. Complete case anal-
ysis was utilized in all regression models.

Sensitivity analyses were conducted to test whether 
adjusting for additional covariates affected the associa-
tions found in the main analyses. The following variables 
were individually tested in logistic regression models: 
sequenced tissue site (CRC, liver, lung, or other), can-
cer primary site (left colon, not specified, rectum, or 
right colon), cancer stage (1, 2, 3, or 4), tumor grade 
(low, medium, or high), high tumor mutational bur-
den (defined as ≥ 10 mutations/megabase as per KEY-
NOTE-158 study [35]), age at onset (in place of age at 
collection), cancer primary histology (by restricting to 
patients with adenocarcinoma only), and smoking sta-
tus (ever smoker or never smoker). Additional sensitiv-
ity tests for cancer primary site were conducted by (1) 
excluding cases with “not specified” cancer primary site 
and not adjusting for any additional variables, for the 
sake of comparison to the next three tests; (2) by exclud-
ing cases with “not specified” cancer primary site and 
adjusting for the remaining categories (left colon, rectum, 
or right colon); (3) by excluding cases with “not specified” 
cancer primary site and adjusting for site categorized as 
left colon/rectum or right colon; and (4) by excluding 
cases with “not specified” cancer primary site and adjust-
ing for site categorized as colon or rectum.

In addition to the main analyses, we looked for 
imputed race and ethnicity category associations that 
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differed by age of diagnosis (EOCRC vs. AOCRC), or by 
cancer primary site sidedness (colon vs. rectum and left 
colon/rectum vs. right colon) among microsatellite sta-
ble (MSS) patients. To identify such associations, we first 
conducted LRTs with logistic models similar to those in 
the main analyses, but with added indicator variables for 
age of diagnosis (or cancer primary site) in both the full 
and nested models, and an interaction term for age of 
diagnosis (or cancer primary site) and imputed race and 
ethnicity category in the full model. LRT p values were 
corrected for multiple hypotheses using the Benjamini-
Hochberg method. For any genes where evidence of 
interaction was identified by the LRT, interaction terms 
in the full model with p < 0.05 identified specific race 
and ethnicity categories with interaction effects. The full 
models were used to estimate ORs and 95% confidence 
intervals.

Because patients with MSI-H tumors are often can-
didates for immunotherapy, even with non-metastatic 
cancer (NCCN Guidelines version 2.20240), we wished 
to assess variation in TMB among this cohort [36]. 
Among patients with MSI-high status, the Kruskal-Wallis 
test was used to assess whether there were differences 
in TMB by age at diagnosis (AOCRC vs. EOCRC), by 
imputed race and ethnicity alone, and by imputed race 
and ethnicity stratified by age at diagnosis.

Differences in cohort characteristics by imputed race 
and ethnicity category
Differences in cohort characteristics among imputed 
race and ethnicity categories were assessed using the R 
package gtsummary [37]. Fisher’s exact test for count 
data with simulated p value (based on 2000 replicates) 
was used for categorical variables with any expected cell 
count < 5, Pearson’s chi-squared test was used for cat-
egorical variables with all expected cell counts ≥ 5, and 
the Kruskal-Wallis rank sum test was used for continuous 
variables.

Gene expression data exploration and preparation
Tempus xT RNA-Seq raw sequencing data were pro-
cessed with Kallisto to quantify transcript abundances as 
previously described [38]. Raw transcript counts were fil-
tered to a minimum of 10 counts in 5% of samples and a 
variance stabilized transform (VST, DESeq2) was applied 
[39]. Batch effects due to assay version were assessed 
with principal component analysis (PCA) and removed 
with LIMMA via linear modeling (removeBatchEffect) 
[40]. PCA plots labeled by grade, MSI status, tissue site, 
and clinical stage were then generated and inspected for 
the presence of clustering and used to inform subset-
ting of patients for separate downstream testing. Further 
variable selection for multivariable analyses was then 

performed on each subset. First, variables with more 
than 25% missing data were removed from consideration. 
Next, within each subset, PCA plots were again gener-
ated for remaining variables to assess their relationship 
with gene expression. Subsequent differential expression 
(DE) testing and gene set analyses were performed on 
data subsets individually using only the covariates appro-
priate for each subset.

