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Abstract 

Background  Cardiovascular diseases (CVD) are a major health concern in Africa. Improved identification and treat-
ment of high-risk individuals can reduce adverse health outcomes. Current CVD risk calculators are largely unvalidated 
in African populations and overlook genetic factors. Polygenic scores (PGS) can enhance risk prediction by measuring 
genetic susceptibility to CVD, but their effectiveness in genetically diverse populations is limited by a European-ances-
try bias. To address this, we developed models integrating genetic data and conventional risk factors to assess the risk 
of developing cardiometabolic outcomes in African populations.

Methods  We used summary statistics from a genome-wide association meta-analysis (n = 14,126) in African popula-
tions to derive novel genome-wide PGS for 14 cardiometabolic traits in an independent African target sample (Africa 
Wits-INDEPTH Partnership for Genomic Research (AWI-Gen), n = 10,603). Regression analyses assessed relationships 
between each PGS and corresponding cardiometabolic trait, and seven CVD outcomes (CVD, heart attack, stroke, 
diabetes mellitus, dyslipidaemia, hypertension, and obesity). The predictive utility of the genetic data was evaluated 
using elastic net models containing multiple PGS (MultiPGS) and reference-projected principal components of ances-
try (PPCs). An integrated risk prediction model incorporating genetic and conventional risk factors was developed. 
Nested cross-validation was used when deriving elastic net models to enhance generalisability.

Results  Our African-specific PGS displayed significant but variable within- and cross- trait prediction (max.R2 = 6.8%, 
p = 1.86 × 10−173). Significantly associated PGS with  dyslipidaemia included the PGS for total cholesterol 
(logOR = 0.210, SE = 0.022, p = 2.18 × 10−21) and low-density lipoprotein (logOR =  − 0.141, SE = 0.022, p = 1.30 × 10−20); 
with hypertension, the systolic blood pressure PGS (logOR = 0.150, SE = 0.045, p = 8.34 × 10−4); and multiple PGS 
associated with obesity: body mass index (max. logOR = 0.131, SE = 0.031, p = 2.22 × 10−5), hip circumference 
(logOR = 0.122, SE = 0.029, p = 2.28 × 10−5), waist circumference (logOR = 0.013, SE = 0.098, p = 8.13 × 10−4) and weight 
(logOR = 0.103, SE = 0.029, p = 4.89 × 10−5). Elastic net models incorporating MultiPGS and PPCs significantly 
improved prediction over MultiPGS alone. Models including genetic data and conventional risk factors were more 
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predictive than conventional risk models alone (dyslipidaemia: R2 increase = 2.6%, p = 4.45 × 10−12; hypertension: 
R2 increase = 2.6%, p = 2.37 × 10−13; obesity: R2 increase = 5.5%, 1.33 × 10−34).

Conclusions  In African populations, CVD and associated cardiometabolic trait prediction models can be improved 
by incorporating ancestry-aligned PGS and accounting for ancestry. Combining PGS with conventional risk factors 
further enhances prediction over traditional models based on conventional factors. Incorporating data from target 
populations can improve the generalisability of international predictive models for CVD and associated traits in Afri-
can populations.

Keywords  Prediction modelling, Polygenic scores, Cardiovascular diseases, Cardiometabolic diseases, African 
populations

Background
Cardiovascular diseases (CVD) are the leading cause of 
mortality and morbidity worldwide. In 2019, approxi-
mately 17.9 million deaths were attributed to CVD, 75% 
of which occurred in low- and middle-income regions, 
including Africa [1]. Early identification of high-risk 
patients and timely initiation of appropriate treat-
ment are crucial in mitigating adverse health outcomes 
associated with CVD. Clinical guidelines recommend 
using ten-year risk calculators, such as Framingham’s 
and QRISK3, to identify individuals at increased risk of 
developing CVD [2, 3]. However, the application of these 
calculators in Africa is challenging due to limited lon-
gitudinal data and limited validation in African popula-
tions [4, 5]. Moreover, most calculators do not consider 
genetic risk factors, which have been shown to contribute 
to CVD development [6].

Polygenic scores (PGS) can provide an estimate of 
genetic risk for disease based on the aggregate effect of 
many common variants, as originally identified in case–
control GWAS studies. PGS can potentially improve 
risk stratification, the systematic process of categoris-
ing individuals based on their likelihood of developing 
a disease, and better identify those at higher risk for 
developing disease [7, 8]. Furthermore, including PGS 
alongside conventional risk factors further improves 
CVD-risk prediction accuracy [9, 10]. However, more 
than 85% of genome-wide association studies (GWAS) 
have been performed in populations of European 
ancestry, substantially reducing their predictability in 

other ancestry groups [11–13]. This limited portability 
is likely due to differences in population allele frequen-
cies, linkage disequilibrium (LD), population-specific 
causal variants or effects that significantly influence 
disease risk within a population, and potential varia-
tions in gene–gene and gene-environment interactions 
([11], and as reviewed by 8 and 9).

To address these challenges, there is active invest-
ment in increasing the representation of diverse 
populations in GWAS and developing innovative 
methodological and computational approaches to data 
analysis [13, 14]. Research indicates that PGS perform 
optimally within ancestrally matched populations, 
including in continental African populations [15] due 
to the increased genetic diversity, low LD, and high 
population substructure in African populations. Whilst 
scores that work well across all populations are desired, 
developing scores that consider the unique epidemio-
logical characteristics and genetic diversity of African 
populations is necessary and could inform trans-ances-
try method developments. By integrating popula-
tion-specific genetic risk factors, we can enhance the 
accuracy and precision of risk assessment, ultimately 
improving patient stratification and optimising the 
allocation of limited healthcare resources [9, 16, 17]. 
This study aimed to develop and assess an integrated 
risk score model, considering both genetic and conven-
tional factors, for CVD and associated cardiometabolic 
traits in populations residing in Africa.

