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Abstract 

Background Congenital heart disease (CHD) is the most common congenital anomaly. Almost 90% of isolated cases 
have an unexplained genetic etiology after clinical testing. Non‑canonical splice variants that disrupt mRNA splic‑
ing through the loss or creation of exon boundaries are not routinely captured and/or evaluated by standard clini‑
cal genetic tests. Recent computational algorithms such as SpliceAI have shown an ability to predict such variants, 
but are not specific to cardiac‑expressed genes and transcriptional isoforms.

Methods We used genome sequencing (GS) (n = 1101 CHD probands) and myocardial RNA‑Sequencing (RNA‑Seq) 
(n = 154 CHD and n = 43 cardiomyopathy probands) to identify and validate splice disrupting variants, and to develop 
a heart‑specific model for canonical and non‑canonical splice variants that can be applied to patients with CHD 
and cardiomyopathy. Two thousand five hundred seventy GS samples from the Medical Genome Reference Bank 
were analyzed as healthy controls.

Results Of 8583 rare DNA splice‑disrupting variants initially identified using SpliceAI, 100 were associated 
with altered splice junctions in the corresponding patient myocardium affecting 95 genes. Using strength of myo‑
cardial gene expression and genome‑wide DNA variant features that were confirmed to affect splicing in myo‑
cardial RNA, we trained a machine learning model for predicting cardiac‑specific splice‑disrupting variants (AUC 
0.86 on internal validation). In a validation set of 48 CHD probands, the cardiac‑specific model outperformed 
a SpliceAI model alone (AUC 0.94 vs 0.67 respectively). Application of this model to an additional 947 CHD probands 
with only GS data identified 1% patients with canonical and 11% patients with non‑canonical splice‑disrupting vari‑
ants in CHD genes. Forty‑nine percent of predicted splice‑disrupting variants were intronic and > 10 bp from existing 
splice junctions. The burden of high‑confidence splice‑disrupting variants in CHD genes was 1.28‑fold higher in CHD 
cases compared with healthy controls.

Conclusions A new cardiac‑specific in silico model was developed using complementary GS and RNA‑Seq data 
that improved genetic yield by identifying a significant burden of non‑canonical splice variants associated with CHD 
that would not be detectable through panel or exome sequencing.
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Background
Congenital heart disease (CHD) is the most common 
congenital anomaly, occurring in ~ 1% of live births [1]. 
Although there is a strong familial and genetic contribu-
tion to CHD [2], ~ 90% of sporadic cases with isolated 
CHD have an unexplained genetic etiology upon conven-
tional clinical testing that is typically limited to exons of 
known disease-associated genes [3–5]. This suggests that 
additional mechanisms and variant types may be contrib-
uting to the disease [6, 7].

Normal gene function can be disrupted through a vari-
ety of mechanisms, including missense variants, prema-
ture stop codons, insertions, deletions, or altered RNA 
splicing. Splice-disruptions may include the loss of wild-
type splice junctions and/or the gain of “cryptic” splice 
sites that create novel exon boundaries, ultimately result-
ing in disruptions to the normal pattern of RNA splicing 
which in turn lead to abnormal protein isoforms. Splice-
disrupting variants can occur near existing canonical 
splice sites, in exons, or in deeply intronic regions.

While canonical splice site variants can be identified 
using conventional sequencing workflows, splice-dis-
rupting variants outside of these sites are more difficult 
to identify with high confidence. Such non-canonical 
splice-disrupting variants are reportedly pathogenic in 
up to 15% of patients with rare genetic disorders [8] but 
cannot routinely be evaluated by conventional genetic 
testing. Recent reports have identified non-canonical 
splice-disrupting variants in CHD and other rare dis-
eases primarily using in silico predictions in exome and 
genome sequencing data, followed by in vitro validation 
of their effect using minigene assays [9–11]. However, 
exome sequencing is unable to detect deeply intronic 
splice-disrupting variants, and minigene assays alone 
have technical limitations as a patient-relevant func-
tional assay. Further, current models are not specifically 
designed to identify cardiac-specific splice-disrupting 
variants expressed in the human heart. The use of patient 
myocardium to identify and validate aberrant splic-
ing events has a strong potential to address this gap 
[12]. Recent American College of Medical Genetics and 
Genomics and the Association for Molecular Pathology 
(ACMG/AMP) framework emphasizes that the effect of 
splice-disrupting variants can be more accurately vali-
dated in patient-derived tissue samples [13].