PCA plots of RNA counts demonstrated that after 
batch correction, tissue site was the primary driver 
of variation (Additional file  1: Fig. S2). Therefore, we 
restricted our analyses to liver, colon, and rectum sam-
ples (with liver assessed separately from colon/rectum) 
given small numbers in other metastatic sites (Table 1). 
Clinical stage was missing for 37% of patients with RNA-
Seq results from the colon/rectum or liver, thus was 
not considered further. PCA plots were generated and 
labeled by MSI-status and tumor grade, and tumor tissue 
site for the colon/rectum subset. Given the small num-
ber of patients with MSI-high tumors (Additional file 1: 
Table S3) and differences in gene expression by MSI sta-
tus (Additional file  1: Fig. S3), MSI-high tumors were 
excluded from this analysis. There was notable cluster-
ing of patients with missing tumor grade for the colon/
rectum group with 21% of patients missing grade (Addi-
tional file 1: Fig. S3). Given the presence of strong clus-
tering by grade, and grade likely missing not at random, 
a missing indicator approach was used. This method has 
been shown to produce an almost unbiased result while 
preserving power lost under complete case analysis [41]. 
Final variables included for multivariable analysis were 
tumor grade, gender, early versus average onset, colon vs. 
rectum tumor tissue site (not present for liver subgroup), 
and either imputed race and ethnicity categories or pivot 
coordinates for genetic ancestry proportions.

Gene set analysis workflow 1: GSVA
Because gene set testing approaches test somewhat dif-
ferent hypotheses, we performed gene set analysis in 
the Hallmark and C2 Biocarta gene sets (342 total) from 
MSigDB using two distinct workflows [42–44]. GSVA is 
a method that evaluates the expression of genes within 
a gene set relative to those outside of the set (i.e., it is a 
“competitive” test) and is useful for singling out a few 
gene sets among many that are associated with a phe-
notype of interest. On the other hand, mROAST is a 
method that is focused only on genes within a set (it is 
“self-contained”) and is more powerful for detecting sub-
tle differences among phenotypes. The first workflow 
began with filtering the data to retain only genes with at 
least 10 read counts in greater than 5% of samples, fol-
lowed by VST and removeBatchEffects. These data were 
then processed by gene set variation analysis (GSVA) to 
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produce enrichment scores for each sample and gene 
set [45]. Differential expression at the gene set level was 
assessed using a multivariate linear model and the empir-
ical Bayes method in LIMMA.

Gene set analysis workflow 2: mROAST
The second gene set analysis workflow began with the 
same prevalence filtering followed by trimmed mean of 
M values (TMM) normalization and variance modeling 
at the observational level (VOOM) to generate precision 
weights [40]. We then performed gene set testing using 
the multiple rotation gene set test (mROAST, n rota-
tions = 20,000, mean set statistic, mid-p values) [46]. RNA 
assay version was included as a covariate in mROAST.

For each data subset, models were run once for each of 
the imputed race and ethnicity categories with NH White 
as the reference group for four total tests, and once for 
each genetic ancestry proportion for five total tests, each 
on the appropriate set of pivot coordinates. To maximize 
robustness of findings, we required a Benjamini-Hoch-
berg corrected p < 0.05 in both mROAST and GSVA to 
report a gene set as significantly enriched in a race and 
ethnicity imputed category, genetic ancestry proportion, 
or onset age group.

Consensus molecular subtypes
Consensus molecular subtypes (CMS) analysis was 
applied only to samples with colon or rectum as the 
sequenced tissue site [47, 48]. The CMScaller function 
assigned each sample a CMS, and a chi-squared test with 
post hoc inspection of standardized residuals was used to 
assess the relationship between CMS and imputed race 
and ethnicity categories. We further assessed this rela-
tionship stratified by age of onset category (EO vs. AO). 
For testing the association of CMS with genetic ancestry 
proportions, five separate multinomial logistic regres-
sions were performed, each with the five CMS classes as 
dependent variables and genetic ancestry proportions 
(as pivot coordinate sets) as the independent variables. 
Finally, we repeated the multinomial logistic regression 
stratified by age of onset category.

Software
Somatic mutation analyses were performed with R ver-
sion 4.1.3. RNA analyses were performed with R version 
4.2.2. RNA-Seq data preparation and analysis steps are 
diagrammed in Additional file 1: Fig. S5.

Results
Associations between genetic ancestry and somatic 
mutations in MSS tumors
Among patients with MSS disease, we examined associa-
tions between genetic ancestry proportions and imputed 

race and ethnicity with protein-altering mutations in 
79 genes (Additional file  1: Table  S6, see “Methods” for 
selection criteria), somatic copy number alterations 
(SCNAs) in nine genes, and actionable mutations (pre-
sent in OncoKB, cf. “Methods”) in three genes (BRAF, 
KRAS, PIK3CA). Results for MSS tumors are summa-
rized in Table 2 and Figs. 1 and 2.

