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Abstract 

Background Metagenomics is a powerful approach for the detection of unknown and novel pathogens. Work-
flows based on Illumina short-read sequencing are becoming established in diagnostic laboratories. However, high 
sequencing depth requirements, long turnaround times, and limited sensitivity hinder broader adoption. We investi-
gated whether we could overcome these limitations using protocols based on untargeted sequencing with Oxford 
Nanopore Technologies (ONT), which offers real-time data acquisition and analysis, or a targeted panel approach, 
which allows the selective sequencing of known pathogens and could improve sensitivity.

Methods We evaluated detection of viruses with readily available untargeted metagenomic workflows using Illu-
mina and ONT, and an Illumina-based enrichment approach using the Twist Bioscience Comprehensive Viral Research 
Panel (CVRP), which targets 3153 viruses. We tested samples consisting of a dilution series of a six-virus mock com-
munity in a human DNA/RNA background, designed to resemble clinical specimens with low microbial abundance 
and high host content. Protocols were designed to retain the host transcriptome, since this could help confirm 
the absence of infectious agents. We further compared the performance of commonly used taxonomic classifiers.

Results Capture with the Twist CVRP increased sensitivity by at least 10–100-fold over untargeted sequencing, 
making it suitable for the detection of low viral loads (60 genome copies per ml (gc/ml)), but additional methods 
may be needed in a diagnostic setting to detect untargeted organisms. While untargeted ONT had good sensitiv-
ity at high viral loads (60,000 gc/ml), at lower viral loads (600–6000 gc/ml), longer and more costly sequencing runs 
would be required to achieve sensitivities comparable to the untargeted Illumina protocol. Untargeted ONT provided 
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better specificity than untargeted Illumina sequencing. However, the application of robust thresholds standardized 
results between taxonomic classifiers. Host gene expression analysis is optimal with untargeted Illumina sequencing 
but possible with both the CVRP and ONT.

Conclusions Metagenomics has the potential to become standard-of-care in diagnostics and is a powerful tool 
for the discovery of emerging pathogens. Untargeted Illumina and ONT metagenomics and capture with the Twist 
CVRP have different advantages with respect to sensitivity, specificity, turnaround time and cost, and the optimal 
method will depend on the clinical context.

Keywords Clinical metagenomics, Viral diagnostics, Pathogen detection, Epidemiological surveillance, Next-
generation sequencing

Background
Metagenomics, the sequencing of all genomic material 
within a sample, is a demonstrably powerful approach 
for detection of novel or unknown pathogens. Most nota-
bly, metagenomic sequencing identified the SARS-CoV-2 
virus within 4 weeks of the first reported patient being 
hospitalized [1]. The unselective and comprehensive 
approach makes metagenomics attractive as a diagnostic 
tool. A single test that can identify any pathogen, includ-
ing those that are unexpected and novel, holds much 
interest for clinical and public health laboratories. Since 
2008, short-read metagenomics has been trialed by many 
groups to identify causes of fever and central nervous sys-
tem diseases, including encephalitis, particularly in undi-
agnosed immunocompromised patients or outbreaks 
of unknown aetiology [2–11]. With the recent advent of 
rapid methods, such as sequencing with Oxford Nanop-
ore Technologies (ONT), metagenomic approaches have 
been proposed as suitable for rapid detection of unex-
pected pathogens and antimicrobial resistance in respira-
tory samples from patients with complex pneumonias 
receiving intensive care treatment [12–18]. As an aug-
mentation to metagenomics, oligonucleotide panels that 
enrich for large numbers of pathogens, while potentially 
reducing the possibilities for detection of an unknown 
pathogen, have been reported to improve the sensitiv-
ity and speed with which known pathogen genomes are 
detected, making them potentially valuable for infection 
diagnosis and screening [19–24].

Comprehensive evaluation of these pipelines is vital for 
their wider uptake in clinical laboratories. A major prob-
lem for the routine use of metagenomics in the diagnosis 
of infection has been the dilemma of distinguishing true 
and contaminating infectious agents. This is particularly 
challenging where deep sequencing of material with nor-
mally low microbial abundance is required to exclude 
infection, for example in the differential diagnosis of 
encephalitis [11]. In such cases, absence of a pathogen 
is as important as its presence, allowing clinical teams 
to focus on immunomodulatory approaches that could 
be detrimental if infection is present. The plethora of 

bioinformatic tools available for interpretation of results 
and the lack of standardization poses further uncertain-
ties for diagnostic labs and complicates comparison of 
metagenomic results, particularly if generated by differ-
ent protocols [25, 26].

Several benchmarking studies have been performed 
comparing long and short read platforms [27–34] and 
associated bioinformatics methods [25, 26, 35–40] for 
bacterial and fungal detection. However, failure to detect 
viral infections may hinder the utility of metagenomic 
methods, particularly for the diagnosis of infections in 
the central nervous system and in patients with compro-
mised immune systems, in whom serious viral infections 
are a major cause of morbidity and mortality [41–43]. 
Sensitive detection of viruses is also required in other 
situations, including for example, screening of blood and 
organs for transplantation [44] and reliably detecting 
pathogens of high consequence in returning travelers [45, 
46]. A recent study compared viral detection in simulated 
low biomass samples (e.g. respiratory swabs and CSF) 
using Illumina, ONT and targeted methods across mul-
tiple centres [47]. However, high biomass samples, such 
as blood and tissue, present different technical challenges 
due to the high levels of host genetic material and may 
require different metagenomics protocols.

Many metagenomic methods advocate depletion of 
host nucleic acid to improve sensitivity, especially where 
microbial abundance is low [48, 49]. However, depletion 
significantly reduces host transcriptomic information, 
which can, when combined with pathogen metagenom-
ics, improve accuracy of diagnosis and provide important 
insights that inform patient management [27, 50–53]. 
Human transcriptomic analysis can identify immune 
pathways upregulated in the host and can help distin-
guish between viral, bacterial, and non-infectious causes 
of disease, which is particularly important when no path-
ogens are detected through metagenomics [27, 50–53]. 
Nucleic acid depletion methods also reduce sensitivity to 
microbes without cell walls, increase contamination due 
to additional reagents and reduce sensitivity for detection 
of cell-free DNA and RNA [54, 55].
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To provide a pragmatic assessment of utility for rou-
tine diagnostic viral metagenomics in samples expected 
to have low microbial abundance, including blood and 
tissue, we evaluated three commonly used metagenomic 
platforms and eight off-the-shelf bioinformatic meth-
ods. We established the sensitivity and limits of detec-
tion of all methods on a panel of known viral sequences. 
In addition, we demonstrated modifications that can be 
used to standardize the outputs of bioinformatic tools 
and minimize the presence of low-level contaminat-
ing microorganisms. This will better enable comparison 
between different platforms and bioinformatic tools and 
increase confidence in reporting results. Since combined 
host–pathogen genomic analysis is increasingly likely 
to contribute to optimum patient management, we also 
evaluated how well the methods preserve RNA sequences 
from the host transcriptome. Our goal is to provide guid-
ance on the capabilities and drawbacks of each, for rou-
tine diagnostic use and public health screening.