Here we used genome sequencing (GS) and myocar-
dial RNA-sequencing (RNA-Seq) to identify and validate 
cardiac-specific splice disrupting variants and to develop 
a heart-specific model for canonical and non-canonical 
splice variants, which can be applied to patients with 
CHD. These included patients with two of the most 
common forms of cyanotic CHD, i.e., tetralogy of Fal-
lot (TOF) and dextro-transposition of the great arteries 

(TGA). In addition to identifying canonical splice-dis-
rupting variants in known CHD-related genes in 1% 
cases, this approach identified putatively damaging non-
canonical splice-disrupting variants in 11% of isolated 
CHD, with deeply intronic variants representing 53% of 
non-canonical splice-disrupting variants in CHD genes. 
GS was critical for the identification of variants that 
would not be captured by routine clinical genetic tests 
including exome sequencing [14, 15], while cardiac RNA-
Seq allowed for high specificity in the interpretation of 
splice-disrupting effects in the heart. This splice-disrupt-
ing variant discovery framework, coupled with a case–
control burden analysis, provides a practical strategy for 
increasing the yield of pathogenic splice-disrupting vari-
ants in known CHD genes.

Methods
Study cohorts
Congenital heart disease (CHD) cases
The overall cohort included 1101 probands, of which 
875 had  tetralogy of Fallot  (TOF) and 226 had  dextro-
transposition of the great arteries (TGA) (Table S1) [16]. 
Among these cases, 505 TOF and 226 TGA were enrolled 
through the Heart Centre Biobank Registry at the Hos-
pital for Sick Children (Ontario, Canada), 245 TOF were 
enrolled through the Kids Heart BioBank at the Heart 
Centre for Children, The Children’s Hospital at West-
mead (Sydney, Australia), and 125 TOF were enrolled 
through the CONCOR registry at the Amsterdam Medi-
cal Center (Netherlands).

CHD patients (n = 154) with both DNA for GS and 
myocardium for RNA-sequencing (RNA-Seq) were 
divided into a training set for model development, 
i.e., Discovery cohort (n = 106) and a set for testing, i.e., 
Validation cohort (n = 48). A second validation cohort 
included 43 unrelated cardiomyopathy probands from 
Ontario [6]. The Extension cohort for model application 
included 947 unrelated TOF (n = 721) and TGA (n = 226) 
probands with GS but without myocardium available 
for RNA-Seq. Two hundred thirty two family members 
with GS were additionally used for variant segregation 
analysis.

Collection and use of biospecimens through the reg-
istries was approved by local or central Research Eth-
ics Boards and written informed consent was obtained 
from all patients and/or their parents/legal guardians and 
study protocols adhered to the Declaration of Helsinki.

Controls
The control cohort included 2570 genome sequencing 
(GS) data from the Medical Genome Reference Bank 
(MGRB) [17]. MGRB variants were obtained from the 
original publication, after alignment to GRCh37 and 
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variant calling for all samples. Control cohort character-
istics are provided in Table S1.

Genome sequencing processing, alignment, and variant 
calling
GS of CHD and cardiomyopathy cases was performed 
on high-quality DNA from blood or saliva of probands 
and their family members using the Illumina HiSeq X or 
NovaSeq platform by The Centre for Applied Genom-
ics (TCAG, The Hospital for Sick Children, Toronto), or 
Macrogen (South Korea). Illumina TruSeq DNA PCR-
Free kits were used for library preparation. GS samples 
from CHD probands were sequenced to a median aver-
age depth of 30.9X (range 12.9–46.6X). In order to iden-
tify putatively pathogenic and other DNA variants of 
interest, GS samples were further processed as follows:

For all Discovery cohort, Extension cohort, and car-
diomyopathy Validation cohort GS samples, paired-end 
raw reads were trimmed and cleaned by trimmomatic 
v.0.32 [18], then mapped to human reference genome 
hg38 using bwa v.0.7.15 [19]. The reference genome 
sequence and training datasets were downloaded from 
the Genome Analysis Toolkit (GATK) resource bundle 
(ftp:// ftp. broad insti tute. org/ bundle) [20]. Mapped reads 
were realigned and calibrated by base quality score recal-
ibration tools (GATK v4.1.2.0). HaplotypeCaller was used 
to generate genotype Variant Call Format (gVCF) files for 
each sample, then gVCF files for batches of samples were 
combined and joint-called by using CombineGVCFs and 
GenotypeGVCFs tools. In order to filter out probable 
artifacts in the calls, single-nucleotide variants (SNVs) 
and insertion-deletions (indels) were recalibrated sepa-
rately by variant quality score recalibration (VQSR) tools, 
and variants that passed VQSR truth sensitivity level 99.5 
for SNPs and level 99.0 for indels were retained. The Vari-
antFiltration tool was used to mark out the low Genotype 
Quality (GQ) SNV and indel sites whose GQ values were 
lower than 20 and read depths were lower than 10. Copy 
number variants (CNVs) were called as described in [21], 
using ERDS [22] and CNVnator [23]. Structural variants 
(SVs) were called using Manta [24] and Delly [25]. Sam-
ple ancestry and relatedness among family members was 
estimated and verified using somalier v0.2.11 [26] with 
default parameters.