Increased AFR ancestry was associated with higher 
odds of protein-altering mutations (Fig.  1A) in APC 
[odds ratio (OR) per doubling of ancestry proportion, 
1.04; 95% confidence interval (CI), 1.02–1.06] and KRAS 
(OR, 1.04; 95% CI, 1.02–1.06), along with decreased odds 
of such mutations in BRAF (OR, 0.93; 95% CI, 0.90–0.97). 
EAS genetic ancestry was associated with decreased 
odds of protein-altering mutations in KRAS (OR, 0.98; 
95% CI, 0.96–0.999). For actionable mutations (Fig. 1A), 
increased AFR genetic ancestry was associated with 
increased odds of PIK3CA mutations (OR, 1.04; 95% CI, 
1.02–1.06) and decreased odds of BRAF mutations (OR, 
0.90; 95% CI, 0.86–0.93). Increased EUR genetic ancestry 
was positively associated with actionable mutations in 
BRAF (OR, 1.09; 95% CI, 1.06–1.14). No genetic ancestry 
proportion associations were found with SCNAs. When 
including TMB (continuous) as a covariate, results were 
similar, with the exception of the EAS association with 
protein-coding mutations in KRAS and the AFR asso-
ciation with actionable mutations in PIK3CA no longer 
being statistically significant. Otherwise, all of the same 
associations were identified, with ORs and 95% confi-
dence intervals changing by 0.01 or less (Additional file 1: 
Table S9).

In tests of imputed race and ethnicity categories, we 
found that NH Blacks had higher odds of protein-altering 
mutations (Fig.  1B) in KRAS compared to NH Whites 
(OR, 1.63; 95% CI, 1.37–1.94). The association was not 
significant for actionable mutations (Fig.  1B). NH Black 
and Hispanic/Latino patients had lower odds of action-
able mutations of BRAF (OR, 0.61; 95% CI, 0.42–0.90 and 
OR, 0.29; 95% CI, 0.18–0.47, respectively) compared to 
NH White patients, while NH Blacks had higher odds of 
actionable mutations in PIK3CA (OR, 1.43; 95% CI, 1.18–
1.75). When including TMB (continuous) as a covariate, 
we identified additional associations of protein-altering 
mutations in BRAF (OR, 0.44; 95% CI, 0.29–0.67) and 
ERBB4 (OR, 0.36; 95% CI, 0.19–0.67) in NH Blacks com-
pared to NH Whites. Otherwise, the same associations 
were identified (Additional file 1: Table S9).

Somatic mutation associations with interaction effects 
in MSS tumors
Two genes showed different imputed race and ethnicity 
category associations by either diagnosis age or primary 
site. Hispanic/Latino patients with AOCRC had higher 
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odds of FLT3 SCNAs than NH White AOCRC patients 
(OR, 2.38; 95% CI, 1.53–3.72), while no association was 
present in those with EOCRC (OR, 0.46; 95% CI, 0.18–
1.18; Fig. 3, Additional file 1: Table S8). Both NH Asian 
and NH Black patients with primary tumors in the colon 
showed decreased odds of actionable mutations in BRAF 
compared to NH Whites (OR, 0.12; 95% CI, 0.16–0.86 
and OR, 0.10; 95% CI, 0.03–0.42, respectively), with no 
association seen for rectal tumors (OR, 1.84; 95% CI, 
0.41–8.32 and OR, 2.12; 95% CI, 0.68–6.59, respectively) 
(cf. Figure 3, Additional file 1: Table S8).

Somatic mutation associations in MSI‑high tumors
Approximately 5% of the cohort (n = 445) had MSI-high 
tumors, which ranged from 3.6 to 5.9% in patients with 
imputed NH Asian and Hispanic/Latino race and ethnic-
ity, respectively (Table  1). The difference in proportion 
of MSI-high tumors by race and ethnicity category was 
not significant (p = 0.062). Among patients with AOCRC, 
prevalence of MSI-high tumors differed by imputed race 
and ethnicity (p = 0.008, Additional file  1: Table  S5). 
Hispanic/Latino and NH White patients had the high-
est proportion of MSI-high tumors at 6.0% and 6.4%, 
respectively. In contrast, in EOCRC, patients with NH 
Black (5.4%), Hispanic/Latino (6.1%), and complex (6.9%) 
imputed race and ethnicity had higher rates of MSI-high 

tumors (Additional file  1: Table  S6), though the differ-
ences were not statistically significant (p = 0.074). Among 
MSI-high patients, we tested the association of genetic 
ancestry proportions and imputed race and ethnicity 
with the presence of protein-altering mutations in 127 
genes, SCNAs in two genes, and actionable mutations 
in two genes (Additional file  1: Table  S6). No associa-
tions were found between genetic ancestry proportions 
and the presence of any mutations. NH Black MSI-high 
patients had higher odds of having protein-altering muta-
tions in KMT2C compared to NH Whites (OR, 23.7; 95% 
CI, 3.1–181; Fig. 2A, Additional file 1: Tables S7–8), and 
NH Asian and Hispanic/Latino MSI-high patients were 
more likely to have MLH1 SCNAs compared to NH 
Whites (OR, 13.9; 95% CI, 1.9–103 and OR, 11.4; 95% 
CI, 2.6–49.6, respectively (cf. Figure 2B, Additional file 1: 
Table S9)) were similar (Additional file 1: Table S10).