Methods
Mock clinical samples
Mock samples were prepared to represent high-biomass 
samples (e.g. blood and tissue) with a clinically rel-
evant spectrum of viral loads ranging from 60 to 60,000 
gc/ml. This was achieved by performing serial dilu-
tions of a commercial genetic material mix—the ATCC 
Virome Nucleic Acid Mix (ATCC, MSA-1008) (Table 1, 
Table S1) in a background of either human DNA, RNA, 
or a DNA + RNA mix. Mock samples were prepared by 
using commercially available human genomic DNA 
(Promega, 20050264) and Human Brain total RNA (Inv-
itrogen,  20050264) at a final concentration of 40 ng/µl. 
Lambda DNA (Sigma,  20050264) and MS2 Bacterio-
phage RNA (Roche® Life Science Products,  20050264) 
were used as internal controls. All mock samples were 
spiked with the internal controls to an average CT value 
of 31 using a  10−6 dilution from the commercial stock 

as previously described [56]. Each mock sample type 
(DNA,RNA or DNA + RNA) and dilution point was pre-
pared in large batches and then split into 10-µl single use 
aliquots assuring that all methods were tested using the 
same sample batch in order to reduce variability between 
experiments. Viral loads (copies per ml) were calculated 
by extrapolating the number of copies on a 10-µl aliquot 
considering an average purification elution volume of 
40 µl and an average sample purification volume of 250 
µl. Commercial DNA stock, ATCC nucleic acid virome 
mix, and mock samples were tested for the presence of 
TTV by qPCR using the TTV R-GENE kit (bioMérieux, 
423414) according to the manufacturer’s instructions.

Untargeted Illumina sequencing
Untargeted Illumina DNA and RNA metagenomic 
sequencing of the mock clinical samples was performed 
as previously described [56]. Two technical replicates per 
mock sample were performed. DNA samples underwent 
human CpG-methylated DNA depletion using the NEB-
Next® Microbiome DNA Enrichment Kit (New England 
Biolabs, E2612L) followed by library preparation using 
the NEBNext® Ultra™ II FS DNA Library Prep Kit for 
Illumina (New England Biolabs, E7805L). RNA samples 
underwent ribosomal RNA (rRNA) depletion followed 
by library preparation using KAPA RNA HyperPrep kit 
with RiboErase HMR (Roche, KK8561). For RNA-seq, 
DNA viruses present in the sample were removed dur-
ing the DNaseI step performed during rRNA depletion 
protocol. All samples for untargeted Illumina sequencing 
were processed using xGen™ UDI-UMI Adapters (IDT, 
10005903).

All pre-PCR steps were carried out under an MSC class 
II cabinet and moved to a post-PCR area following ampli-
fication. Libraries were quantified with high sensitivity 
dSDNA kit (Invitrogen, Q33231) on an Invitrogen Qubit 
4 Fluorometer and the average peak sizes for libraries 
were checked using high sensitivity D1000 screentapes 
(Agilent,  5067–5584) on a Tapestation 4200. Samples 
were sequenced in equimolar pools using a NextSeq 2000 
or a NovaSeq 6000 300 cycle kit (2 × 150 bp) depending 
on the number of samples processed. A minimum output 
of 5 Gb per sample was obtained (Table S2).

ONT sequencing
ONT sequencing was performed using PCR-based pro-
tocols and Q20 + chemistry (Version 14 kits). Two tech-
nical replicates per mock sample were performed. DNA 
samples underwent human CpG-methylated DNA deple-
tion using the NEBNext Microbiome DNA enrichment 
kit (New England Biolabs, E2612L) prior library prepara-
tion using the Rapid PCR Barcoding kit 24 V 14 (Oxford 
Nanopore Technologies, SQK-RPB114.24) according to 

Table 1 Species composition of ATCC virome virus mix

Species DNA or RNA Average 
genome GC 
content

Genome 
length 
(nt)

Human mastadenovirus F DNA 51.2 34392

Human herpesvirus 5 (cyto-
megalovirus, CMV)

DNA 57.1 229354

Human orthopneumovirus 
(respiratory syncytial virus, 
RSV)

− RNA 33.3 15228

Influenza B virus − RNA 40.1 18527

Mammalian orthoreovirus 3 dsRNA 46.9 23416

Zika virus + RNA 50.3 10952
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the manufacturer’s instructions. RNA sequencing was 
performed using Rapid-Smart 9N [57]. Before library 
preparation, a DNase I (New England Biolabs, M0303S) 
treatment was performed to remove DNA virus present 
in the mock community. First, for annealing of the tagged 
random oligonucleotide, 10 µl of RNA was mixed with 1 
μl of 2 μM RLB RT 9N oligo (TTT TTC GTG CGC CGC 
TTC AACNNNNNNNNN) and 1 μl 10 mM dNTPs. Mix 
was incubated for 5 min at 65°C, then cooled on ice. For 
cDNA synthesis and generation of double-tagged cDNA, 
4 μl SuperScript IV First-strand Buffer, 1 μL 0.1 M DTT, 
1 μl RNase OUT (Thermo Fisher Scientific, 10777019), 
1 μl 2 μM RLB TSO (GCT AAT CAT TGC TTT TTC GTG 
CGC CGC TTC AACATrGrGrG), and 1 μL SuperScript 
IV (Thermo Fisher Scientific, 18090010) were mixed with 
the 12 μl annealed RNA. Reaction was incubated for 90 
min at 42°C followed by 10 min at 70°C. Five microliters 
of double-tagged cDNA was used as input for the PCR 
step in the Rapid PCR Barcoding kit 24 V 14 (Oxford 
Nanopore Technologies, SQK-RPB114.24). From this 
step onwards, the manufacturer’s instructions were 
followed.

All pre-PCR steps were carried out under an MSC class 
II cabinet and moved to a post-PCR area following ampli-
fication. Sequencing was performed using PromethION 
Flow cells (R.10.4.1) on a P2 solo device connected to a 
GridION. Real-time basecalling was performed in Min-
Know Version 23.07.5 using the high-accuracy model. 
Samples were sequenced until a minimum output of 5 Gb 
per sample was obtained (Table S2). ONT adaptive sam-
pling was not used.

Targeted Illumina sequencing with Twist Comprehensive 
Viral Research Panel
Targeted Illumina sequencing was performed on sam-
ples with a combined DNA + RNA background using 
the Twist Comprehensive Viral Research Panel (Twist 
Bioscience, 103550) following the Twist Bioscience Total 
Nucleic Acids Library Preparation EF Kit 2.0 for Viral 
Pathogen Detection and Characterization protocol. Two 
technical replicates per mock sample were processed 
other than for 60 and 600 gc/ml and the negative con-
trol, where four replicates were performed. Additional 
replicates were included to thoroughly test for potential 
cross-contamination and to assess potential sensitivity 
loss in low copy number samples when combined with 
high copy number samples in hybridization-capture 
reactions.

First, cDNA synthesis was performed using Proto-
Script II First strand synthesis kit (New England Biolabs, 
E6560) followed by the NEBNext Ultra Non-Directional 
Second Strand Synthesis module (New England Biolabs, 
E6111) as recommended by TWIST Bioscience. Twenty 

nanograms of the double-stranded cDNA and dsDNA 
mix was used as input for adapter ligation, indexing and 
pre-capture amplification using the Twist Library prepa-
ration EF Kit 2.0 (Twist Bioscience, 104207 + 100573). All 
pre-PCR steps were carried out under an MSC class II 
cabinet until the indexing step was complete.