All CHD Validation cohort GS samples were processed 
using DRAGEN Bio-IT Platform v3.8.4 [27]. Paired-end 
reads were aligned to hg38 human genome reference 
(hg38-alt-aware-graph). Small variants (SNV and Indel), 
CNVs, and SVs were called according to the above DRA-
GEN workflow. Files in standard output format were 
generated, with crams for alignment and vcfs for small 
variants, CNVs, and SVs. Small variant calls were anno-
tated using an Annovar-based workflow and the CNVs 

and SVs were annotated using custom scripts. Sample 
ancestry and relatedness among family members was 
estimated and verified using somalier v0.2.11 [26] with 
default parameters.

GS data for the MGRB control cohort were generated 
as previously reported [17]. Briefly, DNA was extracted 
from blood and Illumina TruSeq Nano DNA High 
Throughput kits were used for library preparation. Reads 
were sequenced on Illumina HiSeq X, then aligned to the 
1000 Genomes Phase 3 decoyed version of build 37 of the 
human genome (GRCh37) using GATK best practices. 
GATK HaplotypeCaller was used to generate gVCFs for 
SNVs and indels, then joint-called in a single batch using 
GATK GenotypeGVCFs. All SNVs and indels were con-
verted to hg38 using LiftoverVcf [28].

Identification and interpretation of pathogenic 
protein‑coding variants
Variant identification
To identify putatively disease-causing variants in cases, 
we first searched for SNVs, indels, and CNVs that were 
classified as pathogenic or likely pathogenic according to 
the ACMG/AMP criteria [29, 30]. SNVs and indels were 
first annotated for pathogenicity using InterVar v2.0.2 
[31]. Variants with internal Human Gene Mutation Data-
base (HGMD) Pro 2019 [32] classifications of Disease-
associated polymorphism with supporting functional 
evidence (DFP) were assigned a PS3 score, while variants 
with an internal classification of disease-associated poly-
morphism (DP) or disease causing mutation (DM) were 
assigned a PP5 score. Variants in CHD patients were then 
mapped to CHD genes.

Variant mapping to genes
CHD gene list: Tier 1 CHD genes were selected based on 
a moderate, strong, or definitive association with CHD 
according to ClinGen criteria[33]. We further annotated 
and categorized additional CHD genes using (i) pub-
lished literature; (ii) existing databases including Online 
Mendelian Inheritance in Man (OMIM) [34], Clinical 
Genome Resource (ClinGen) [35], and CHDgene [36]; 
(iii) inclusion in clinical gene panels; and (iv) expert 
curation. Genes with a limited evidence for association 
with CHD were classified as Tier 2 genes. This yielded 
99 Tier 1 CHD genes with moderate, strong, or defini-
tive associations with CHD according to ClinGen crite-
ria (17 isolated CHD genes, 82 syndromic CHD genes), 
and 626 Tier 2 CHD genes with limited association 
with CHD. Canonical transcriptional isoforms were 
annotated using Matched Annotation from NCBI and 
EMBL-EBI (MANE) [37]. Gene constraint annotations 
were obtained from the Genome Aggregation Database 
(gnomAD) (v2) [38] (Table  S2). Cardiomyopathy gene 

ftp://ftp.broadinstitute.org/bundle
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list: Variants in cardiomyopathy patients in the valida-
tion cohort were mapped to Tier 1 and 2 cardiomyopathy 
genes that were annotated and classified using ClinGen 
criteria [35] as previously reported by us [6].