Somatic mutation association sensitivity tests
Sensitivity test results are given in Additional file  2: 
Tables S15–S24. In MSS tumors, associations with pro-
tein-altering somatic mutations in KRAS, APC, and 
BRAF were largely unchanged in sensitivity tests. LRT 
p values were > 0.05 in all tests that excluded patients 
with “not specified” cancer primary site, where statistical 
power was diminished due to a low number of patients 

Table 2 Somatic mutation associations with ancestry proportions and imputed race categories in MSS patients. Mutation type: type 
of mutation tested. “Actionable” refers to protein-altering mutations that are classified as OncoKB Therapeutic Level of Evidence V2 
designation of therapeutic level 1 or 2, or resistance level R1, irrespective of the solid cancer type. Gene: HGNC gene symbol of tested 
gene. N genes tested = number of genes of specified mutation type tested for association. N patients total: total number of patients 
included in models. N patients with mutation = number of patients included in models who have one or more of the mutation type 
in the gene. p LR (FDR): p value for likelihood ratio test, adjusted for the number of genes in the N genes tested column to control 
the false discovery rate. Ancestry or imputed race group: ancestry or imputed race group associated with the presence/absence of 
mutations in this gene in logistic regression test. OR (95% CI): odds ratio per doubling of genetic ancestry proportion (in the case 
of ancestry) or odds ratio compared to NH White category (in the case of imputed race group) and 95% confidence interval in the 
logistic regression test. p logistic = p value for the specific ancestry proportion or imputed race group in the logistic regression test, not 
adjusted for multiple tests

Mutation type Gene N genes tested N patients total N patients 
with 
mutation

p LR (FDR) Ancestry or imputed 
race/ethnicity group

OR (95% CI) p logistic

Protein-altering APC 79 4871 3558 0.007 AFR 1.04 (1.02, 1.06) 1.6e − 04

Protein-altering BRAF 79 4871 365 0.047 AFR 0.93 (0.90, 0.97) 1.6e − 04

Protein-altering KRAS 79 4871 2343 0.004 AFR 1.04 (1.02, 1.06) 2.9e − 06

EAS 0.98 (0.96, 0.999) 0.039

Actionable BRAF 3 7965 402  < 1e − 08 AFR 0.90 (0.86, 0.93) 5.7e − 08

EUR 1.09 (1.06, 1.14) 5.4e − 05

Actionable PIK3CA 3 7965 855 0.016 AFR 1.04 (1.02, 1.06) 7.1e − 04

Protein-altering KRAS 79 4723 2276 3.2e − 06 NH Black 1.63 (1.37, 1.94) 3.3e − 08

Actionable BRAF 3 7718 388 1.8e − 08 Hispanic/Latino 0.61 (0.42, 0.90) 0.012

NH Black 0.29 (0.18, 0.47) 3.9e − 07

Actionable PIK3CA 3 7718 831 0.003 NH Black 1.43 (1.18, 1.75) 3.4e − 04
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with specified cancer primary site. However, ORs from 
logistic regression were similar to the initial tests that 
adjusted only for age at collection, gender, and assay ver-
sion (OR ranges: APC AFR 1.03–1.07, BRAF AFR 0.92–
0.95, KRAS AFR 1.03–1.05, and KRAS EAS 0.97–0.98). 
Associations with actionable mutations in BRAF were 
all statistically significant, with ORs ranging from 0.88 
to 0.93 for AFR and 1.08 to 1.12 for EUR. LRT p values 
for actionable mutations in PIK3CA were above 0.05 for 
tests restricted to patients with specified cancer primary 
site, and ORs for association with AFR genetic ancestry 
ranged from 1.02 to 1.05. In sensitivity tests of race and 
ethnicity categories among patients with MSS tumors, 
nearly all tests were statistically significant with a few 
exceptions in PIK3CA tests that excluded patients with 

unspecified cancer primary site, with ORs ranging from 
1.54 to 1.85 for protein-altering KRAS mutations in NH 
Black patients, 0.25 to 0.37 for actionable BRAF muta-
tions in NH Black patients, 0.57 to 0.73 for actionable 
BRAF mutations in Hispanic/Latino patients, and 1.26 
to 1.72 for actionable PIK3CA mutations in NH Black 
patients.