Fig. 1  Study design and overview. This study employed two primary datasets, the base and target datasets. Base: The African Partnership 
for Chronic Disease Research (APCDR) dataset, encompassing 14,126 participants from South Africa, Kenya, Uganda, Ghana, and Nigeria, 
and the target was the Africa Wits- INDEPTH Partnership for Genomic Research (AWI-Gen) dataset which included 10,602 participants from Burkina 
Faso, Ghana, Kenya, and South Africa. Polygenic  scores for 14 cardiometabolic traits were derived using the p-value thresholding method combined 
with linkage disequilibrium (LD) clumping. The African subset of the 1000 Genomes Project (1 KG) served as the reference panel. Predictive 
modelling evaluated the efficacy of genetic, non-genetic, and integrated models in forecasting disease outcomes. The map included in the figure 
visually represents the approximate geographical distribution of the cohorts, with the position circles indicating the location. Key acronyms: APCDR, 
African Partnership for Chronic Disease Research; AWI-Gen, Africa Wits- INDEPTH Partnership for Genomic Research; CVD, cardiovascular disease; 
GWAS, Genome-Wide Association Study; LD, Linkage disequilibrium; PGS, Polygenic score

(See figure on next page.)
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Methods
Study design and overview
The design of this study is illustrated in Fig. 1. The objec-
tive of the present study was to determine and evaluate 
the predictive performance of an integrated risk score 
(IRS), which encompasses genetic and conventional risk 
factors, for CVD and related cardiometabolic outcomes 
in African populations. The genetic factors in the IRS 
consist of multiple PGS and genetic ancestry, as inferred 
by projected principal components  of ancestry  (PPCs). 
Conventional risk factors, referred to as non-genetic fac-
tors going forward, included sociodemographic and life-
style risk factors such as age, sex, smoking status, alcohol 
consumption, diet-related factors, physical activity, and 
nightly sleep duration.

Summary statistics from the African Partnership 
for Chronic Disease Research (APCDR) GWAS meta-
analysis for cardiometabolic traits were used to derive 
PGS. The APCDR cohort consists of 14,126 individuals 
from different African regions [18]. Scores were trained 
on data from the Africa Wits-INDEPTH Partnership 
for Genomic Research (AWI-Gen) [19] cohort com-
prising 10,603 individuals from four African countries. 
Study participants from AWI-Gen resided in Burkina 
Faso, Ghana, Kenya, and South Africa, while those from 
ACPDR were from Ghana, Kenya, Nigeria, South Africa, 
and Uganda. Despite a similar regional mix, there was no 
recorded sample overlap between the target cohort and 
the individuals analysed in the GWAS from which sum-
mary statistics were obtained.

First, we constructed distinct PGS for each of the four-
teen cardiometabolic traits, all continuous phenotypes, 
using the p-value thresholding and LD clumping approach 
(pT + clump), and according to standard procedures out-
lined by Choi and colleagues [20], employing the Geno-
Pred pipeline (https://​github.​com/​opain/​GenoP​red/​tree/​
master/​GenoP​redPi​pe) [21]. Scores were derived for the 
following traits: six anthropometric indices (body mass 
index (BMI), height, weight, hip circumference, waist 
circumference, and waist-to-hip ratio (W–H ratio)); two 
blood pressure measurements (diastolic blood pressure 
(DBP) and systolic blood pressure (SBP)); four lipid traits 
(low-density lipoprotein cholesterol (LDL), high-density 
lipoprotein (HDL), total cholesterol (TC) and triglycerides 
(TG)); and two liver function measures (albumin and bili-
rubin blood serum levels).

Subsequently, the associations of the PGS and non-
genetic factors with thirteen of the cardiometabolic traits 
(excluding bilirubin, which was not measured in AWI-
Gen) and seven CVD-associated outcomes, namely CVD, 
diabetes mellitus, dyslipidaemia, heart attack, hyperten-
sion, obesity, and stroke, were tested. Next, to derive and 
evaluate the predictive utility of genetic, non-genetic, and 

IRS models, elastic net regression with nested cross-vali-
dation (NCV) was used.

Data sources
Base dataset: APCDR meta‑analysis
The APCDR (African Partnership for Chronic Disease 
Research) is a genome-wide association meta-analysis of 
association statistics that encompasses association statis-
tics derived from four African cohorts [18]. The cohorts 
included the Uganda Genome Resource (UGR) (n = 6188), 
the Africa-America Diabetes Mellitus Study (AADM) 
(n = 5231), the Durban Diabetes Study (DDS) (n = 1165), 
and the Durban Case Control (DCC) (n = 1542) [18, 22, 
23]. In brief, the meta-analysis, as conducted by Gur-
dasani et al. (2019), investigated 34 cardiometabolic traits 
in up to 14,126 individuals aged 18 years and older resid-
ing in Ghana, Kenya, Nigeria, South Africa, and Uganda 
[18]. The APCDR data is publicly available and includes 
imputed dosage data for all individuals and ~ 96 million 
variants. These data were generated using METASOFT 
[24] with a composite reference panel developed by 
authors [18]. Summary statistics were downloaded from 
the NHGRI-EBI GWAS Catalog [25] on 01 Jun 2021 for 
studies GCST009042 to GCST009060 (details of studies 
are provided in Table S1) [18].

Target dataset: AWI‑Gen
AWI-Gen is a cross-sectional cohort study undertaken 
across four sub-Saharan African countries: Burkina 
Faso, Ghana, Kenya, and South Africa [19]. This study’s 
primary objective is to explore genetic and environmen-
tal factors associated with cardiometabolic diseases in 
Africans. It is part of the Human Heredity and Health 
in Africa Consortium (H3Africa). From 2012 to 2016, 
approximately 12,000 participants, primarily between the 
ages of 40 and 60  years, were enrolled across six study 
centres, and individual-level genetic, health-related, 
and phenotypic data relating to lifestyle was collected. 
Baseline data was used in this study. The study sites are 
from South Africa, the MRC/Wits Agincourt Health and 
Demographic Surveillance System Site (HDSS) (referred 
to as Agincourt), the Dikgale HDSS of the University of 
Limpopo, and the Soweto Centre which is coordinated by 
the South African Medical Research Council/Wits Devel-
opmental Pathways for Health Research Unit (DPHRU); 
in Kenya, the African Population and Health Research 
Center HDSS in Nairobi; in Ghana, the Navrongo HDSS 
in the Navrongo Health Research Centre; and in Bur-
kina Faso, the Nanoro HDSS hosted by the Institut de 
Recherche en Sciences de la Santé Clinical Research Unit 
[19, 26].