SNV and indel classification for pathogenicity
SNVs and indels classified by InterVar as “Pathogenic” 
or “Likely pathogenic” and occurring in Tier 1 or Tier 2 
genes were subsequently manually reviewed. Gene inher-
itance and associated disease conditions were obtained 
from OMIM [34]. Variants in recessive genes were 
required to either have a homozygous or bi-allelic geno-
type. When full trio GS was available, parental data were 
used to determine phasing. Otherwise, when variants 
were in close proximity, DNA reads were searched to 
determine if variants occurred on different alleles. Ratios 
of observed/expected (o/e) loss-of-function (LoF) or mis-
sense variants for affected genes were obtained from the 
Genome Aggregation Database (gnomAD) v2.1.1 [38]. 
Population variant allele frequencies were obtained from 
gnomAD v3.1.2. Where possible, variant segregation 
among family members was considered. Variants in genes 
for dominant disorders had allele frequencies < 0.01% for 
PM2, between 1 and 5% for BS1, and > 5% for BA1. Vari-
ants in genes for recessive disorders had allele frequen-
cies < 0.1% for PM2, between 2 and 10% for BS1, > 10% 
for BA1. The UCSC Genome Browser was used to inves-
tigate low mappability and RepeatMasker annotations 
[39]. Variant reads were manually inspected using the 
Integrative Genomics Viewer (IGV) [40] to exclude any 
likely false positive variants with insufficient evidence or 
insufficient read coverage, consistent with recommended 
best practices for reducing false-positive variant calls in 
clinical sequencing [41, 42]. Variants with a heterozygous 
genotype call and a variant allele fraction of less than 33% 
or greater than 66%, variants with < 20X coverage, and 
variants with many mismatched bases in nearby reads 
were excluded. ClinVar [43, 44] was used to search for 
any pre-existing classifications or other variants occur-
ring at the same nucleotide or amino acid position.

CNV classification for pathogenicity
For deletions and duplications identified by CNV and/
or SV callers, automatic filters were applied and vari-
ants were retained if they met the following criteria: (i) 
were absent from or present at 1% frequency or less in a 
database of CNVs/SVs, generated from Illumina HiSeq X 
sequencing data of parents of children with autism spec-
trum disorder at TCAG [45] and called using the same 
methodology, (ii) variants that overlapped with an exonic 
region, and (iii) overlapped with a gene in the CHD gene 
list (with the exception of de novo variants which were 

assessed even if they did not overlap a CHD gene). To 
reduce the number of false-positive CNVs, only variants 
called by both ERDS and CNVnator were retained. Each 
variant that passed these automatic filters was queried 
through the DECIPHER browser [46]. Variants that over-
lapped with benign/population variants as seen in at least 
10 individuals in DGV [47] or gnomAD structural vari-
ants [48] were not further considered, depending on the 
suspected mode of inheritance. The remaining variants 
were visualized using either IGV [40] or Samplot [49], 
depending on their size and complexity, to confirm their 
authenticity.

To visually determine if a variant was a true positive, 
the read depth, insert size, and orientation of paired 
reads in IGV or Samplot were assessed. Variants of 
interest were required to be associated with a notice-
able drop (for deletions) and increase (for duplications) 
in coverage compared to the surrounding region to pass 
visual inspection. Coloring alignments by insert size in 
IGV was used to recognize differences in expected ver-
sus observed insert size which was helpful in detecting 
deletions and insertions. Orientation of paired reads was 
used as evidence to support structural variants such as 
inversions. True inversions were accounted for by the 
presence of cyan (forward) and purple (reverse) reads on 
both breakpoints.

Variants that passed the above inspections proceeded 
to manual ACMG/AMP classification [30]. Intragenic 
CNVs/SVs were submitted to AutoPVS1 [50], to auto-
matically assign a PVS1 criterion for haploinsufficient 
genes (i.e., genes with a probability of being loss-of-func-
tion intolerant (pLI) score greater than or equal to 0.9, a 
ClinGen dosage curation indicating haploinsufficiency, 
and/or literature evidence supporting a loss-of-function 
pathogenic mechanism). Complex variants (called as dual 
DUP-DEL, DUP-DEL-INV, etc.) were only considered 
if there was phenotype support for the genes harboring 
them. Literature and databases such as OMIM and Clin-
Var were surveyed to identify similar CNVs/SVs reported 
in individuals with the phenotype of interest. Parental 
genome read alignments, if available, were visualized 
together with the proband, when determining variant 
inheritance (i.e., whether the variant was de novo, paren-
tally inherited, or unknown), for the aforementioned 
ACMG/AMP guidelines.

