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Abstract 

To date, the role of NODAL in normal and abnormal L-R asymmetry has been well established. In a recent paper, muta-
tions of this gene have been reported in heterotaxy but also in transposition with D- or L-ventricular loop. The effects 
of NODAL and other laterality genes can be recognized separately in all three cardiac segments: for topology and sep-
tation of the atria, for ventricular looping, and for spiralization and alignment of the great arteries.
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Background
In a recent issue of this Journal, Dardas et al. published 
an interesting paper on several NODAL gene mutations 
associated with different types of congenital heart defects 
(CHD) [1]. In their study, the authors analyzed a large 
cohort of cases (n = 321), including heterotaxy but also 
transposition of the great arteries (TGA) with or with-
out left ventricular loop, demonstrating rare variants of 
NODAL in 33 subjects.

The essential role of NODAL gene in normal and 
abnormal left–right (L-R) asymmetry in the embryo is 
well established [1], and previous reports have shown 
NODAL mutations in cases of heterotaxy, TGA, and con-
genitally corrected TGA (CCTGA) [2] and also in ana-
tomically corrected malposition of the great arteries [3].

However, the paper of Dardas et al. confirms that rare 
NODAL gene variants are associated with heterotaxy and 
may also contribute to the development of other types of 
CHD with normal visceroatrial situs (solitus) but with 
inverted position of the ventricles (L-loop) and inverted 
position (transposition) of the great arteries (TGA).

It is noteworthy that other laterality and ciliary genes 
(ZIC3, CFC1, GDF1, DNAH9, DNAH5) have been 
reported in association with heterotaxy and TGA with 
situs solitus. Furthermore, interestingly, the NODAL 
gene is highly conserved in vertebrates but is also present 
in snails with the role of shell spiralization. The same spi-
ralization that NODAL-signaling pathway determines in 
the great arteries of the vertebrate heart [4].

In the following sections, we will discuss the separate 
effects of the Nodal gene-signaling pathway on the atrial, 
ventricular and great arteries segments of the heart.

Atrial and atrioventricular canal (AVC) septation
In 1995, the revelation of early asymmetric expression of 
three genes, ACTIVIN, SHH, and NODAL, represents the 
most important discovery for understanding the genetics 
of L-R asymmetry in vertebrates. The NODAL-signaling 
pathway activates an asymmetric left-sided expression 
of PITX2, inducing a morphologic specification of left-
sided body organs and of heart segments. This genetic 
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pathway, due to a clockwise rotation of primary cilia at 
the left/right organizer, generates an asymmetric left-
ward flow, long before the appearance of morphological 
asymmetries.

In the atria, the normal expression of PITX2 at the 
level of the left atrium and atrial septum, but not of the 
right atrium, induces position, specific morphology, and 
septation of the atria. However, the mechanism linked 
to PITX2 is not the only one involved in atrial septa-
tion. In fact, the “dorsal mesenchymal protrusion,” an 
extracardiac tissue, has been reported to be an impor-
tant determinant of AVC development. This extracardiac 
cell population arises from the posterior segment of the 
second heart field and grows toward the atrial surface 
and toward the posteroinferior and dorsal endocardial 
cushion. This structure closes the primary atrial fora-
men forming the atrioventricular junction. To date, we 
know that sonic hedgehog (SHH), one of the early genes 
involved in L-R lateralization, is widely expressed in the 
dorso-mesenchymal protrusion and is therefore critical 
in the AVC formation [5]. SHH may be involved not only 
in heterotaxy but also in Ellis-Van Creveld, Noonan, and 
Down syndromes. In all these genetic conditions, a unify-
ing pathogenetic role of SHH acting on the dorso-mesen-
chymal protrusion may explain the recurrent presence of 
AVC without heterotaxy [5].

Ventricular loop
The bending of the ventricles, better known as ventricu-
lar loop, has been one of the most studied embryological 
events, but is still among the least understood.

The heart is the first organ to break bilateral morpho-
logical embryological symmetry with an early asym-
metrical rightward looping of the ventricles. However, 
experiments in mice have failed to demonstrate an exclu-
sive role of known laterality genes in ventricular loop-
ing, which appears to be NODAL dependent but PITX2 
independent [6]. Probably, in addition to NODAL/PITX2 
genes, other signaling pathways are involved in the ven-
tricular bending. It has been suggested that an intrinsic 
mechanism of ventricular cells chirality, perhaps mainly 
of the left ventricle or extrinsic forces, drives the right 
ventricular loop [6]. The asymmetric NODAL/PITX2 
signaling could enhance an existing skeleton-based 
intrinsic mechanism of chirality, thus influencing the 
direction of the ventricular loop.

Great arteries spiralization
More than 20 years ago, it was suggested that the parallel 
and non-spiral morphology of the great arteries in TGA 
might be a phenotypic sign of laterality defect [7]. In the 
subsequent years, this hypothesis has been supported by 
studies on familial recurrence and molecular biology [8].

The embryological rotational movement of the myo-
cardial outflow induces the spiral morphology of the car-
diac outflow tract and the correct alignments of the great 
arteries. Moreover, the absence of Pitx2 in knock out 
mice can affect the outflow tract, causing parallel course 
and failure of the great arteries rotation and finally TGA 
[9].

In addition, recent contributions have shown that the 
polarization of pulmonary veins and the asymmetry of 
aortic arches could also be influenced by ciliary and lat-
erality genes.

These observations not only are of genetic and noso-
graphic value but also could have important clinical, 
therapeutic, and prognostic implications. Indeed, the 
Pittsburgh group has shown that patients with TGA and 
CCTGA may experience respiratory symptoms similar to 
those observed in children with heterotaxy, due to ciliary 
dysfunction [10].

Defining the pathogenesis will be useful in disease 
treatment and precision medicine in the field of CHD as 
well.

Conclusions and perspectives
The effects of lateralization genes can be found separately 
in all three cardiac segments: for the topology and septa-
tion of the atria and AVC, for the ventricular looping, and 
for the spiralization and alignment of the great arteries.

Defects in these genetic pathways can cause the com-
plete form of heterotaxy but also CHD with established 
viscero atrial situs solitus (or inversus) and discordance 
between cardiac segments and/or between ventricular 
chambers and great arteries.

It is evident that the early development and the seg-
mental complexity of the heart make it susceptible to L-R 
asymmetry abnormalities. The laterality genes are prob-
ably involved in far more CHDs than is currently known 
[9].

Future studies are required to explain the precise 
effects of laterality genes on various heart segments for 
normal and abnormal alignment of cardiac chambers and 
great arteries. Moreover, they may clarify why an appar-
ently equal genetic defect can cause such different seg-
mental cardiac phenotypes [1–3].

Certainly, the understanding and diagnosis of later-
alization patterns cannot be guided only by atrial mor-
phology and the definition of isomerism. Complex CHD 
deserve a complex and specific approach rather than a 
simplistic and rigid nomenclature. Perhaps nowadays 
atrial situs by itself is not sufficient to define cardiac situs; 
rather, it is more accurate to also consider ventricular 
and great artery situs, which may be independent of each 
other.
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The potential independent development within the 
same genetic pathway is the new way to understand com-
plex CHD with discordance or malposition of heart seg-
ments and great arteries.
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