LRT p values for sensitivity tests in patients with MSI-
high tumors were all statistically significant, but logistic 
regression models that excluded patients with unspeci-
fied cancer primary site suffered from very low patient 
counts and perfect separation, resulting in extreme and 
unreliable ORs. The remaining ORs ranged from 14.3 to 
26.1 for protein-altering KMT2C mutations in NH Black 
patients, 11.1 to 127.1 for MLH1 SCNAs in NH Asian 

Fig. 1 Associations of somatic mutations with genetic ancestry proportions and imputed race and ethnicity categories in patients with MSS 
disease. A Associations with genetic ancestry proportions. AFR, Africa; AMR, the Americas; EAS, East Asia; EUR, Europe; SAS, South Asia. Odds ratios 
are with respect to a doubling of a specific genetic ancestry proportion and are adjusted for assay version, gender, age at sample collection, 
and the other four genetic ancestry proportions. B Associations with imputed race and ethnicity category. Odds ratios are with respect to the NH 
White race and ethnicity category and are adjusted for assay version, gender, and age at sample collection. Filled circles indicate a logistic regression 
p < 0.05, while open circles indicate p ≥ 0.05
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patients, and 6.6 to 63.2 for MLH1 SCNAs in Hispanic/
Latino patients.

TMB in MSI‑high tumors
Among MSI-high patients, there was no statistically sig-
nificant difference of TMB by imputed race and ethnicity 
group (p = 0.21), or onset group (p = 0.85), nor was TMB 
significantly different among the subset of MSI-high 
patients with AOCRC (p = 0.06) or EOCRC (p = 0.26) 
(see Fig. 4A–D).

Variable selection for mRNA analyses
PCA plots of RNA counts demonstrated that after batch 
correction, tissue site was the primary driver of variation 
(Additional file  1: Fig. S2). Therefore, we restricted our 
analyses to liver, colon, and rectum samples (with liver 
assessed separately from colon/rectum) given small num-
bers in other metastatic sites (Table 1; Additional file 1: 
Table 11). Clinical stage was missing for 37% of patients 
with RNA-Seq results from the colon/rectum or liver, 
thus was not considered further. PCA plots were gen-
erated and labeled by MSI-status and tumor grade, and 
tumor tissue site for the colon/rectum subset. Given the 
small number of MSI-high patients (Additional file  1: 

Table S9) and differences in gene expression by MSI sta-
tus (Additional file  1: Fig. S3), MSI-high patients were 
excluded from this analysis. There was notable cluster-
ing by missing tumor grade in both PCA and UMAP for 
the colon/rectum group with 21% of patients missing 
grade (Additional file  1: Fig. S4). Given the presence of 
strong clustering by grade, and grade likely missing not 
at random, a missing indicator approach was used. This 
method has been shown to produce an almost unbiased 
result while preserving power lost under complete case 
analysis [41]. Final variables included for multivariable 
analysis were tumor grade, gender, early versus average 
onset, colon vs. rectum tumor tissue site (not present 
for liver subgroup), and either imputed race and ethnic-
ity categories or pivot coordinates for genetic ancestry 
proportions.

Associations between genetic ancestry and expression 
of gene sets
We next examined associations between genetic ances-
try or imputed race and ethnicity category with expres-
sion of genes in the Hallmark and Biocarta C2 gene sets 
(342 total). In MSS colon/rectum samples (n = 1830), 
the imputed NH Black category was consistently 

Fig. 2 Somatic mutation associations with imputed race and ethnicity categories in patients with MSI-high disease. Odds ratios are with respect 
to the NH White race and ethnicity category and are adjusted for assay version, gender, and age at sample collection. Filled circles indicate a logistic 
regression p < 0.05, while open circles indicate p ≥ 0.05
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associated with underexpression compared to the NH 
White category in the following gene sets: Hallmark 
coagulation (mROAST p = 0.021, GSVA p = 0.005), 
BioCarta alternative complement (mROAST p = 0.009, 
GSVA p = 0.005), BioCarta RECK (mROAST p = 0.026, 
GSVA p = 0.007), and BioCarta Rhodopsin (mROAST 
p = 0.026, GSVA p = 0.038; Table  3). Highly differ-
entially expressed genes in these gene sets included 
complement factor C3, tissue inhibitors of metallopro-
teinases TIMP2 and TIMP3, matrix metallopeptidase 
11 (MMP11), coagulation factor VIII (F8), cathepsin K 
(CTSK), and antithrombin III (SERPINC1) (Additional 
file 1: Table S12.1). Significant underexpression associ-
ated with increased AFR genetic ancestry in the above 
gene sets was found only by GSVA; we include the AFR 
results in Table 3 for comparison.