https://github.com/opain/GenoPred/tree/master/GenoPredPipe
https://github.com/opain/GenoPred/tree/master/GenoPredPipe
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Fig. 1  (See legend on previous page.)
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Genetic data
Approximately 11,000 individuals were genotyped on 
the 2.3 M SNP H3Africa array at Illumina® FastTrackTM 
Microarray services  (Illumina, San Diego, USA). Geno-
type calling was performed using the Illumina pipeline. 
Quality control (QC) was performed as described pre-
viously, but in summary, pre-imputation QC was per-
formed using the H3ABioNet/H3Agwas pipeline (https://​
github.​com/​h3abi​onet/​h3agw​as) and variants with a 
minor allele frequency (MAF) < 0.01, missingness > 0.05 
or Hardy–Weinberg equilibrium p-value < 1 × 10−3 were 
removed. Additionally, SNPs from the X and Y chromo-
somes, mitochondrial SNPs, and SNPs that did not match 
the GRCh37 reference alleles were removed. Samples 
that were potential duplicates (PIHAT > 0.9), had a miss-
ing SNP genotyping rate greater than 0.05, and reported 
vs. genetic sex inconsistencies were excluded. Population 
stratification was assessed using principal component 
(PC) analysis based on an LD-pruned subset of SNPs 
using the smartPCA program implemented in EIGEN-
STRAT. Imputation was performed using the African 
Genome Resources reference panel (EAGLE2 + PBWT 
pipeline) at the Sanger Imputation Server (https://​
imput​ation.​sanger.​ac.​uk/). Post-imputation QC involved 
removing indels, rare SNPs (MAF ≤ 0.01), and poorly 
imputed SNPs (Info score ≤ 0.6), resulting in a final data-
set containing 10,603 participants and 13.98 M SNPs.

Phenotypic data
In addition to demographic, general health and infec-
tion history variables, the AWI-Gen questionnaire pro-
vided information on diet, smoking status, alcohol use, 
physical activity, and sleep. The variables associated 
with CVDs and used in conventional CVD risk calcula-
tors were included in our models and referred to as non-
genetic factors throughout our analyses [3, 27, 28]. The 
variables selected included age, sex, current smoking 
status, alcohol consumption status, sleep (hours/night), 
moderate and vigorous physical activity (minutes/week), 
juice (number per week) and sugar drinks (number per 
week). Current smoking status was obtained from “Yes”, 
“No” responses to the following question, “Do you cur-
rently smoke tobacco?” Similarly, alcohol consumption 
status was determined from “Yes,” “No” responses to the 
following question “Are you a current alcohol consumer?” 
Those who preferred not to answer or did not know, were 
excluded. The Global Physical Activity Questionnaire 
(GPAQ) was used to obtain self-reported physical activ-
ity. Total moderate-vigorous physical activity (MVPA) in 
minutes per week was calculated from the accumulation 
of occupation, travel-related and leisure time physical 
activity. Sitting time (minutes/week) is used as a proxy for 
sedentary behaviour [29]. Weekly consumption of bread 

(slices per week), fruit (servings per week), and vegeta-
bles (servings per week) was calculated by multiplying 
the individual’s number of servings per day by the num-
ber of times a week each respective food group was con-
sumed. Not all the selected variables were available in the 
Soweto sample; thus, these samples were excluded from 
the prediction modelling analyses. For the remaining 
participants, individuals with more than 5% of the data 
missing among these selected variables were removed. 
Additional details on the variables and their construction 
can be found in Supplementary Materials S2 and S3.

Disease outcomes
The outcome variables in this study included 13 cardio-
metabolic traits and seven CVD-associated outcomes. 
Cardiometabolic traits included BMI, height, weight, 
hip circumference, waist circumference, and W–H ratio, 
DBP, SBP, LDL, HDL, TC, TG, and albumin and bilirubin 
blood serum levels. CVD-associated disease outcomes 
assessed were CVD, diabetes mellitus (T2D), dyslipi-
daemia (DLD), heart attack (HA), hypertension (HTN), 
obesity (OBS), and stroke. CVD was defined as present 
if the participant reported having had a heart attack, 
stroke, or transient ischaemic attack. Participants previ-
ously diagnosed with congestive heart failure or angina 
were also classified as having CVD. Transient ischaemic 
attack, congestive heart failure and angina outcomes are 
not included as single disease endpoints in our analyses 
due to the small sample size. Further information regard-
ing the outcome definitions can be found in Supplemen-
tary Materials S2 and S3. For disease traits, all cases were 
included. The maximum sample sizes for each pheno-
type in the prediction modelling analyses are shown in 
Table 1.

NA refers to participants who reported that they did 
not know their disease status, and those from the Soweto 
site—these participants were excluded from model-
ling analysis given the high level of missingness of non-
genetic risk factors. CVD includes heart attack, stroke, 
or transient ischaemic attack, and participants previously 
diagnosed with congestive heart failure or angina. Lim-
ited case numbers for transient ischaemic attack, con-
gestive heart failure and angina restricted their use as 
disease endpoints themselves. Some individuals experi-
enced multiple CVD outcomes, and subsequently, a sum-
mation of individual outcomes does not equate to the 
total number of CVD cases reported.

Polygenic scoring
Quality control of datasets
QC of base data: GWAS summary statistics.

GWAS summary statistics of traits for inclusion 
in the study were selected due to their relevance to 

https://github.com/h3abionet/h3agwas
https://github.com/h3abionet/h3agwas
https://imputation.sanger.ac.uk/
https://imputation.sanger.ac.uk/
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cardiometabolic disease, presence in the AWI-Gen 
cohort, as well as sharing a similar ancestry to the target 
AWI-Gen population. The identified summary statistics 
underwent a series of standard quality control (QC) 
procedures [20], including the extraction of HapMap3 
variants, and the removal of ambiguous variants, or 
where variants had missing data. Variants were flipped 
to match the 1000 Genomes Phase 3 (1 KG) reference, 
and then variants were retained if the MAF > 0.01 in the 
African subset of 1 KG (1 KG AFR), the MAF > 0.01 in 
the GWAS sample, and the INFO > 0.6. GWAS sum-
mary statistics variants and samples were removed if 
they (1) had a discordant MAF (> 0.2) between the ref-
erence and GWAS sample, (2)  had reported p-values 
outside the range of 0 to 1, (3)  were duplicates, or (4) 
had a sample size > 3 SD from the median sample size.