Following pre-capture amplification, indexed sam-
ples were pooled, for a total of 7 samples plus a negative 
control per hybridisation reaction, making a total of 8 
samples per reaction as recommended by the manufac-
turers. Hybridisation was performed overnight for 16 h. 
Hybridisation targets were then captured with Strepta-
vidin Binding Beads. At this step, samples were washed 
using the Twist Wash Buffers (Twist Bioscience, 104178) 
instead of the washing buffers V2 as per recommenda-
tion of the manufacturer. Post-capture amplification 
was performed on the enriched libraries (8 cycles). Final 
enriched libraries were quantified with Qubit high sensi-
tivity kit and average peaks obtained with high sensitiv-
ity D1000 tapes. Samples were sequenced in equimolar 
pools using a NextSeq 2000 or a NovaSeq 6000 300 cycle 
kit (2 × 150  bp) depending on the number of samples 
processed. A minimum output of 5  Gb per sample was 
obtained (Table S2).

Databases for taxonomic classification
Since database composition has been shown to have a 
significant impact on the results of metagenomics [58], 
a common set of sequences was used to build the data-
bases where possible. For the tools where it was possi-
ble to create a custom database (Kraken2 [59], Bracken 
[60], Dragen Metagenomics Pipeline [61], EPI2ME labs 
wf-metagenomics [62], metaMix [63], MEGAN-LR [64] 
and Kaiju [65]), a database was created based on the 
bacterial (complete genomes only), viral, fungal, proto-
zoa and human nucleotide from RefSeq (downloaded 
6th June 2023). Databases were built using the default 
parameters, other than for MEGAN-LR, where the rec-
ommended settings for ONT data described in [39] were 
used. A common set of taxonomy files downloaded from 
NCBI (31st July 2023) were also used. Unplaced contigs 
were removed from the parasites and fungal nucleo-
tide sequences prior to building the databases to reduce 
human contamination present in some of the reference 
sequences. It is not currently possible for the user to alter 
the databases for CZ ID [66] or One Codex [67], so the 
inbuilt databases were used.

Read preprocessing and taxonomic classification
Reads were randomly subsampled from the raw output 
fastq files, using seqtk sample [68] for the Illumina data 
and a custom python script for the ONT data, to obtain 5 
Gb for each sample across all the technologies.
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Kraken2, Bracken, and Kaiju were run through the nf-
core Taxprofiler pipeline [69], which aims to provide a 
reproducible best-practice workflow for metagenomics 
analysis. As recommended, read preprocessing involving 
adaptor trimming and complexity filtering with fastp [70] 
was performed for Illumina but not ONT sequencing 
[71]. Host removal was performed for both platforms by 
alignment to the human genome (version Ch38).

The reads obtained following preprocessing and host 
removal from the Taxprofiler pipeline were used as input 
to MEGAN-LR, run through the PB-metagenomics tools 
pipeline [72], with the adjustments for ONT sequencing 
recommended in [39].

For Illumina data processed with metaMix, a separate 
preprocessing pipeline was used for a more thorough 
removal of host reads. This involves read trimming using 
TrimGalore [73], followed by removal of human DNA/
RNA and ribosomal RNA using alignment with both 
Bowtie2 [74] and BLAST [75, 76]. For the other clas-
sifiers, the time saved in classification was shorter than 
the time taken for the longer host removal pipeline, so 
a single alignment step is sufficient. For the ONT data, 
the output of the preprocessing and host removal from 
Taxprofiler was used as input. Reads were then aligned 
to the reference database with BLAST (nucleotide mode) 
and DIAMOND [77] (protein mode) before input to the 
metaMix R package. metaMix-fast is the first two steps 
of the metaMix R package, before the time-consuming 
MCMC step.

Raw reads were uploaded to CZ ID metagenomics 
workflow through the online interface. For CZ ID, the 
fields nr_count or nt_count were used for protein and 
nucleotide analyses respectively. Raw reads were also 
uploaded to the One Codex platform. The reads field 
from the reads field used for the analysis. For the Twist 
panel data, the Twist Comprehensive Viral Research 
Panel report was also run. Initially, this report failed to 
identify Reovirus, but this issue has since been rectified 
by One Codex.

Raw reads were also used as input into either Illumina’s 
Dragen Metagenomics Pipeline or ONT’s EPI2ME labs 
wf-metagenomics as appropriate. The same Kraken2 cus-
tom database as used for running Kraken2 through nf-
core Taxprofiler was used, and both tools were run using 
the command-line interface.

Alignment and sensitivity analysis
Reads were aligned to reference genomes downloaded 
from ACC using Bowtie2 [74] for the Illumina data and 
Minimap2 [78] for the ONT data, using the “very-sensi-
tive” mode and the default parameters respectively. PCR 
duplicate reads were removed before calculating cover-
age and depth using samtools [79].

Assembly
For metagenomic genome assembly, preprocessed and 
human filtered reads from Taxprofiler were assem-
bled using either metaSPAdes [80] (Illumina and 
Twist CVRP) or metaFlye [81] (ONT), with the default 
parameters. The assembly of the resulting contigs 
(> 150nt only) was assessed using metaQUAST [82]. 
For de novo assembly, reads aligning to the viral com-
munity genomes were assembled using SPAdes [83] 
(Illumina and Twist CVRP) or Flye [84] (ONT). Assem-
bly quality metrics were calculated using Quast [85]. 
Consensus sequences were generated using samtools 
consensus [79] from alignments to the viral community 
reference genomes. The assemblers used were chosen 
due to their good performance in a recent benchmark-
ing study [86].

Identification of false positive species
To standardize the results between classifiers for com-
parison, taxonomic ranks were identified, organisms 
were classified as bacteria, viruses, fungi or other 
eukaryotes, and all reads assigned to taxonomic levels 
below species were assigned to the relevant species, 
using custom R scripts and the taxonomizr pack-
age [87]. Where an organism was detected by both 
DNA and RNA sequencing, the result with the higher 
number of reads was retained, meaning that a spe-
cies detected in both nucleic acid types would only be 
counted once. All analysis was performed in terms of 
reads rather than base pairs since not all classifiers out-
put assignments by read, making it impossible to cal-
culate base pair assignments for the ONT data. Read 
per million ratios (RPMR) and proportion of microbial 
reads (PMR) were calculated and used to identify posi-
tive species as described in the Supplementary Infor-
mation. False positive species were defined as species 
that were identified by the classifiers that were not 
one of the six viral species in the mock community or 
either phage used as a positive control. False positive 
viral species were classified according to host using the 
Virus-Host DB [88].

Host transcriptomic analysis
Genes and transcripts were quantified using Kallisto 
[89] with human genome GRCh38.p14 downloaded 
from Gencode [90]. Analysis was conducted in R using 
the tximport [91] and rtracklayer [92] packages. Spliced 
reads were identified by alignment to the human 
genome using STAR [93], using the presence of the 
CIGAR string to identify gapped alignments.
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Plots
Plots were produced in R using Tidyverse [94] packages 
or using Biorender.com.

Results
Sensitivity and limit of detection
We tested simulated post-extraction clinical samples 
where the input viral composition is known, consisting 
of a mock community of genomic DNA/RNA from six 
viruses, two DNA (human mastadenovirus F and human 
betaherpesvirus 5) and four RNA (mammalian orthoreo-
virus, human orthopneumovirus, influenza B virus and 
Zika Virus), at four different concentrations in a con-
stant human DNA and RNA background (Fig.  1). The 
viral loads chosen, 60–60,000 genome copies per ml (gc/
ml), were designed to resemble different levels of viruses 
observed in clinical samples such as blood and tissue as 
closely as possible [95–99]. The same input was used for 
all metagenomics approaches: the untargeted Illumina 
and ONT protocols, and the capture probe enrichment 
with the Twist Comprehensive Viral Research Panel 

(CVRP) followed by Illumina sequencing (Fig. 1). At least 
two replicates were tested for each technology-concen-
tration pair. We obtained 38.2–81.2 and 38.8–66.9 mil-
lion reads per sample for untargeted Illumina sequencing 
and Illumina following the Twist CVRP respectively, 
corresponding to 5.7–12.2 Gb and 5.8–10.0 Gb respec-
tively (Table S2). For the untargeted ONT sequencing, we 
obtained 5.1–12.3 Gb per sample. To improve compara-
bility between methods, we randomly subsampled 5 Gb 
from each sample across the platforms for analysis.