In MSS liver samples (n = 778), greater AFR genetic 
ancestry (but not the NH Black imputed category) 
was associated with underexpression in the Bio-
Carta CREM gene set (Table  3 and Additional file  1: 
Table S12.2). There were no significant findings by age 
of onset group.

Associations between genetic ancestry and CRC consensus 
molecular subtypes (CMS)
Among 1957 patients where CMS were obtained with 
CMScaller, including both MSS and MSI-H patients, 
252 were imputed non-Hispanic (NH) Black, 98 NH 
Asian, 287 Hispanic/Latino, 66 complex, and 1254 NH 
White (Additional file 1: Table 11). CMS was associated 
with race and ethnicity imputed categories (p = 0.004). 
Inspection of the standardized chi-square residuals 
revealed greater than expected NH Black CMS3 (66 
observed vs. 46 expected, p = 0.001), less than expected 
NH Black CMS1 (18 vs. 30, p = 0.011), and greater than 
expected Hispanic/Latino indeterminate CMS (36 
vs. 26, p = 0.031) (Fig.  5, Additional file  1: Table  S13). 
When stratifying by age of onset group, the overall chi-
square test of independence was no longer significant 
for EOCRC but remained significant for AOCRC, and 
inspection of standardized residuals revealed the asso-
ciation of indeterminate CMS and Hispanic/Latino 
imputed category was only present among EO, while 
the association of NH Black and CMS1 and CMS3 was 
only present among AO.

Fig. 3 Interaction effects by onset age group or by primary tumor site in somatic mutation associations with imputed race and ethnicity categories 
in patients with MSS disease. Odds ratios are with respect to the NH White race and ethnicity category and are adjusted for assay version, gender, 
and age at sample collection. Filled circles indicate a logistic regression p < 0.05, while open circles indicate p ≥ 0.05
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In the analysis of genetic ancestry proportions, 
increased AFR genetic ancestry was significantly associ-
ated with CMS3 (OR, 1.056 per doubling of AFR propor-
tion, 95% CI, 1.003–1.111) and indeterminate CMS (OR, 
1.083; 95% CI, 1.021–1.149), while increased EUR genetic 
ancestry was associated with decreased odds of CMS3 
(OR, 0.925; 95% CI, 0.874–0.979), all with CMS1 as the 
reference outcome (Additional file  1: Table  S14). When 
stratifying by age of onset group, these associations were 
only statistically significant in the AOCRC group.

Discussion
In this molecular pathological epidemiology study, we 
utilized comprehensive tumor profiling in a large, diverse 
patient cohort derived from a clinico-genomic database, 
to identify differences in somatic mutation frequencies 
and gene expression by genetic ancestry in CRC. Unlike 
prior studies that have often relied on self-reported or 

observed race and ethnicity or rigid genetic ancestry 
categorizations, our approach directly employs ancestry 
proportions directly to identify associations, using statis-
tical methods that control for correlations among ances-
tries. Further, we leverage genetic ancestry to impute race 
and ethnicity categories to address missingness in clin-
ico-genomic databases.

Given the rising incidence of EOCRC, we first sought 
to assess differences in imputed race and ethnicity with 
tumor genetic profile by age of onset. However, in our 
data, no significant interactions were found except for 
FLT3, which had higher odds of SCNAs in Hispanic/
Latino patients with AOCRC but not EOCRC.

For MSS CRC across all ages, NH Black patients and 
those with greater AFR genetic ancestry had lower 
odds of actionable variants in BRAF and higher odds of 
short protein-altering mutations in KRAS. In contrast, 
increased EAS ancestry was associated with decreased 

Fig. 4 Distribution of TMB count by imputed race and ethnicity group and age of onset for MSI-high patients. A TMB count by imputed race 
and ethnicity group. B TMB count by age of onset. C TMB count in AOCRC patients by race and ethnicity group. D TMB count in EOCRC patients 
by race and ethnicity group
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Table 3 RNA gene set results. Gene sets are reported as significant only if the corrected p value from both mROAST and GSVA 
was < 0.05 and at least 50% of individual genes in the set were significantly differentially expressed as reported by mROAST. mROAST 
uses more conservative mid-p values during FDR correction. Included in this table alongside significant results is the result for the 
genetic ancestry proportion (or imputed group) that has the most overlap with the significant finding. All results reported in this table 
for the non-Hispanic Black imputed category are underexpression of the gene set in comparison to non-Hispanic White; all results for 
AFR represent decreased gene expression as the dominance of AFR compared to other ancestries increases