QC of target data: ancestry classification.
Individuals in AWI-Gen were assigned to the five 

super populations present in the 1000 Genomes phase 
3 (1 KG) reference sample [30], namely European, East 
Asian, South Asian, African, and Admixed American. 
Super population membership was predicted using a 
1  KG reference trained elastic net model consisting of 
the first six reference-projected genetic principal com-
ponents (PPCs). Principal components were defined in 
the 1  KG reference using HapMap3 SNPs in common 
between the 1  KG and AWIGEN data with a minor 
allele frequency > 0.05, missingness < 0.02 and Hardy–
Weinberg p-value > 1 × 10−6. LD pruning for inde-
pendent variants was performed in PLINK [31] after 
the removal of long-range LD regions [32], using a win-
dow size of 1000, step size of 5, and r2 threshold of 0.2.

A multinomial elastic net model, created using the 
“glmnet” R package [33], predicted super population 
membership in the 1 KG reference with fivefold cross-
validation. This model, along with reference-derived 
principal components, was applied to AWI-Gen for 
similar predictions. Participants with a predicted prob-
ability over 0.5 were assigned to a super population, 

with all being assigned to the AFR superpopulation as 
expected.

Score construction
Typically, a PGS follows the form β1X1 + β2X2 + … + βkX
k + … + βnXn, where βk represents the effect size attrib-
uted to each allele for a given cardiometabolic trait 
associated with SNP k. Xk is the number of effect alleles 
at SNP k, and n is the total number of SNPs in the PGS. 
To derive the PGS for each trait, we used (1) publicly 
available GWAS summary statistics described in Gur-
dasani et  al. (2019); extracting the disease-associated 
variants, the effect allele, the estimated β-coefficient 
for the effect allele, and the p-value of each genetic 
variant, and (2) linkage disequilibrium (LD) between 
genetic variants from the African 1  KG LD reference 
panel (661 Africans) [30]. Scores were derived using 
the pT + clump approach. The pT + clump method is a 
robust approach that enhances the accuracy and rele-
vance of PGS by selecting the most informative genetic 
variants while reducing redundancy due to LD. We 
used default LD-based clumping parameters (r2 = 0.1, 
window = 250  kb) to retain only the single most sig-
nificant variant within each locus, as overly aggressive 
LD thresholds can detrimentally affect the predictive 
power PGS [20]. The 1  KG AFR was used to estimate 
LD. Ten p-value thresholds were considered (1 × 10−8, 
1 × 10−6, 1 × 10−4, 1 × 10−2, 0.1, 0.2, 0.3, 0.4, 0.5 and 
1). Polygenic scores were then calculated in AWI-
Gen participants, imputing missing variants using the 
1  KG AFR allele frequency. In the AWI-Gen sample, 
1,104,4026 HapMap3 variants were present. Polygenic 
scores were standardised (scaled and centred) based 
on the mean and SD of PGS in the 1 KG AFR reference 
sample. The score calculations were performed using 
PLINK v1.9 as implemented in the GenoPred pipeline 
(https://​github.​com/​opain/​GenoP​red).

Table 1  Sample sizes for each disease outcome (e.g., characteristics of the AWI-Gen cohort for the CVD traits and associated 
outcomes)

Phenotype Abbrev Total sample size NA No. cases No. controls

Cardiovascular disease CVD 7586 1517 (20%) 219 (2.9%) 5850 (77.1%)
Dyslipidaemia DLD 10,602 2121 (20%) 5680 (53.6%) 2801 (26.4%)
Heart attack HA 8598 1719 (20%) 46 (0.5%) 6833 (79.5%)
Hypertension HTN 10,602 2121 (20%) 3183 (30%) 5298 (50%)
Stroke Stroke 9737 1947 (20%) 113 (1.2%) 7677 (78.8%)
Obesity OBS 10,602 2121 (20%) 1775 (16.7%) 6706 (63.3%)
Type 2 diabetes T2D 10,537 2109 (20%) 568 (5.4%) 7861(74.6%)

https://github.com/opain/GenoPred
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Association testing
Following PGS development, regression analysis was 
used to assess the within- and cross-trait predictive 
utility of each PGS, and with the seven disease out-
comes of interest, while accounting for confound-
ers such as age, sex, and the first eight with-in sample 
principal components to avoid PGS associations being 
confounded by population structure [15]. Similarly, 
regression analyses were run to assess the associa-
tion between conventional risk factors, including age, 
smoking status, alcohol consumption, diet-related vari-
ables, sleep, and physical activity, with selected disease 
outcomes. Given the differences by sex of these traits 
within African populations, the analyses were adjusted 
for  sex [34–36]. The proportion of variance for a trait 
explained by the PGS and non-genetic factors was com-
puted as the phenotypic variance explained, R2. For 
PGS association testing, R2 was obtained from a full 
model including both PGS and covariates (PCs, sex, 
age, and age-squared) minus the R2 obtained from a 
model including covariates alone. R2 was not adjusted 
to the liability threshold model due to limited disease 
prevalence estimates available across Africa and the 
substantial variation in prevalence noted across cohort 
sites. For multiple testing, results were corrected for 
the number of PGS tested for each outcome (i.e., apply-
ing a p-value threshold of 0.05/14). We did not correct 
for the number of p-value thresholds as they are corre-
lated, and a Bonferroni correction would be overly con-
servative. The performance of each PGS was assessed 
as the Pearson correlation (r) between the observed 
and predicted outcome values and the Area under the 
receiver operating characteristic curve (AUC) statistics 
calculated. Correlation was used as the main test sta-
tistic as it is applicable for both binary and continuous 
outcomes and standard errors are easily computed.

Derivation of genetic ancestry predictors
In addition to PGS, reference-projected genetic prin-
cipal components (PPCs) were included in prediction 
models to enhance prediction. Genetic principal com-
ponents capture major axes of genetic variation, which 
primarily represent differences in genetic ancestry [37] 
and can be used to enhance prediction over PGS alone 
[38]. To prevent overfitting, the principal component 
SNP-weights should be derived independently of the 
target sample. Therefore, we used the PPCs described 
in Sect.  2.3.1.2, where the first six genetic PCs were 
derived from the 1  KG reference, and then projected 
these PCs into the AWI-Gen target sample.