The internal controls, phages lambda and MS2 for 
DNA and RNA respectively, were detected in all tar-
geted and untargeted Illumina samples, other than 
MS2 in some of the Twist CVRP samples, which is 
likely due to the probes used in the panel not targeting 
the phage (Table  S3). However, phage lambda was only 
found in four of the ten ONT DNA samples (Table S3). 
To confirm the sequencing had worked successfully, 
we also aligned to the human beta globin gene. Either 
beta globin or lambda was identified in all the samples 
(Table S3), and at least 5 Gb of data was obtained from all 

Fig. 1 Metagenomic sequencing and experimental outline. A  Overview of a typical clinical metagenomic processing pipeline.  B  Flow chart 
summarizing experimental design, which involves inputting mock and clinical samples into three metagenomic workflows: Illumina DNA and RNA 
seq using NEBNext and KAPA kits respectively, ONT DNA and RNA seq using the Rapid PCR barcoding kit and the Rapid Smart-9N method 
respectively, and finally the targeted DNA- and RNA-based Twist viral research panel, sequenced on the Illumina platform. The resulting data 
was analysed using different taxonomic classifiers. Produced with biorender.com
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samples (Table S2), so we proceeded with analysis. Dur-
ing taxonomic classification, the lambda phage was not 
detected and was instead misclassified as Escherichia coli 
(Table S4), as several reference genomes contain an inte-
grated lambda phage, which invalidates lambda phage as 
a suitable choice for DNA internal control.

The Twist CVRP was the most sensitive method, as it 
was the only platform to detect all the expected viruses 
at 60 genome copies per ml (gc/ml), with coverage over 
98.8% for all viruses at 60,000 gc/ml and ranging from 
3.7 to 23.0% at 60 gc/ml (Fig. 2A). ONT was less sensitive 
than Illumina, detecting in at least one of the replicates 
all six viruses at 60,000 gc/ml, four of six viruses (human 
betaherpesvirus 5, human mastadenovirus F, ortho-
pneumovirus and Zika virus) at 6000 gc/ml but only two 
viruses, one double-stranded (ds) DNA (human beta-
herpesvirus 5) and the other dsRNA virus orthoreovirus 

at 600 gc/ml and none at 60 gc/ml. The detection of the 
dsRNA virus orthoreovirus at 600 gc/ml despite not 
being detected at 6000 gc/ml represents only four reads 
in one of the replicates, with no reads detected in the 
other replicate, likely reflecting stochastic variation. In 
contrast, untargeted Illumina detected all six viruses at 
60,000 and 6000 gc/ml, five at 600 gc/ml (all apart from 
human mastadenovirus F) and one at 60 gc/ml (human 
betaherpesvirus 5) (Fig. 2A). At levels close to the limits 
of detection, there was sometimes variation between the 
technical replicates in their ability to detect the viruses 
(Fig. 2). One additional DNA virus (human mastadenovi-
rus F) and one additional RNA virus in one of the repeats 
(human orthopneumovirus) were detected by Illumina 
sequencing at 600 gc/ml when additional sequence data 
was available beyond 5  Gb (9.6 and 10.7  Gb for DNA 
and 11.1  Gb for RNA) (Table  S2). Other than this, no 

Fig. 2 Detection of mock community viruses.  Coverage and base pairs aligned to the six expected viral species in mock samples, by untargeted 
Illumina and ONT sequencing and capture probe enrichment with the Twist Bioscience Comprehensive Viral Research Panel followed by Illumina 
sequencing.  A  Percentage genome coverage at depth 1 × of species in mock community.  B  log10(bases) aligning to reference genome. Samples 
where a virus was detected in the full dataset but not the subsampled dataset are indicated with a *. Genome copy numbers refer to an average 
across the viral species—see Table S1. Each point shows the mean of at least two technical replicates—error bars show the range. PCR duplicate 
reads removed
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additional viruses were detected in the full datasets 
before subsampling.

At 60,000 gc/ml, assigned bases ranged from 17,527 
to 217,630 of 5 Gb for Illumina and 2110 to 134,026 of 
5 Gb for ONT (Fig. 2B). Both ONT and Illumina untar-
geted sequencing provided incomplete coverage of the 
viral genomes at all concentrations tested, with percent-
age genome coverage at a read depth of at least 1X for the 
viruses in the mock community ranging from 8.4 to 83.9% 
at 60,000 gc/ml, 0–30.7% at 6000 gc/ml, and 0–8.9% at 
600 gc/ml (Fig.  2A). Viruses with longer genomes were 
detected with greater read numbers; however, normaliz-
ing for genome length gave similar abundance estimates 
for each virus, where viral loads were high enough for 
consistent detection (Fig. S1). All technologies displayed 
levels of PCR duplication ranging from 0 to 69.7%, with 
the Twist CVRP showing the highest rates (Fig. S2A). 
The greater duplication rates with the Twist CVRP are 
likely explained by the additional post-capture PCR step 
in the Twist CVRP compared to the untargeted methods 
and are comparable to the rates observed in other cap-
ture panels [100]. Lower viral load samples display higher 
duplicate rates potentially due to the reduced amount of 
material available for PCR after the hybridization capture 
step [100]. Including PCR duplicates made no difference 
to the conclusions regarding sensitivity (Fig. S2B).

Where novel strains or species of viruses are detected, 
assembly approaches can recover viral genomes. 
Metagenomic de novo assembly of human-filtered reads 
enabled identification of contigs corresponding to the 
viruses in the mock community at 60,000 gc/ml, corre-
sponding to 0–21.3%, 0–85.8% and 72.5–99.1% for untar-
geted Illumina, ONT and the Twist CVRP respectively 
(Fig. S3, Table  S5). De novo assembly of reads aligning 
to the genome gave similar results to the metagenomic 
assembly, demonstrating that it is possible to assemble 
partial viral genomes from these samples even without 
knowledge of the reference sequence (Fig. S3, Table S5). 
Partial consensus genomes from aligned reads were 
generated where there was sufficient coverage (Fig. S3, 
Table S5).

We also tested the sensitivity of a range of taxonomic 
classifiers. The classifiers tested and reasons for inclu-
sion are outlined in Table  2. Where no thresholds were 
applied, all the classifiers had similar sensitivity, although 
there was some variation in ability to detect viruses 
at 60–6000 gc/ml for untargeted Illumina sequencing 
and at 60,000 gc/ml for untargeted ONT sequencing, 
with Kraken2, Dragen, metaMix-fast and CZ ID being 
the most sensitive at these viral loads (Fig.  3A). Meta-
Mix and MEGAN-LR failed to identify influenza B virus 
and mammalian orthoreovirus respectively with ONT 
sequencing at 60,000 gc/ml; both RNA viruses for which 

fewer than 10 reads were detected by the aligner mini-
map2. Of the other classifiers, One Codex had substan-
tially lower sensitivity for the Twist CVRP data compared 
to other classifiers, all of which identified almost all the 
viruses at all concentrations tested (Fig. 3A). This may be 
because the program only reports organisms that reach a 
set of predetermined abundance thresholds [101], which 
may not be reached at low viral loads, while the other 
classifiers do not by default use such thresholds. Where 
viruses were detected, the classifiers provided broadly 
similar estimates of reads per million, ranging, for exam-
ple, from 30.3 to 73.6, 31.0 to 39.2 and 3695 to 8164 RPM, 
for human betaherpesvirus 5 for Illumina, ONT and the 
Twist CVRP respectively (nucleotide-based classifiers 
only) (Fig. S4).