All putative pathogenic/likely pathogenic protein-cod-
ing variants that were identified in GS data, but which 
had not been previously reported upon clinical genetic 
testing, were evaluated by our return of results commit-
tee [51] and were subsequently re-confirmed using clini-
cal genetic testing.
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Identification of putatively splice‑disrupting variants in GS 
data
Putatively splice-disrupting SNVs and indels were iden-
tified using SpliceAI [52], the tool recommended by the 
ClinGen Sequence Variant Interpretation Subgroup 
[13]. Exome annotations and splice junctions were 
similarly obtained from SpliceAI [52]. Pre-computed 
masked SpliceAI delta scores were utilized where possi-
ble (https:// bases pace. illum ina. com/ proje cts/ 66029 966); 
otherwise, SpliceAI (v1.3.1) was used to generate masked 
delta scores with a maximum distance of 100 bp between 
the variant and gained/lost splice site. SNVs and indels 
with a “PASS” flag were extracted using bcftools v1.9 [53]. 
Variants with a SpliceAI delta score ≥ 0.2 were retained 
and subsequently annotated with the predicted effect 
(VEP v102 [54]), reported pathogenicity (ClinVar 2022–
04-03 and HGMD Pro 2019), control allele frequency 
(gnomAD v2.1.1 and v3.1.2), gene constraint (gnomAD 
v2.1.1), genomic low complexity regions (https:// github. 
com/ lh3), genomic RepeatMasker regions (https:// www. 
repea tmask er. org), and wild-type splicing branchpoints 
[55, 56]. Select variants were manually annotated with 
CADD-Splice PHRED scores [57], in order to assess the 
correlation between those scores and those derived by 
SpliceAI. Ensembl RNA transcripts were further anno-
tated as canonical by MANE v1.0 (MANE Select or 
MANE Plus Clinical) [37]. These variants were then ana-
lyzed in corresponding myocardial RNA-Seq data from 
the same patient to determine if they were associated 
with splicing events.

Identification of aberrant splicing events in myocardial 
RNA‑Seq
Myocardial RNA‑Seq
To detect aberrant splicing events at the tissue level, 
RNA-Seq was performed on ventricular myocardial sam-
ples available from 154 unrelated TOF probands and 
43 unrelated cardiomyopathy probands from SickKids 
Heart Centre Biobank. In patients who had consented to 
biobanking, myocardium was obtained from leftover tis-
sue at the time of cardiac surgery and was immediately 
snap-frozen in the operating room and stored in liquid 
nitrogen. Among CHD cases, the median age at sur-
gery was 0.5 (range 0.1–14.3) years. None of the patients 
received inhibitors of nonsense-mediated decay prior 
to tissue resection. Total RNA was extracted from myo-
cardial samples using the RNeasy Mini kit (QIAGEN, 
Canada). RNA samples were sent to TCAG (The Hospital 
for Sick Children, Toronto) for ribosomal RNA depletion 
and library preparation using the Illumina Stranded Total 
RNA Prep Ligation with Ribo-Zero Plus, and sequenced 
using Illumina HiSeq 2500 or NovaSeq platforms to 
generate paired end reads of 150 bases. Raw sequencing 

reads were trimmed by Trimmomatic v0.36 [18] for qual-
ity trimming and adapter clipping. The remaining reads 
were aligned to the GRCh37 reference genome (1000 
Genomes Project reference genome, hs37d5) using STAR 
(v2.6.1.c) [58] with basic two-pass mode and Ensembl 
GTF (release version 87) [59] was used for the annota-
tion. Gene and transcript expression level quantification 
were prepared using RSEM (v1.2.22) [60].

Identification of aberrant splicing events in myocardial 
RNA‑Seq data
Aberrant splicing events were identified in RNA-Seq 
data using FRASER v1.8.1 [61]. Introns with unreliable 
detection were filtered out using the “filterExpression-
AndVariability” method with default parameters except 
for requiring a minimal read count of 15 in at least one 
sample. An “AE” beta-binomial denoising autoencoder 
was used to fit the splicing models, with hyperparam-
eters ψ5 = 14, ψ3 = 11, and θ = 5 for the Discovery cohort, 
ψ5 = 6, ψ3 = 5, and θ = 2 for the CHD Validation cohort, 
and ψ5 = 5, ψ3 = 4, and θ = 2 for the cardiomyopathy Vali-
dation cohort. Cohorts utilized distinct hyperparam-
eters due to their different sizes and properties. Optimal 
autoencoder hyperparameters for each cohort were 
determined using the “optimHyperParams” method. 
Splice events were annotated using biomaRt as part of 
the “annotateRanges” method [62]. Observed events 
were considered to be significant with a false discov-
ery rate < 0.2, an absolute Z-score ≥ 1, an absolute Δψ/θ 
score ≥ 0.2, and ψ/θ − Δψ/θ ≤ 0.1 or ≥ 0.9. Events anno-
tated as not mapping to a gene or to multiple genes were 
excluded. All reported splicing events in CHD genes 
were visually inspected. A large number of RNA splicing 
outliers annotated as being in MYH6 or between MYH6 
and MYH7 were excluded, despite MYH6 being a Tier 1 
autosomal dominant CHD gene. MYH6 and MYH7 are 
adjacent in the genome, and these two genes share highly 
homologous exons. Visual inspection of the anomalous 
RNA-Seq data demonstrated that reads were often being 
aligned between homologous MYH6-MYH7 exon junc-
tions, rather than being true splicing outliers, and were 
therefore excluded as likely false-positives.