Integrated risk score and prediction modelling
Elastic net regression with nested cross-validation (NCV) 
(https://​github.​com/​opain/​GenoP​red/​blob/​master/​Scrip​
ts/​Model_​build​er/​Model_​build​er_​V2_​nested.R) was used 
to develop and evaluate the predictive utility of three risk 
prediction models: genetic, non-genetic, and integrated:

a.	 Genetic:

	 i.	 MultiPGS—assessed the predictive utility of 
utilising multiple PGS compared to single-trait 
PGS

	 ii.	 MultiPGS + Ancestry—assessed the predictive 
utility of utilising multiple PGS and informa-
tion relating to ancestry, specifically projected 
principal components.

b.	 Non-genetic—assessed the predictive utility of 
selected conventional risk factors.

c.	 Integrated—assessed the predictive utility when 
combining all genetic (MultiPGS and Ancestry) and 
non-genetic predictors.

Elastic net balances feature selection and regularisa-
tion to reduce over-fitting and address collinearity among 
predictors. It combines the properties of both ridge and 
lasso regression, where similar to ridge regression, elastic 
net applies a penalty to model coefficients which shrinks 
them towards zero, thus reducing the impact of less 
important predictors. And similar to lasso regression, 
elastic net performs variable selection by setting some 
coefficients to zero. By balancing the weight of ridge and 
lasso penalties, this regularisation removes the need for 
manual selection of predictors and selects and weights 
the most predictive variables appropriately, reducing 
redundancy and enhancing model interpretability [39]. 
NCV repeatedly partitioned the dataset into training, 
validation, and testing sets, and consisted of 5 outer folds 
with a 90–10 data split (90% training, 10% testing) to 
provide an unbiased estimate of the predictive utility of 
the model, and 10 inner folds (80% training, 20% testing) 
for hyperparameter tuning. The proportion of variance 
explained by a model was computed as R2. Hyperparam-
eters were determined using the “caret” R package, which 
optimises the RMSE for continuous outcomes and accu-
racy for binary outcomes.

The predictive utility of the models were defined as 
the correlation between observed and predicted values 
of each model, and the comparative performance of the 
models assessed using William’s test (also known as the 
Hotelling–Williams test) as implemented by the “psych” 
R package’s “paired. r” function. The code used to prepare 

https://github.com/opain/GenoPred/blob/master/Scripts/Model_builder/Model_builder_V2_nested.R
https://github.com/opain/GenoPred/blob/master/Scripts/Model_builder/Model_builder_V2_nested.R
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data and conduct analyses is available on the GenoPred 
Pipeline GitHub page (see Data and Code Availability).

For genetic (the MultiPGS and MultPGS + PPC mod-
els) and integrated models, for each cardiometabolic 
trait, rather than selecting the single best-performing 
PGS (based on max R2), all PGS were retained for sub-
sequent predictive modelling analyses and elastic net 
regression was utilised to simultaneously select and 
weight predictors [40, 41]. Genetically inferred ancestry 
was included in prediction models to account for popu-
lation stratification and potentially improve prediction 
[42]. To reduce overfitting, ancestry was determined by 
fitting data to the 1 KG Phase 3 projected principal com-
ponents (PPCs) of population structure and not to AWI-
Gen sample PCs.

Non-genetic models included ten conventional risk fac-
tors selected based on data availability in AWI-Gen and 
their known association with CVDs. Integrated models 
included genetic (PGS and PPCs) and non-genetic fac-
tors. No data were available for diet-related variables for 
the Soweto study site for men and women, so this site 
was excluded from prediction modelling analyses.

Statistical analysis
All analyses were performed using PLINK v1.9 (https://​
www.​cog-​genom​ics.​org/​plink/1.​9/) [43], and R ver-
sion 3.4.4 (http://​www.r-​proje​ct.​org/) [44] unless speci-
fied otherwise. Data are presented as percentages (%) or 
mean ± SD. Associations between non-genetic factors 
and PGS and CVD-associated outcomes were assessed by 
logistic regression with the adjustment of PCs, sex, age, 
and age squared as described previously [15].

Ethics statement
This study was approved by the Human Research Eth-
ics Committee (Medical) of the University of the Wit-
watersrand (Wits)(protocol number M210355) as a 
substudy of the AWI-Gen project (protocol number 
M170880).

Results
Fourteen PGS were derived, and their within- and cross-
trait associations assessed using regression analyses. 
Elastic net regression with nested tenfold cross-vali-
dation was used to determine the predictive utility of 
models (genetic, non-genetic, and integrated), and the 
performance for each PGS and model was assessed using 
the correlation between observed and fitted values.

Derivation, validation, and association testing of PGS
All PGS, except those for albumin and waist-hip ratio, 
had at least one significant association after correcting for 
multiple testing (Fig.  2). There was extensive variability 

in variance explained across phenotypes, with the vari-
ance explained ranging (R2) from 0.068 (p = 1.86 × 10−173) 
for LDL to 0.004 (p = 4.70 × 10−20) for height. The most 
significant associations were found amongst lipid traits 
(HDL, LDL, TC, and TG). Given the genetic correla-
tion across traits, especially amongst anthropometric 
and lipid traits, significant cross-prediction was also 
noted (max R2 = 0.068, p = 6.23 × 10−175 for TC PGS pre-
dicting LDL). Tables S4 and S5 list all significant within 
and cross-trait predictions after correcting for multiple 
testing.

Cardiometabolic outcomes of DLD, OBS and HTN 
were significantly associated with the PGS (Fig. 3). Four 
PGS (BMI, hip circumference, weight, and waist circum-
ference) were associated with increased risk of OBS, with 
the largest increase in risk linked to the PGS for BMI 
(max. logOR = 0.131, SE = 0.031, p = 2.22 × 10−5). Simi-
larly, three PGS (TC, LDL and HDL) were associated with 
DLD, with the greatest increase in risk linked to the PGS 
for HDL (max. logOR = 0.210, SE 0.022, p = 2.18 × 10−21). 
For HTN, only the PGS for SBP was associated (max. 
logOR = 0.150, SE 0.045, p = 8.34 × 10−4). No significant 
associations were found for CVD, HA, T2D and stroke 
disease outcomes. Distribution assessments (mean, 
standard deviation, interquartile range) of derived PGS 
across AWI-Gen sites could not be done as sample sizes 
were too small to accurately contrast effect sizes between 
populations.