False positive rates
High precision and low false positive rates are as impor-
tant as sensitivity in a clinical diagnostic setting, and 
rational approaches to identifying and reporting con-
taminants, particularly by non-specialist bioinformati-
cians, are needed. There is currently no gold-standard 
classifier for identification of viruses from metagen-
omics data and a range of programs are used in clini-
cal services [11, 12, 102]. While many benchmarking 
studies of metagenomics bioinformatics pipelines have 
been performed, several recently developed tools [61, 
66, 67, 103] designed to be run by non-bioinforma-
ticians have so far not been evaluated in this way for 
detection of viruses. To evaluate their performance, we 
compared the number of false positive species identi-
fied by a range of commonly used taxonomic classifi-
ers for the mock samples (Table  2). A false positive is 
defined as any species not present in the mock com-
munity. All the classifiers assigned similar numbers of 
reads to the species in the mock community, except for 
One Codex, which had lower sensitivity for the Twist 
CVRP data than the other classifiers (Fig. S4). However, 
when no additional thresholds were applied, there was 
a large variability between the classifiers in terms of 
the number of species identified by Illumina sequenc-
ing (Fig.  3B). Most of the false positive species were 
fungi or bacteria. Kraken2 Illumina’s Dragen Metagen-
omics Pipeline (which is based on Kraken2) and One 
Codex, all use kmer methodologies and identified over 
1500 false positive species for the untargeted Illu-
mina sequencing (Fig.  3B, Table  S4). The discrepancy 
between the number of false positives identified for the 
Twist CVRP data by One Codex at different concentra-
tions may be caused by greater availability of data for 
the classifier to distinguish between true and false posi-
tives at higher read depths [101]. By contrast, meta-
Mix and Bracken, which both use Bayesian methods, 
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identified only one false positive viral species at 60,000 
gc/ml (Fig.  3C). However, both these classifiers were 
less sensitive at lower genome copy numbers than clas-
sifiers such as Kraken2 and CZ ID. In contrast to Illu-
mina, few false positive species, especially viruses, were 
identified with ONT sequencing (Fig. 3B, C). Thus, for 

ONT the application of thresholds beyond a basic com-
parison to the negative control may not be required.

To reduce the number of false positive species identi-
fied for Illumina sequencing, we imposed more stringent 
thresholds. Completely disregarding all species with any 
reads in the negative control may result in a reduction in 

Table 2  Taxonomic classifiers

a Shows approximate range only—exact time taken depends on sample complexity, number of samples processed and computational resources, and exact timings 
were not available for all classifiers, e.g. One Codex. Based time taken to process single samples from our dataset, including bioinformatic preprocessing

Classifier Method Reason 
included

Platform GUI or CLI Local or cloud Database size
(based on 
identical fasta 
files)

Approximate 
time taken 
(hours)a

Reference

Kraken2 & 
Bracken

Kmer-based, 
lowest com-
mon ancestor

Very widely 
used

Illumina & ONT CLI Local 124 GB 1–3 [59, 60]

DRAGEN 
Metagenomics 
(Kraken2)

See Kraken2 Illumina’s 
platform

Illumina & ONT CLI & GUI Cloud 124 GB 1.5–3 [61]

EPI2ME Labs
wf-metagen-
omics
(Kraken2 & 
Bracken)

See Kraken2 ONT’s platform ONT CLI & GUI Local. Cloud 
in develop-
ment 

124 GB 0.5–2 [62]

MEGAN-LR Lowest com-
mon ancestor

Good per-
formance 
in benchmark-
ing study [39]

Illumina & ONT CLI required 
for preprocess-
ing
GUI (free), 
CLI (paid 
for short reads)

Local 327 GB (Mini-
map2)
88 GB
(DIAMOND)

5–8 [64]

metaMix Bayesian mix-
ture models

Good per-
formance 
in benchmark-
ing study, used 
clinically [36]

Illumina & ONT CLI Local 148 GB (BLAST)
88 GB
(DIAMOND)

5–12 + [63]

CZ ID Alignment 
and assembly

Free, cloud-
based platform

Illumina & ONT CLI & GUI Cloud NA – inbuilt 
online data-
base 

0.5–2 [66]

One Codex Kmer-based Recommended 
platform 
for use 
with Twist 
CVRP

Illumina & ONT CLI & GUI Cloud NA – inbuilt 
online data-
base

 ~ 0.5–2 [67]

Kaiju Local align-
ment based

Widely used 
protein clas-
sifier

Illumina & ONT CLI Local 101 GB 1–3 [65]

(See figure on next page.)
Fig. 3 Sensitivity and number of false positive species identified by taxonomic classifiers. A  Sensitivity to the species in the mock community 
before and after the application of thresholds in the legend and further defined in the Supplementary information, for seven different taxonomic 
classifiers, by untargeted Illumina and ONT sequencing and capture probe enrichment with the Twist Bioscience Comprehensive Viral Research 
Panel followed by Illumina sequencing. MEGAN-LR and the One Codex Twist report are only designed for ONT and Twist sequencing respectively 
so were only run for these platforms.  B, C  Number of false positive species, defined as a species that is classified as positive but not present 
in the mock community.  B  False positive species from the raw output of the taxonomic classifiers with no thresholds applied.  C  Comparison 
of the numbers of viral positive species identified before and after the application of thresholds. RPMR: reads per million ratio, PMR: proportion 
of (nonhuman classified) microbial reads—see Supplementary Information for further details. Genome copy numbers refer to an average 
across the viral species—see Table S1. Each bar shows the mean of at least two technical replicates
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Fig. 3 (See legend on previous page.)
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sensitivity, particularly when there is low-level cross-con-
tamination from high viral load samples into the control. 
We therefore used thresholds based on reads per million 
ratio (RPMR), which allows a normalized comparison 
between assigned reads in the sample and in the nega-
tive control. However, using RPMR alone may does not 
deal with the very large number of organisms with less 
than 5 reads assigned output by some classifiers, nor 
does it address low-level bioinformatic contaminants that 
may arise when a small number of reads from one of the 
mock community species are misclassified as a closely 
related species (e.g. a small number of reads are misclas-
sified as adenovirus C in a sample containing adenovirus 
F). We can overcome this by using thresholds based on 
calculating the proportion of total microbial reads that 
are assigned to a particular species. This works on the 
assumption that a clinically relevant organism will repre-
sent at least 1% of the total microbial reads in the case 
of bacteria/eukaryotes and 0.01% in the case of viruses, 
which is likely to be true in most clinical samples with 
low microbial diversity. More details of the derivation 
of our thresholds can be found in the Supplementary 
information.