Identification of gene expression outliers in myocardial 
RNA‑Seq data
As aberrant RNA splicing may result in nonsense-medi-
ated decay, gene expression outliers in RNA-Seq data 
were identified using OUTRIDER (v1.8.0) [63]. OUT-
RIDER was run on the Discovery (TOF), CHD Valida-
tion, and cardiomyopathy Validation cohorts separately. 
Low-expressed genes were first filtered out by only 
selecting genes with at least 10 read counts in more than 
50% of the input samples in each cohort. Before fitting 

https://basespace.illumina.com/projects/66029966
https://github.com/lh3
https://github.com/lh3
https://www.repeatmasker.org
https://www.repeatmasker.org
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the input cohort to the OUTRIDER model, the optimal 
encoding dimension "q" was first determined by using 
the "findEncodingDim" method. The optimal encoding 
dimension was estimated to be 16 for the CHD Discov-
ery cohort, 8 for the CHD Validation cohort, and 8 for 
the cardiomyopathy Validation cohort. To further iden-
tify whether variants were associated with reduced RNA 
expression, we used the OUTRIDER Z-scores calculated 
across each gene.

Generation and validation of random forest models 
for selecting heart‑specific splice‑disrupting variants
To identify true-positive splice disrupting variants, 
genome-wide variants were classified by whether or not 
they were associated with confirmed splicing events in 
the myocardium by searching for matching significant 
events within ± 100  bp of altered splicing boundaries 
called by FRASER. Variants associated with significantly 
altered outlier splicing in the same gene, but occurring 
outside of these boundaries were deemed indetermi-
nate and were excluded from model training and valida-
tion. To test for the enrichment of univariable features 
that associate with variants that validated by FRASER, 
we used two-sided Mann–Whitney U tests for continu-
ous variables and two-sided Fisher’s exact tests for binary 
variables. The R package randomForest (v4.7–1.1) [64] 
was used with default parameters to create and test four 
machine learning models for the prediction of splice-
disrupting variants. Model 1 used only SpliceAI Δ scores 
as input; model 2 included DNA variant features associ-
ated with tissue splicing events, i.e., the variant distance 
to the nearest annotated splice junction, the variant 
type (SNV or indel), and whether the variant occurred 
in a branchpoint region, low complexity region, and/
or repetitive region, while excluding SpliceAI Δ scores; 
model 3 included all of the DNA variant features from 
model 2 in addition to the corresponding median gene 
expression TPM value in RNA-Seq data, and model 4 
included the maximum SpliceAI Δ score as well as addi-
tional DNA variant features and gene expression TPM 
values. Variants with missing feature values were omitted 
by the models (i.e., missing values were not imputed). To 
account for the imbalance in the training class frequen-
cies, training models were either inversely weighted by 
the corresponding number of observations in the train-
ing data (Weighted models), or used Synthetic Minority 
Over-sampling Technique (SMOTE models) to artificially 
create new training inputs of the minority positive (vari-
ant resulting in confirmed splice-disruption) class [65]. 
All models were internally evaluated for performance 
by area under the curve (AUC), sensitivity, specificity, 
odds ratios, and Fisher’s exact test p-values using internal 
five-fold cross-validation. To reduce bias in odds ratios 

calculations and to avoid “zero cells” in the contingency 
tables, 0.5 was added to each observed cell frequency 
(Haldane-Anscombe correction). Bias-variance–covari-
ance decomposition analysis was performed on binary 
classifications using the R library “randomUniformFor-
est” (v1.1.6). The models were subsequently retrained 
on the entire Discovery cohort prior to its application to 
additional cohorts.