Non‑genetic factor associations with CVD disease 
outcomes
Factors previously identified as associated with CVD were 
selected from the AWI-Gen study: age, sex, smoking status, 
alcohol consumption, various diet factors, physical activity, 
and sleep (hours per night). The dietary variables included 
weekly consumption of fruit, vegetables, bread, fruit juice 
and sugar drinks. Using regression analysis, and accounting 
for confounders such as age, sex and principal components, 
the relationship between each factor and disease outcome 
was assessed. These non-genetic factors accounted for lit-
tle to no variance explained in CVD and HA (Fig.  3 and 
supplementary material Table  S7). In contrast, all factors 
were associated with HTN (max. logOR = 0.64, SE = 0.023, 
p = 9.75 × 10−173) and OBS (max. logOR = 0. 58, SE = 0.029, 
p = 1.23 × 10−92). Age was the most significant predictor of 
HTN (logORAGE = 0.64, SE = 0.023, p = 9.75 × 10−173), T2D 
(logORAGE = 0.41, SE = 0.037, p = 5.32 × 10−28), and stroke 
(logORAGE = 0.43, SE = 0.073, p = 3.05 × 10−9); whilst bread 
servings per week accounted for greatest increased odds in 
OBS (logORBREAD = 0.58, SE = 0.029, p = 1.23 × 10−92) and 
DLD (logORBREAD = 0.12, SE = 0.025, p = 5.42 × 10−06). Alco-
hol consumption was associated with reduced odds in all 
diseases except CVD. This effect was most pronounced in 

https://www.cog-genomics.org/plink/1.9/
https://www.cog-genomics.org/plink/1.9/
http://www.r-project.org/
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OBS (logORALC =  − 0.72, SE = 0.039, p = 9.17 × 10−77), T2D 
(logORALC =  − 0.54, SE = 0.054, p = 6.98 × 10−24), and HA 
(logORALC =  − 0.53, SE = 0.154, p = 6.73 × 10−04) (Fig. 3).

Prediction modelling for CVD disease outcomes
Genetic prediction models
Models consisting of all PGS combined (MultiPGS) 
were significantly associated with four outcomes: DLD 
(p = 1.81 × 10−37, AUC = 0.574), HTN (p = 1.84 × 10−162, 
AUC = 0.652), OBS (1.69 × 10−4, AUC = 0.690), and T2D 
(p = 9.43 × 10−17, AUC = 0.594) (Fig.  4 orange bar). The 
greatest improvement was noted in HTN, where pheno-
typic variance explained more than doubled from 2.8 to 
6.7%, followed by OBS (4.0% to 7.5%) and DLD (1.2% to 
1.5%). Prediction in the T2D MultiPGS model remained 
low, increasing from 0.3% to 0.7%. The MultiPGS model 
for CVD and HA did not significantly improve prediction 
(Supplementary materials Table S8).

To further improve prediction of PGS, we assessed 
whether accounting for population stratification 
through the incorporation of ancestry could improve 

performance. As per Fig.  5, including an ancestry pre-
dictor improved prediction, by approximately 2.5% for 
both HTN (R2

PGS = 6.5%, R2
ANS = 8.9%, R2

PGS+ANS = 9%, 
AUC​PGS+ANS = 0.68) and OBS (R2

PGS = 7.1%, R2
ANS = 7.5%, 

R2
PGS+ANS = 10%, AUC​PGS+ANS = 0.735), but had little to 

no effect for DLD, stroke, and T2D with improvements 
less than 0.1% for each. For DLD, the PGS accounted 
for greater variance explained and including ancestry 
reduced prediction performance by 0.1% (R2

PGS = 1.7%, 
R2

ANS = 0.1%, R2
PGS+ANS = 1.6%). Similarly, to the Mul-

tiPGS model, CVD and HA PGS + Ancestry models 
showed no significant prediction (Supplementary materi-
als Table S9).

Integrated prediction models
Lastly, we assessed whether including genetic (PGS 
and PPCs) and non-genetic factors in an IRS model 
could improve the predictive performance of models 
for selected disease outcomes in African populations. 
The integrated model consisted of 143 predictors and a 
maximum of 8057 individuals. As per Fig.  6, when we 

Fig. 2  Within-trait prediction of derived PGS. Variance explained (R-squared) by the PGS for 13 cardiometabolic traits in the AWI-Gen target sample 
across P-value thresholds. Figure only shows the results for the PGS with the highest variance explained. The values above the bars are P-values 
indicating whether the variance explained is significantly different from zero. Within-trait predictive utility, described as the phenotypic variance 
explained (R2), of 13 of the derived PGS. DBP, diastolic blood pressure; SBP, systolic blood pressure; LDL, low-density lipoprotein; HDL, high-density 
lipoprotein; TC, total cholesterol; TG, triglycerides
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examined the non-genetic and genetic contribution to 
total variation, the non-genetic factors (in blue) con-
sistently accounted for greater variance explained than 
genetic factors, the greatest prediction from non-genetic 
factors seen in OBS (R2

Nongen = 19%) and the lowest in 
stroke (R2

Nongen = 0.3%). Within DLD, HTN and OBS, 
non-genetic risk factors explained 7.4% to 9% of the total 
variation in fully adjusted models depending on the out-
come. The predictive utility of genetic models (in red) 
was variable across outcomes, with the highest R2 noted 
in HTN (R2

Gen = 8%) and OBS (R2
Gen = 9%). For CVD, HA 

and stroke, genetic models yielded no significant phe-
notypic variance explained. In contrast, the IRS models 
(in green) showed significant prediction in all outcomes 
except CVD. Models including genetic predictors mini-
mally reduced the prediction of Stroke, HA, and T2D (by 
0.5% or less) but increased the prediction of OBS, HTN, 
and DLD. OBS prediction increased by 5.5% to reach 
21% (R2

Gen = 9.3%, R2
Nongen = 15.3%, R2

IRS = 20.9%, AUC​
IRS = 0.830), HTN by 2.6% to reach 14% (R2

Gen = 8.3%, 
R2

Nongen = 11.2%, R2
IRS = 13.8%, AUC​IRS = 0.723), and 

DLD by 2.6% to 15% (R2
Gen = 2.9%, R2

Nongen = 11.5%, 

R2
IRS = 14.1%, AUC​IRS = 0.738) (Supplementary materi-

als Table  S10A). A pairwise comparison of scores was 
performed for each model to show the difference in cor-
relation within and between models for outcomes, with 
p-values for significant differences calculated using Wil-
liam’s test results (Supplementary material S10B and 
S10C). The integrated models were significantly different 
to those including non-genetic factors alone for the same 
traits, suggesting genetic information provides independ-
ent and complementary information to non-genetic risk 
factors for risk prediction (DLD: p = 4.45 × 10−12; HTN: 
p = 2.37 × 10−13; OBS: p = 1.33 × 10−34).