We found that using a combination of reads per mil-
lion ratio between sample and the corresponding nega-
tive control and proportion of microbial reads resulted 
in optimum sensitivity (91.7%) and specificity (77.4%), 
which may be useful for classifiers such as Kraken2 and 
One Codex which require additional thresholds (Fig. 3A, 
C). In contrast, ONT sequencing and classifiers such as 
metaMix have few false positive reads and can be used 
with only a comparison to the negative control. Use of 
protein-based classifiers, including Kaiju [65] and the 
protein modes of MEGAN-LR, metaMix and CZ ID, did 
not improve the sensitivity classification or the number 
of false positives identified (Fig. S5). Some false positive 
viruses remained after the application of these thresh-
olds. These are unlikely to be background or laboratory 
contaminants, since the use of reads per million ratio will 
remove any species that are present at similar levels in 
the negative controls.

The false positive viral species that remained after the 
application of thresholds were mainly viruses that do not 
infect mammals or birds, making them unlikely to be 
clinically relevant (Fig. S6, Table S6). The remaining false 
positive viruses were mainly Anelloviridae (often Torque 
Teno viruses), and viruses that were related to those in 
the mock community, such as other herpes or adeno-
viruses. The Anelloviridae, which are very commonly 
found in human samples, were found in both negative 
controls using the Twist CVRP and are a result of low-
level contamination of the human genetic material, which 
was confirmed by PCR (CT 36.7). Some TTV species 

were identified in the controls, but some additional TTV 
species were present in the samples and were therefore 
called as positive. This may be because some of the clas-
sifiers were unable to accurately distinguish between 
TTV species based on the reads that were present, or 
where TTV levels were low stochastic variation may 
have caused it to be picked up at higher levels in samples 
than controls. This demonstrates the limitations of using 
a single threshold for all viruses, particularly when viral 
loads are low, and highlights that careful interpretation 
of the results remains essential. Identification of low lev-
els of related viruses are likely misclassifications due to 
high levels of similarity between the genomes of closely 
related viruses.

Host transcriptomic analysis
Several studies highlight the power of host transcriptom-
ics methods for distinguishing bacterial, viral, and non-
infectious causes of illness [27, 50–53], although none are 
being used diagnostically at present. When metagenom-
ics does not identify any pathogens, such analysis could 
help distinguish between a non-infectious cause of dis-
ease and a lack of sensitivity of the metagenomics proto-
col. Since Illumina RNA sequencing has been extensively 
used and validated for transcriptomic studies, we com-
pared the estimates of human gene expression provided 
by the ONT and Twist CVRP platforms to those from 
Illumina. Although the Twist CVRP only enriches for 
viruses, it retains the background, meaning that this 
analysis remains possible. The number of reads assigned 
to each human protein-coding gene was positively cor-
related between Illumina and the other two technologies 
(correlation coefficients, Spearman’s rho, 0.694 and 0.709 
for ONT and the Twist CVRP respectively) (Fig. 4A–C). 
Due to the combined DNA and RNA protocol used with 
the Twist CVRP, there were a large number of human 
genes that were identified as highly expressed by the 
panel but not untargeted Illumina (Fig. 4B). We therefore 
repeated the analysis, focusing only on reads that mapped 
across exon-exon junctions, termed henceforth “spliced 
reads”, which are likely to represent mRNA, resulting in 
a better agreement between the Illumina and the Twist 
CVRP results (Fig. 4D).

While most protein-coding genes were identified by 
all the technologies (Fig.  4E), there was still a substan-
tial minority that were not identified by ONT (Fig. 4E). 
Use of spliced reads for untargeted Illumina and Twist 
CVRP, only resulted in a small drop in the number of 
protein-coding genes identified, and a larger drop in the 
non-coding transcripts (Fig.  4E). However, use of the 
spliced reads resulted in a six-fold decrease of in the total 
counts for the Twist CVRP (Fig.  4E), meaning that this 
preliminary method to identify RNA-derived reads from 
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a DNA-RNA mix is likely to require further refinement. 
However, the majority of human genes were still detected 
using this method (Fig. 4F). Genes that were identified by 
all technologies were significantly more highly expressed 
(Fig. 4G) suggesting that low-expressed genes may be less 
reliably identified by all technologies, particularly ONT.

Turnaround time and cost
Costs and turnaround times from sample to results 
affect the adoption of metagenomics for routine diag-
nostics. ONT provides the quickest library prepara-
tion method, at just over 5  h for both DNA and RNA 
protocols (Fig. 5A). Targeted sequencing with the Twist 
CVRP requires overnight hybridization and is the slow-
est protocol (Fig. 5A). The Twist CVRP protocol was the 
cheapest based on 23 samples (+ negative control) and a 
sequencing depth of 5 Gb, while the untargeted Illumina 
sequencing was the most expensive (Fig. 5B, Table S7).

However, directly comparing the costs of each pro-
tocol to obtain at least 5  Gb of sequence data does not 
account for differences in their sensitivity. Since the Twist 
CVRP approach is at least 10–100 × more sensitive than 
untargeted Illumina and 100–1000 × more than untar-
geted ONT (Fig. 2), increases of orders of magnitude in 
sequencing depth would be required to bring the sensi-
tivity of the untargeted protocols in line with that of the 
Twist CVRP. Even up to twice as much sequence data 

(10.6 and 11.3 Gb at 60 gc/ml) did not increase the sen-
sitivity of untargeted Illumina and ONT respectively 
to anything near to the Twist CVRP. For untargeted 
Illumina, greater sequencing depth also amplifies the 
detection of contaminants, making interpretation more 
difficult. Achieving increased sensitivity using ONT 
sequencing would require long sequencing runs and a 
reduction in the number of samples sequenced per flow 
cell, significantly increasing costs and turnaround times. 
This means that targeted metagenomics methods such 
as Twist CVRP are by far the quickest and most cost-
effective of the protocols for detection of low viral loads 
(60–600 gc/ml). Similarly, since untargeted Illumina is 
more sensitive than this untargeted ONT protocol, it will 
be quicker and cheaper to reach the sequencing depths 
required to detect intermediate viral loads (600–6000 gc/
ml) using Illumina.

Sequencing costs and turnaround times will also be 
influenced by the number of samples. For fewer than 
six samples, including controls, ONT is the cheap-
est and fastest alternative where microbial load is likely 
to be high and genomic sequences are achievable with 
lower sequencing depth, for example 5  Gb of data, per 
sample (Fig.  5B, C). ONT also provides access to the 
sequencing data in real time, allowing preliminary anal-
ysis of the results before the run is completed, which 
can be advantageous for samples with high viral loads. 

Fig. 4 Host transcriptomic analysis. A–D  Read counts per million assigned to each gene in the human genome by untargeted Illumina, untargeted 
ONT and targeted Illumina sequencing using the Twist Viral Research Panel. Each point represents a gene . A–C  raw reads;  D  only reads that map 
across splice junctions.  E  Total counts for spliced and other reads.  F  Number of genes identified by each pair of technologies.  G  Counts 
per million of reads by platform. Each panel shows the log2(CPM) as estimated by a different technology. Outliers not shown. All comparisons are 
statistically significant (p < 0.01) with a pairwise Wilcox test other than those indicated
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However, if more samples are processed in parallel or a 
higher sequencing depth is required to improve sensi-
tivity to a level comparable with untargeted Illumina, 
longer sequencing runs will be needed (Fig. 5B, C). When 
the total volume of data required per run is higher than 
around 30 Gb, it may be faster to use Illumina sequenc-
ing (Fig.  5C). However, it remains cheaper to use ONT 
with 23 sample runs (24 including negative control, 
120 Gb) (Fig. 5B). Because of the Twist CVRP’s improved 
sensitivity, lower sequencing depths are required per 
sample, allowing the use of smaller Illumina sequencers 

and cheaper kits with shorter sequencing times (Fig. 5C). 
However, for fewer samples the Twist CVRP method may 
be much more expensive, since the kit optimal cost per 
sample is based on the pooling of 7 (8 including negative 
control) samples per hybridization (Fig. 5B, Table S6).