Validation of model performance in independent CHD 
and cardiomyopathy cohorts
In order to independently assess the performance of ran-
dom forest models for selecting splice-disrupting vari-
ants, all models were applied to two independent cohorts 
of CHD (n = 48) and cardiomyopathy (n = 43) cases. 
Putative splice-disrupting variants in these samples were 
identified and annotated as described above. Variants 
were further limited to those found in only one sample 
in each cohort (i.e., an internal minor allele frequency 
(MAF) < 0.03), as only internally rare variants were 
expected to be associated with outlier splicing events. 
Each variant was annotated by whether or not it was 
associated with a confirmed splicing event in the myocar-
dium as detected by FRASER, and whether or not it was 
selected by each model. Model performance was evalu-
ated within each validation cohort by AUC, sensitivity, 
specificity, odds ratios, and Fisher’s exact test p-values. In 
addition, in order to determine whether putative splice-
disrupting variants led to nonsense-mediated decay, gene 
expression Z-score values were obtained using OUT-
RIDER for each associated sample harboring a variant in 
the gene. The values were stratified for variants selected 
by each model versus those rejected by the model, and 
then compared using two-sided t-tests. The weighted 
model 4, which validated as having optimal performance, 
was then applied to the remainder of the CHD cohort 
to identify additional high-confidence splice-disrupting 
variants.

Identification of high‑confidence splice‑disrupting variants 
in extended CHD cases and controls using the optimal 
random forest model
The optimal random forest weighted model 4 was 
applied to all GS data from the Extension and Control 
cohorts in order to identify high-confidence splice-
disrupting variants. Variants were further filtered to 
include only those rare in gnomAD control popula-
tions [38] (gnomAD v2 allele frequency < 0.0001, and 
gnomAD v3 PopMax allele frequency at 95% confi-
dence < 0.0001). Both gnomAD v2 and v3 statistics were 
used in order to account for differences in the reference 
genomes used to align the Extension (hg38) and Con-
trol (GRCh37) cohorts). Variants in CHD genes in the 



Page 7 of 24Lesurf et al. Genome Medicine          (2024) 16:119  

Extension cohort were subsequently visually inspected. 
Six putative splice-disrupting indels in SMAD4 found 
in two TOF probands were subsequently excluded. The 
DNA reads associated with these variants had poor 
alignments upon visual inspection, and further inves-
tigation identified a report of a rare pseudogene con-
taining homologous SMAD4 exons, which is found 
in < 1% of the population [66], suggesting that these 
DNA variants were false positives. Alignment files for 
control samples were not available, and thus variants 
in this cohort were not visually confirmed or otherwise 
excluded.

Gene set enrichment analysis
To identify which phenotypic abnormalities in human 
disease were enriched for splice-disrupting variants, 
enrichment analysis of gene sets harboring 133 high-
confidence splice-disrupting variants in CHD genes 
among all CHD probands (n = 1101) was performed 
using g:Profiler core tool g:GOSt [67, 68]. Phenotypic 
abnormality gene sets were obtained from the Human 
Phenotype Ontology [69]. We limited the search to a 
custom background gene set containing all genes anno-
tated by  Matched Annotation from NCBI and  EMBL-
EBI  (MANE) [37], that were expressed in the RNA-Seq 
profiles derived from patient myocardium in the Discov-
ery cohort (median TPM ≥ 1), and that had at least one 
annotation in Human Phenotype Ontology gene sets. 
Genes were input as symbols derived from SpliceAI 
annotations. An adjusted p-value threshold of 0.01 was 
used to determine significance of all gene sets. Adjusted 
p-values were calculated using the g:SCS (Set Counts and 
Sizes) method which considers dependencies between 
multiple tests by taking into account the overlap in func-
tional terms [67, 68].

Case–control burden analyses
To directly compare the burden of short variants in cases 
and controls, we first determined whether technical dif-
ferences between cases and controls (e.g., sequencing 
facility, GS platform, reference genome version, variant 
detection workflows) contribute to a systematically dif-
ferent burden of synonymous variants genome-wide. Our 
strategy to filter for rare synonymous variants in samples 
was similar to how we had identified high-confidence 
splice-disrupting variants. We limited to only SNVs 
and indels with a “PASS” flag, and then annotated vari-
ants using VEP v102 [54]. Variants were filtered to only 
include those with an internal minor allele frequency 
(MAF) < 0.01, gnomAD v2 allele frequency < 0.0001, 
and gnomAD v3 PopMax allele frequency < 0.0001 [38]. 
Both gnomAD v2 and v3 statistics were used in order to 
account for differences in the reference genomes used 