Discussion
This study developed and evaluated the predictive util-
ity of 14 cardiometabolic trait ancestry-aligned PGS for 
seven CVD-associated outcomes in continental African 
populations. We investigated whether modelling these 
PGS into a MultiPGS improved prediction and if inte-
grating this MultiPGS with established non-genetic risk 
factors had greater predictive utility beyond non-genetic 
factors alone. To date, AWI-Gen provides the largest 

Fig. 3  Association analysis of the PGS and non-genetic factors with seven CVD-associated outcomes. Logistic regression analyses assessing 
the association of each of the 14 derived PGS and 10 non-genetic factors with the seven selected CVD-disease outcomes. Significant associations 
with PGS are coloured in red, and significant associations with non-genetic factors are coloured in blue. Maximum case numbers are indicated 
by N = . CVD, cardiovascular disease; DLD, dyslipidaemia; HA, heart attack; HTN, hypertension; OBS, obesity; T2D, type 2 diabetes; DBP, diastolic blood 
pressure; SBP, systolic blood pressure; LDL, low-density lipoprotein; HDL, high-density lipoprotein; TC, total cholesterol; TG, triglycerides
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Fig. 4  Predictive utility of the single best PGS and MultiPGS models for seven CVD-associated outcomes. The predictive utility of a single PGS 
was compared with that inclusive of all cardiometabolic trait PGS (MultiPGS) across seven selected CVD-disease outcomes. Single trait PGS are 
shown in light orange, and MultiPGS shown in dark orange. Significant associations have p-values displayed. Case numbers for each phenotype 
are indicated by N = . CVD, cardiovascular disease; DLD, dyslipidaemia; HA, heart attack; HTN, hypertension; OBS, obesity; T2D, type 2 diabetes; 
DBP, diastolic blood pressure; SBP, systolic blood pressure; LDL, low-density lipo-protein; HDL, high-density lipo-protein; TC, total cholesterol; TG, 
triglycerides

Fig. 5  The predictive utility of genetic models (including PGS and projected principal components) for CVD-associated disease outcomes. 
Comparing the predictive utility of models inclusive of PGS (orange), projected ancestry (pink), and PGS + Projected Ancestry (red) across seven 
selected CVD-associated disease outcomes. Significant associations have p-values displayed. CVD, cardiovascular disease; DLD, dyslipidaemia; HA, 
heart attack; HTN, hypertension; OBS, obesity; T2D, type 2 diabetes; DBP, diastolic blood pressure; SBP, systolic blood pressure; LDL, low-density 
lipoprotein; HDL, high-density lipoprotein; TC, total cholesterol; TG, triglycerides
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sample size for the prediction of CVD and associated 
cardiometabolic outcomes in continental Africa across 
genetic and traditional risk factors. The study supports 
the use of genomic information for enhanced CVD and 
associated disease outcome risk stratification in African 
populations.

PGS of cardiometabolic biomarkers showed significant 
yet variable prediction within and across traits in conti-
nental African populations. As previously observed in 
other populations, lipid measurements had the highest 
variance explained, likely due to higher reported herit-
ability compared to obesity/anthropometric, and blood 
pressure traits [45]. Although cardiometabolic trait PGS 
predict several CVD-associated outcomes (dyslipidaemia, 
hypertension and obesity) in African populations, their 
predictive utility is relatively modest and typically explain 
less phenotypic variance than conventional non-genetic 
risk factors [17]. This is in part due to limited GWAS sam-
ple sizes within continental populations, although previ-
ous research has shown the substantial value of using 
ancestry-aligned GWAS compared to those derived from 
genetically distant populations [15, 46].

Nonetheless, biomarker PGS provide a potential prelimi-
nary step in PM-based risk stratification in Africa—particu-
larly considering the limited availability of disease-specific 

cohorts in Africa and the potential to leverage more read-
ily accessible and routinely collected biomarker data for 
identification of at-risk individuals. As disease-specific 
variant data becomes available in African populations e.g. 
CVD, Hypertension, etc., future research should investigate 
whether models including PGS of both disease outcome 
and biomarker/trait PGS enhance predictive accuracy and 
clinical application as seen in other studies [47].

Our research also revealed that combining the PGS of 
multiple related traits into a single model—MultiPGS—
substantially increased the predictive performance for 
dyslipidaemia, hypertension, obesity, stroke and diabe-
tes compared with single-score predictor models [40, 41, 
47]. This improvement is partly due to genetic correla-
tion among traits and leveraging the increased statistical 
power among discovery GWAS (variance explained and 
sample size), of either genetically proximal or distantly 
related traits. Sinnott-Armstrong et  al. noted improved 
predictive accuracy of the aggregated PGS—trait PGS 
plus 35 cardiometabolic PGS—across multiple disease 
outcomes in European ancestry populations, albeit with 
limited generalisability to other populations [47].

By including predictors capturing genetic ancestry 
through projected principal components, we achieved 
enhanced risk prediction across our seven phenotypes to 