Gene set Genetic ancestry Tissue site mROAST genes in set 
significantly underexpressed

mROAST FDR GSVA FDR

Hallmark coagulation

NH Black Colon/rectum 65/130 0.021 0.005

AFR Colon/rectum 60/130 0.083 0.038

BioCarta alternative complement

NH Black Colon/rectum 5/8 0.009 0.005

AFR Colon/rectum 3/8 0.083 0.046

BioCarta RECK

NH Black Colon/rectum 7/9 0.026 0.007

AFR Colon/rectum 7/9 0.105 0.042

BioCarta Rhodopsin

NH Black Colon/rectum 5/6 0.026 0.011

AFR Colon/rectum 5/6 0.077 0.038

CREM

NH Black Liver 3/5 0.528 0.079

AFR Liver 3/5 0.026 0.002

Fig. 5 Expected vs. observed proportions of patients by imputed racial/ethnic category and consensus molecular subtype. Panel area 
in the expected block is proportional to the null hypothesis of equal racial and ethnic distribution across CMS. Panel area in the observed 
block is proportional to the observed racial and ethnic distribution across CMS. Bar width for each CMS is proportional to the observed patient 
assignments. Findings with absolute standardized residuals > 1.96 indicated with * (chi-square test of independence) 1Indeterminate CMS
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odds of protein-altering KRAS mutations and greater 
odds of actionable BRAF mutations. KRAS-WT and 
left-sided tumors are approved for treatment with EGFR 
inhibitors such as cetuximab [49]. Our findings are con-
sistent with previously published studies using self-
reported race showing higher rates of KRAS mutations in 
NH Black patients [11, 12, 50], underscoring the impor-
tance of assessing targeted therapies in diverse popula-
tions. Standard of care for patients with metastatic cancer 
harboring mutations in BRAF V600E includes combina-
tion BRAF and EGFR inhibitors [51]. These mutations 
usually portend a poor prognosis with early development 
of metastatic disease and were less common in patients 
with imputed NH Black and Hispanic/Latino race and 
ethnicity and more common in patients with increased 
EUR ancestry [12].

Approximately 20–25% of CRC patients harbor acti-
vating mutations in PIK3CA, which activates the mTOR 
pathway [52]. Some studies have suggested that the pres-
ence of PIK3CA mutations could confer resistance to 
first-line chemotherapy, although the data are prelimi-
nary [53]. Inhibitors of PIK3CA have been approved for 
PIK3CA positive treatment resistant metastatic breast 
cancer [54]. As such, PIK3CA mutations could represent 
an opportunity for targeted therapy in CRC, particularly 
in combination with other drugs, since PIK3CA muta-
tions are also associated with higher rates of mutations 
in genes in other key cancer pathways [52]. The higher 
rate of actionable PIK3CA mutations in MSS patients 
with greater AFR ancestry and imputed NH Black race 
suggests these combinations could preferentially benefit 
minority subgroups with CRC.

Thrombosis is one of the leading causes of death among 
cancer patients [55], and there is increased risk of both 
overall and cancer associated thrombosis among Black 
patients [56, 57]. In our study, the Hallmark coagula-
tion gene set was significantly underexpressed in tumors 
from NH Black patients. Specifically, coagulation factors 
F7 and F11 and platelet tissue factor TF were underex-
pressed, while antithrombin III SERPINC1 was overex-
pressed in NH Black patients compared to NH White. 
These findings do not support that changes in tumor 
coagulation gene expression pathways contribute to the 
elevated thrombosis risk observed in Black CRC patients.

Patients with imputed NH Black race and ethnicity 
or increased AFR ancestry had higher odds of CMS3 
tumors. So-called metabolic tumors, CMS3 tumors dis-
play marked metabolic dysregulation with the majority 
harboring mutations in KRAS [47]. As such, this find-
ing is concordant with the positive association of KRAS 
mutations and AFR ancestry found in our study. His-
panic/Latino patients were assigned to the indetermi-
nate CMS category more often than expected. While the 

reason for this is unclear, one possibility is the underrep-
resentation of non-White patients in the datasets used to 
define CMS [32, 47]. As future trials and drug develop-
ment efforts may stratify patients by CMS, it is important 
to ensure these categorizations accurately represent a 
diverse CRC patient population.