Discussion
The use of metagenomics and allied targeted methods 
for routine diagnostics and clinical management are now 
priorities for laboratories in many countries. At least 
two commercial solutions are already available, in both 

Fig. 5 Turnaround times and output data volumes. A  Time taken for library preparation for the different protocols tested. The Twist panel 
uses a combined DNA and RNA-Seq protocol. The DNA + RNA bars for the untargeted sequencing indicate the time taken if both protocols 
are performed by a single operator.  B  Total cost (including library preparation) to sequence number of samples indicated plus single negative 
control, to a depth of 5 GB. ONT costs are shown with 48- and 72-h maximum run times per flow cell.  C  Volume of data output by time for a range 
of Illumina sequencing kits and ONT sequencing with PromethION flow cells. The Illumina kits produce a set amount of data after the sequencing 
run is complete—this is shown by pink dots. In ONT sequencing, data is output continuously and the run can be stopped at any time, until the flow 
cell becomes degraded. PromethION data (green/blue dotted lines) shows the average of our RNA and DNA-Seq runs, passed reads only. Data 
outputs for Illumina were obtained from the product specification data as of April 2024
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cases using Illumina platforms for untargeted sequenc-
ing of cell-free DNA in blood, to identify causes of sepsis 
[104, 105]. However, these approaches may not be suit-
able for the detection of cell-associated pathogens, nota-
bly viruses, and data on limits of detection for viruses is 
absent. Untargeted Illumina sequencing is also in routine 
use in a handful of labs for the management of patients 
with fever of unknown origin, encephalitis, meningitis, 
and sepsis [10, 11, 106]. Most recently, routine diagnos-
tic ONT metagenomic sequencing of respiratory samples 
has been proposed for improved management of criti-
cally ill patients with pneumonia [12, 13]. In each case, 
the metagenomic set-ups are multi-step workflows where 
each stage, from sample collection to computational data 
analysis, significantly affects the outcome of the test [26, 
28, 107] (Fig.  1A). Sensitivity, specificity, reproducibil-
ity, turnaround time and cost are critical considerations 
before implementation in a clinical laboratory. However, 
with limited standardization across workflows, few head-
to-head comparisons and significant, if underreported, 
drawbacks to most of the existing pipelines, choosing and 
implementing a metagenomics workflow remains com-
plicated and uncertain for most.

In this study, we have focused on detection of viruses, 
which are particularly important causes of morbidity 
and mortality in immunocompromised patients [41–43]. 
Sensitive detection of viral infections is also necessary 
where metagenomics is being considered for screening 
of biological therapies such as blood and organ donations 
[44] and for detection of pathogens of high consequence, 
for example in returning travelers [45, 46]. Detection of 
viruses also has implications for antimicrobial steward-
ship and with increasing antiviral agents available, the 
appropriate stratification of patient management. Several 
studies have previously compared Illumina and ONT-
based metagenomics of bacterial and fungal mock com-
munities [29, 30, 32], simulated bacterial datasets [32, 33, 
38] and clinical samples [18, 28, 108, 109]. Some work 
on viral detection from clinical samples [27, 110–114] or 
mock communities resembling environmental samples 
[34] has also been reported. While the sensitivity of both 
platforms, where compared, has been found to be similar 
for bacterial detection [27, 29, 30, 38, 110, 115], few have 
compared detection of RNA viruses. Recently, a mul-
ticenter study benchmarking 11 clinical metagenomic 
workflows using a panel of simulated low biomass sam-
ples, including CSF and nasopharyngeal swabs, tested 
different viral loads and showed that only a minority of 
protocols, including a Twist CVRP approach, were able 
to detect viruses at CT values of over 35 [47]. However, 
to our knowledge, no studies have systematically tested 
different viral loads, established limits of detection or 
specificity for viral detection and evaluated the quality of 

host transcriptomics information in samples with high 
human background.

Here we show that untargeted Illumina and ONT 
metagenomics, and targeted Illumina sequencing with 
the Twist CVRP, detect high viral loads (60,000 gc/ml) 
with good sensitivity and reproducibility. Metagenomic 
assembled genomes were generally low in quality, dem-
onstrating the challenge of effectively de novo assembling 
low-level viral genomes amongst a background of human 
and contaminant sequences (Fig. S3). Untargeted Illu-
mina sequencing appears better able than ONT to detect 
viruses at lower genome copy numbers, with the former 
finding all six viruses at 6000 and five at 600 gc/ml, while 
the latter detected only four and two of the six viruses 
respectively, with only untargeted Illumina finding a 
single virus at 60 gc/ml (Fig. 2). Notably ONT detected 
only two of the four RNA viruses at 6000 gc/ml, one of 
the four at 600 gc/ml and none at 60 gc/ml. This may 
be because depletion of ribosomal RNA (rRNA) before 
performing Rapid-SMART-9N [116], which is known to 
improve Illumina detection of RNA viruses, resulted in 
levels of RNA input that are too low for adequate ONT 
library preparation. In order to overcome this, adapt-
ing the current workflow to include cDNA synthesis kits 
compatible with ultra-low input RNA, such as those used 
for single-cell RNA-seq experiments, should be consid-
ered, which could improve the sensitivity of ONT, par-
ticularly for single-stranded (ss) RNA viruses. Combining 
ONT with differential lysis methods, which remove host 
and non-encapsulated nucleic acids, can improve sensi-
tivity [117, 118] detection of bacteria and fungi, but this 
step may reduce sensitivity for certain microbes and 
reduce the ability to detect cell-free DNA and RNA, 
including viral nucleic acid [54, 55]. Furthermore, with 
increasing moves to combine host gene expression with 
microbial detection to improve infection-diagnosis rates 
[27, 50–53], methods such as differential lysis, which 
deplete human nucleic acid may be less attractive.

More sensitive than either untargeted Illumina or 
ONT, viral enrichment using the commercially available 
Twist CVRP panel was able to detect all six viruses down 
to levels of 60 gc/ml, a finding in keeping with reports for 
other commercial capture protocols [19]. However, the 
Twist CVRP only includes viral probes and may require 
the addition and evaluation of probes targeting other 
pathogens and AMR genes to be useful for routine diag-
nostic use, since a virus-only panel does not allow syn-
dromic diagnosis of infection. Having a defined panel 
may also limit the ability to detect novel pathogens. The 
probes can detect organisms with up to 20% difference to 
the reference with over 50% coverage [119], but cannot 
detect more divergent infectious agents, as exemplified 
by the failure of the Twist CVRP to detect the internal 
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control E. coli phages MS2 in certain samples where it 
was detected in all untargeted Illumina runs (Table S3). 
However, as demonstrated by the host transcriptomic 
analysis of the Twist CVRP data, non-targeted material is 
retained by this protocol. This means that it may be pos-
sible to detect non-targeted microbial species, including 
bacteria, fungi and highly divergent viruses, if their abun-
dance is high enough in relation to the depth of sequenc-
ing used. Finally, capture probe-based methods are 
currently designed only for use with Illumina sequencing. 
Previously reported attempts to add an enrichment step 
to improve the sensitivity of ONT sequencing require 
first generating an Illumina sequencing library before 
converting this for ONT sequencing through additional 
library preparation steps [22], making this approach 
costly and time-consuming.