Fig. 6  The predictive utility of integrated models (including genetic and non-genetic factors) for  CVD-associated disease outcomes. Prediction 
modelling analyses assessing the predictive performance of integrated models across seven selected CVD-disease outcomes. Predictive 
performance, measured as R2, of genetic models (PGS + Ancestry), non-genetic models, and integrated models, including genetic and non-genetic 
predictors, and denoted as “Genetic + Non genetic.” Genetic models are shown in red, non-genetic in blue and integrated in green. Significant 
associations have p-values displayed. 0.00 × 10+00 indicates a significance value of ≤ 1 × 10−300. CVD, cardiovascular disease; DLD, dyslipidaemia; HA, 
heart attack; HTN, hypertension; OBS, obesity; T2D, type 2 diabetes; DBP, diastolic blood pressure; SBP, systolic blood pressure; LDL, low-density 
lipoprotein; HDL, high-density lipoprotein; TC, total cholesterol; TG, triglycerides
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varying degrees. Naret et al., who investigated the inclu-
sion of ancestry in prediction models using a different 
approach, observed similar improvements and hypoth-
esised that traits that show a greater gain in prediction 
are likely those that are influenced by more population-
specific alleles [42]. This underscores the importance 
of accounting for the substantial genetic diversity and 
regional variation in Africa, since African populations 
are markedly heterogeneous and exhibit greater genetic 
diversity than any other ancestry group [48, 49]. Con-
sequently, a prediction score developed in one African 
region may not be universally applicable across all Afri-
can populations [15, 50]. This regional variation neces-
sitates the development of region-specific models or 
the inclusion of a wider array of African genetic data in 
global models to reflect the genetic diversity and popula-
tion structure of Africans more accurately. For example, 
in the 1 KG reference data, continental representation is 
limited to Gambian individuals from the Gambia, Esan 
and Yoruba in Nigeria, Luhya in Kenya, and Mende in 
Sierra Leone [30]. This approach inadequately captures 
genetic diversity among Africans and thus may skew pre-
diction models, highlighting the need for broader genetic 
data representation.

Integrating genetic factors with non-genetic risk fac-
tors showed statistically significant improvement in pre-
dicting dyslipidaemia, hypertension, and obesity. We 
show that genetic factors provide independent but com-
plementary information in risk prediction models, a find-
ing supported by previous research assessing integrated 
models for CAD and CVD in primarily European popula-
tions [9, 10, 51].

This research demonstrates the potential of using 
genetic information, such as PGS, to improve CVD risk 
calculators in African populations. It also highlights the 
need for additional research investigating the generalis-
ability of models across diverse African populations and 
other ancestries, noting that previous work showed that 
PGSs built from African Americans increased prediction 
in sub-Saharan Africans compared to using a European 
GWAS, but not consistently across African populations 
[50]. As data from continental African cohorts grow, 
the opportunities for validation and refinement of these 
scores is also expected to increase. However, robust 
assessment of the clinical, financial, and system benefits 
these scores provide is crucial to gauge their true trans-
lational value [52]. Translation will require an under-
standing of the sensitivity and specificity of scores in 
different African populations, whilst considering, cost, 
accessibility, and acceptance within the health ecosystem. 
In clinical contexts, particularly for PGS, distinguishing 
between relative and absolute risk is important. Relative 
risk assesses the connection between genetic traits and 

disease, contrasting disease incidence in individuals with 
specific genetic markers against those without. Abso-
lute risk, incorporating factors like age and population 
disease prevalence, however, reflects the actual prob-
ability of disease development. While PGS may indicate 
increased relative risk, this does not necessarily equate to 
a high absolute risk. Tools to estimate absolute risk from 
relative risk [53] require accurate disease prevalence and 
other data, and their applicability remains limited in the 
African context due to the paucity of such data. In addi-
tion, considerations for resource-constrained settings 
are essential for the successful integration of genetic 
approaches into routine practice [54, 55].

This study is unique for its use of data solely from 
continental Africa, a region often underrepresented in 
genetic research. However, although the study made 
use of the largest dataset of continental African popu-
lations, the sample size is orders of magnitude smaller 
than many European and multi-ancestry studies [10, 15, 
35]. Some limitations must be noted. Firstly, the APCDR 
dataset meta-analysis includes two population-based 
cohorts and two disease-based cohorts, specifically dia-
betes, which may potentially result to an overestima-
tion of genetic factors associated with diabetes and 
related conditions in the GWAS results. Secondly, while 
the pT + clump method has been used given its robust-
ness in calculating PGS in different ancestries, it would 
be valuable for future research to compare and evaluate 
the performance of multiple PGS construction methods 
in African ancestry populations. Thirdly, it is impor-
tant to acknowledge the extensive diversity within the 
continent [48], which means that despite both the base 
and target datasets having representation from multiple 
African regions, and a similar regional mix, our base and 
target data are not necessarily ancestrally matched. The 
strength of this approach lies in its focus on African-spe-
cific genetic profiles, addressing a critical gap in current 
genomic research which often generalises findings from 
non-African populations, and contributes to a more tai-
lored understanding of CVD prediction and prevention 
for African populations. However, the extensive variabil-
ity means that a model developed for one African region 
may not generalise across the continent. Also, despite 
using a nested tenfold CV to reduce overfitting, valida-
tion in an appropriate continental African dataset was 
not possible given the scarcity of such cohorts. Also, the 
relatively small GWAS sample sizes and imputation effi-
ciencies in African GWAS studies may affect the preci-
sion of the estimated impact of individual variants on 
disease risk. Similarly, case numbers were insufficient 
to examine CVD and associated disease outcomes such 
as stroke and heart attack. Lastly, previous studies have 
shown the added value of including PGS in clinical risk 
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scores, such as Framingham Risk Score and QRISK [16, 
56]. AWI-Gen data does not yet have sufficient 10-year 
longitudinal data available to undertake such perfor-
mance comparisons.

Future research should employ large, diverse multi-
ancestry cohorts, once these become available, to over-
come sample size limitations, reduce overfitting, and 
enhance generalisability. It is important to note existing 
multi-ancestry cohorts often disproportionately repre-
sent African ancestry through African American partici-
pants. To more accurately capture genetic diversity and 
enhance research applicability, it is essential to include 
a broader representation of African ancestry individuals 
from regions across Africa. In addition, moving to mod-
els that account for gene–gene and gene-environment 
interactions will further advance our understanding in 
this field.

Conclusions
The integrated risk score derived in this study demon-
strates the value of including genetic and non-genetic 
risk information for improving CVD risk prediction in 
African populations. This approach could provide more 
accurate and personalised risk assessment, tailoring pre-
vention and treatment strategies more effectively. The 
inclusion of genetic information improves prediction per-
formance over and above traditional non-genetic factors. 
In African populations, ancestry accounts for a substan-
tial proportion of variance in CVD prediction models, 
and modelling this variance through principal compo-
nents suggests a promising direction for model refine-
ment. However, improving these models will require 
research across diverse African populations and the use 
of appropriately ancestry-aligned cohorts. Improving 
access to extensive African datasets is crucial for refin-
ing CVD prediction models and necessary to effectively 
address health disparities both on the African continent 
and among global African-ancestry populations.
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