In spite of the advantages of our clinico-genomic data-
base in terms of multimodality and greater diversity than 
controlled research and clinical studies, healthcare data 
are convenience samples with inherent ascertainment 
biases [20, 58]. Critical factors influencing the inclu-
sion of patients—such as disease stage, race, ethnic-
ity, insurance coverage, and socioeconomic status—are 
frequently unknown and unevenly distributed. This can 
lead to skewed data that may not accurately represent 
the broader population, potentially affecting the gener-
alizability and validity of study findings. Limitations of 
our study include incomplete data on clinical stage, sid-
edness, age of diagnosis, and tumor grade, and unavail-
ability of normal tissue sequencing for all patients. Our 
cohort has a larger representation of late-stage patients. 
Given that MSI-high is less common in late-stage meta-
static patients and is associated with the CMS1 sub-
type, our results may be influenced by these differences. 
Missingness precluded the use of several variables as 
adjustment variables in our somatic mutation analy-
ses. However, sensitivity tests indicated that our main 
results are unlikely to be totally explained by differences 
in tumor tissue site, cancer primary site, cancer stage, 
tumor grade, TMB, age at onset, cancer primary his-
tology, or smoking status, though they may be partially 
explained by the latter two variables. It is important to 
note that our results should not be interpreted as indi-
cating direct causal relationships between genetic ances-
try or imputed race and ethnicity and molecular tumor 
profiles. Rather, these associations may be attributable to 
unmeasured genetic or environmental factors, or combi-
nations thereof, that correlate with genetic ancestry pro-
portions or imputed race and ethnicity. Additionally, data 
de-identification limits our ability to incorporate social 
determinants of health (SDOH) and other environmen-
tal factors that could influence more directly mutational 
profiles. This restriction prevents our molecular patho-
logical epidemiology study from fully elucidating cau-
sality but opens the door for subsequent studies where 
these data are available. Furthermore, patients in our 
study do not represent an equal sampling of all patients 
across the United States, because our cohort consists of 
predominantly those with late-stage cancer whose physi-
cians ordered the xT test. As such, our results may not 
generalize to all CRC patients, and some associations 
that exist in the full population may have been missed. 
Finally, we were not able to impute “American Indian 
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or Alaska Native” or “Native Hawaiian or Other Pacific 
Islander” categories due to limitations in the public refer-
ence allele frequencies and the small number of patients 
of such categories in our cohort (estimated < 1%). These 
patients may be misclassified as Hispanic/Latino or NH 
Asian, respectively (cf. Table 1); however, given the small 
number we do not expect these to significantly change 
our findings regarding imputed Hispanic/Latino or NH 
Asian categories.

In our study, we utilized imputed race and ethnicity due 
to the notable missingness of stated race and ethnicity 
data in healthcare and clinico-genomic data [15], where 
this information is not exclusively self-identified but also 
assigned by healthcare providers [14]. This approach sig-
nificantly enhanced the statistical power to find associa-
tions while avoiding potential biases in data missingness 
[21, 59]. Our method leverages genetic ancestry for this 
imputation, and although genetic ancestry is not equiva-
lent to race or ethnicity, a strong correlation between 
these two concepts has been observed among US popu-
lations [33]. We previously published an extensive anal-
ysis of the accuracy of our R/E imputation method and 
some variations, demonstrating that it outperforms other 
methods used in healthcare data [21]. We highlight that 
when performing race imputation, we adhered to estab-
lished recommendations for ethical imputation—our 
adherence to these guidelines underscores our commit-
ment to the responsible use of race imputation in pro-
moting equity in healthcare [60].

Our cohort also includes a large fraction of patients for 
whom matched tumor-normal sequencing data is avail-
able, allowing better discrimination between germline 
variants and somatic mutations. Another strength of 
our study is the concurrent analysis of genomic somatic 
mutations with transcriptional profiles of the patient’s 
tumors. Methodologically, by applying compositional 
analysis in our logistic regressions, we were able to mini-
mize comparisons involving a single reference group 
(typically Whites) while controlling for correlations 
among genetic ancestries when they are reported as pro-
portions that sum to one. Further, we used two distinct 
gene set analysis and RNAseq normalization methods 
to demonstrate consistency and strengthen our gene 
expression findings.

Conclusions
In summary, through analyzing a large, diverse CRC 
patient cohort, we found associations between genetic 
ancestry and prevalence of somatic mutations in CRC 
driver genes, gene expression levels in cancer related 
gene sets, and the distribution of consensus molecu-
lar subtypes that have not previously been reported 

in studies using race and ethnicity categories alone. 
Increased AFR genetic ancestry was associated with 
higher odds of APC, KRAS, and PIK3CA mutations and 
CMS3 tumors, as well as lower odds of BRAF muta-
tions. Increased EAS genetic ancestry correlated with 
lower odds of mutations in KRAS. Furthermore, the 
increased odds of indeterminate CMS tumors in the 
imputed Hispanic/Latino category suggests that more 
diverse representation could reduce disparities in the 
applicability of disease subtype models. Additional 
work is needed to identify the specific genetic and 
environmental explanations of these associations. Our 
findings demonstrate the advantage of using genetic 
ancestry in studies of disparities in CRC and highlight 
the need to validate proposed therapies, biomarkers, 
and prognosis indicators in diverse patient populations.
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