The propensity for deep sequencing metagenomic 
methods to detect contaminant species presents a par-
ticular challenge when such methods are considered for 
routine diagnostic use. The numbers of falsely detected 
species were lowest for ONT sequencing and greatest 
for untargeted Illumina sequencing and the Twist CVRP 
(Fig. 3B). The higher precision of ONT is most likely due 
to longer reads making it easier for taxonomic classifiers 
to unambiguously assign reads to species. Large numbers 
of false positive species were identified for untargeted 
and targeted (Twist CVRP) Illumina sequencing. This 
was particularly pronounced for commonly used classi-
fiers for bacterial data such Kraken2, whose kmer-based 
approach can result in inaccurate assignment of short 
reads due to cross-mapping (Fig. S6) [39]. Although the 
results of Kraken2 can be improved by post-processing 
with Bracken, this approach has a lower sensitivity than 
classifiers such as metaMix and CZ ID.

By contrast, the use of probabilistic methods that 
inherently control false positives, such as metaMix, 
reduced the numbers of false positive species to lev-
els similar to those seen for ONT (Fig. 3C). By applying 
thresholds based on a combination of reads per mil-
lion ratio, which compares species detected in samples 
and corresponding negative controls, and proportion of 
microbial reads, we demonstrate that false positive rates 
can be reduced for all classifiers, thus standardizing out-
puts from different sequencing methods and classifi-
ers. Our approach differs from those previously applied, 
where only one of these measures or raw read counts 
alone was used. Our method highlights the importance 
of sequencing negative controls, which can help remove 
contaminants, particularly those present in the reagents. 
Using this approach, our results suggest capture panels, 
such as the Twist CVRP, provide the best sensitivity and 
specificity for routine detection of viruses, albeit with 
the caveats discussed above. Importantly, we show that 

the use of suitable taxonomic classifiers or appropriate 
thresholds based on comparison with the negative con-
trol and the proportion of the total reads assigned to that 
species overcomes the low specificity that has previously 
been reported for the Twist CVRP when used with its 
recommended One Codex platform (Fig. 3) [21].

Our study demonstrates the need for better control 
materials across platforms. Negative controls should 
resemble the true samples as much as possible, particu-
larly in terms of human nucleic acid content, and blank 
extraction controls may be insufficient. Further work 
is needed to identify suitable internal controls, which 
should be viruses that cannot easily be mistaken for clini-
cally relevant species. DNA internal controls should be 
reliably detected with ONT and correctly classified bio-
informatically. For targeted approaches, the controls 
chosen should be targeted by the panel to allow uniform 
detection in all the samples tested, facilitating result 
interpretation.

Host transcriptomic data obtained from untargeted 
Illumina sequencing has been shown to help distinguish 
between bacterial and viral infection and infectious and 
non-infectious causes of disease by identifying the host 
immune pathways that are upregulated which could help 
to confirm negative or inconclusive results from pathogen 
identification [50, 51]. The Twist CVRP and ONT show 
relatively good agreement with the untargeted Illumina 
protocol’s estimates of human gene expression, although 
ONT fails to detect some low-abundance genes (Fig. 4). 
It is therefore likely that useful transcriptomic informa-
tion may be obtained from any of the protocols, provid-
ing a method that preserves human RNA is selected. The 
analysis remains possible with the Twist CVRP because 
non-targeted DNA/RNA sequences are retained in an 
unbiased way, even though the targeted viral sequences 
are enriched. Since commercial total brain RNA with no 
particular infection was used to generate the mock sam-
ples for this analysis, it was only appropriate to compare 
quantification of transcripts genome-wide. Further work 
is now required to validate the performance of ONT and 
targeted Illumina sequencing in clinical samples, par-
ticularly their ability to detect the expression of immune 
pathways.

Both turnaround times and cost are critical param-
eters when considering the introduction of new diagnos-
tic methods. Targeted sequencing with the Twist CVRP 
was the only viable method we tested for detection of low 
viral loads (60 gc/ml), since increasing the depth of untar-
geted sequencing by the orders of magnitude required to 
match the sensitivity of the Twist CVRP is too expensive 
and time-consuming to be practical. If an untargeted 
approach is required, perhaps to test for bacteria and 
other microbes as well as viruses in a single test, ONT 
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can provide rapid results in cases where sample numbers 
are low and viral loads are high. In most other circum-
stances, Illumina is currently the quicker and cheaper 
way to produce the volumes of data required, particularly 
as higher volumes of ONT data are required to give the 
same level of sensitivity. Illumina sequencing may also 
allow more reliable quantification of human gene expres-
sion, making it easier to rule out infection when no path-
ogens are found.

Our study has several limitations. Since we used com-
mercially available purified nucleic acid standards, we 
do not compare extraction protocols, which have been 
shown to have a large impact on the results of metagen-
omics [120, 121]. Different approaches have been used to 
reduce host content in samples in efforts to improve sen-
sitivity. Pre-purification methods like filtration and cen-
trifugation can efficiently remove human cells. However, 
they can significantly reduce sensitivity for cell-associ-
ated viruses [122–124]. Alternatively, differential lysis-
based methods, which rely on selectively lysing human 
cells either using mechanical methods such as bead-
beating [49] or with saponin [125], have been used to 
deplete human DNA and RNA prior to ONT sequencing. 
However, these approaches can lead to biases in organ-
isms detected and reduce detection of cell-free DNA, 
which may arise from organisms killed by the immune 
system or antibiotics [54]. Additionally, any protocol that 
removes host material during or before the lysis steps, 
may lead to reduced sensitivity for integrated and intra-
cellular viruses [54, 55]. These approaches could also be 
used prior to Illumina sequencing, although they will 
prevent host transcriptomic analysis.

Furthermore, we focused only on viruses, while the 
key advantage of metagenomics is its ability to detect all 
organisms. Although several studies have shown similar 
sensitivity to bacteria for Illumina and ONT sequencing 
on mock communities [29, 30], further work is needed 
to compare commonly used methods such as Illumina 
sequencing of cell-free DNA and ONT sequencing with 
differential lysis for detection of bacteria and eukaryotic 
microbes. We focus only on sterile site samples with high 
host content such as tissue and whole blood. We expect 
that different laboratory and bioinformatics methods will 
also be appropriate for non-sterile sites such as respira-
tory samples and for samples with low biomass such as 
plasma and CSF.

Conclusions
Different metagenomics platforms perform best in terms 
of sensitivity, specificity, and turnaround times, with no 
single test currently being optimal in all clinical contexts. 
Where sensitivity for viral detection is less of a considera-
tion, as might be the case for respiratory samples from 

severely ill patients with pneumonia, ONT is faster and 
cheaper. Target capture approaches with Illumina may be 
preferred for samples with low microbial diversity, where 
high sensitivity for both DNA and RNA viruses is required 
to reliably confirm or exclude infection, for example in 
immunosuppressed patients with fever or encephalitis, 
blood products and where high consequence pathogens 
are suspected. Development of rapid, commercially avail-
able targeted methods for a wide range of pathogens for 
both long- and short-read platforms, using methods that 
preserve the host transcriptome and also allow rapid 
untargeted metagenomics where required for pathogen 
discovery, will bring us closer to a diagnostic test that can 
detect any pathogen in an actionable timeframe and that 
could revolutionize clinical microbiology.
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