to align the Extension (hg38) and Control (GRCh37) 
cohorts, and internal allele frequencies were used to 
further reduce possible false-positive variant calls. We 
calculated for each sample the number of rare variants 
predicted to result in a synonymous substitution. Pro-
tein-coding regions of the genome were filtered using 
the UCSC Table Browser [70] for assembly hg38 with the 
GENCODE v44 track [71], and limited to genes in auto-
somal chromosomes 1–22. Synonymous variants were 
further required to be annotated as such in a MANE 
canonical transcript [37]. The burden of synonymous 
variants between cases and controls was derived using a 
Mann–Whitney U test to compare the continuous allele 
frequency of variants across samples. For burden analysis 
of splice-disrupting variants between cases and controls, 
we identified the set of rare SNVs and indels across all 
samples that were selected by the optimal machine learn-
ing model as being high-confidence splice-disrupting 
variants. For case–control burden of splice-disrupting 
variants, p-values were calculated using a two-sided Fish-
er’s exact test, comparing the number of samples in each 
cohort that harbored at least one high-confidence splice-
disrupting variant versus those that harbored none. To 
reduce bias in odds ratios calculations and to avoid “zero 
cells” in the contingency tables, 0.5 was added to each 
observed cell frequency (Haldane-Anscombe correction).

Data analyses and visualizations
All aforementioned statistical analyses, as well as data 
visualizations, were carried out using the R Programming 
Environment v4.1.2. Graphical data plots were created 
using the ggplot2 [72] and pROC [73] libraries.

Results
Study cohort
The overall study included 1101 CHD probands, of which 
875 had TOF and 226 had TGA (Table S1) [16]. Probands 
with a clinically and/or genetically diagnosed syndrome 
were excluded. However, those who had extra-cardiac 
features without a syndromic diagnosis, i.e., unexplained 
genetic etiology at the time of enrolment were retained 
(11% of the cohort). Cardinal syndromic features may not 
always be evident in infancy and therefore “syndromes” 
cannot be excluded based on clinical phenotype alone 
in young children. CHD probands were subdivided into 
a Discovery cohort (n = 106), a CHD validation cohort of 
48 unrelated TOF probands (n = 48) and a second vali-
dation cohort of cardiomyopathy probands (n = 43), all 
of whom had both GS and myocardial RNA-seq. CHD 
probands (721 TOF and 226 TGA) with only GS data 
constituted an Extension cohort (n = 947). Eighteen per-
cent of probands in the Discovery, Validation, and Exten-
sion cohorts received one or more forms of prior clinical 
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genetic testing, including cytogenetic, microarray, sin-
gle-gene polymerase chain reaction, gene panel, and/
or exome sequencing, of which 2% harbored pathogenic 
or likely pathogenic protein-coding variants (accounting 
for < 1% of the entire cohort − < 1% TOF and 0% TGA). 
Two thousand five hundred seventy GS samples from the 
Medical Genome Reference Bank [17] were obtained for 
use as a Control cohort.

Protein‑coding variants in CHD genes
We first analyzed GS data to identify additional patho-
genic or likely pathogenic variants in CHD-associated 
genes (Table  S2). ACMG/AMP criteria [29, 30] were 
applied to protein-coding (non-splicing) SNVs, indels, 
and CNVs in CHD genes, yielding pathogenic variants in 
4% of these probands (4% TOF and 2% TGA) (Table S1).

Discovery of splice‑disrupting variants affecting 
cardiac‑expressed genes
We explored GS data in the Discovery cohort in which 
both GS and myocardial RNA-Seq data were available 
(n = 106) for DNA SNVs and indels that were predicted 
with high sensitivity using SpliceAI [52] to result in the 
loss of a wild-type splice junction and/or the gain of a 
novel cryptic splice site. A SpliceAI Δ score ≥ 0.2 was 
used as a screening cut-off to maximize variant detec-
tion. We exclusively utilized SpliceAI to detect putative 
splice variants, as this was the tool recommended by 
the ClinGen Sequence Variant Interpretation Subgroup 
[13]. This identified 17,528 variants of which 8583 were 
rare within the Discovery cohort, i.e., found in no more 
than one sample (internal MAF < 0.01). Among these, 
386 (4%) occurred at canonical splice sites. To deter-
mine which splice-disrupting variants were associated 
with corresponding aberrant splicing events in the 
myocardium, we first searched for all splice-disrupt-
ing events in patient myocardium by applying the in 
silico tool FRASER [61] to myocardial RNA-Seq data 
(n = 106) which allows detection of not only alternative 
splicing but also intron retention events [61]. Across all 
RNA-Seq samples, 11,540 MANE-annotated genes had 
a median TPM expression ≥ 1, i.e., were expressed in 
cardiac tissue. We limited our selection of splice sites 
to those where RNA reads from the donor and accep-
tor sites were aligned within the same gene, and either 
rarely were observed to be spliced together within 
the cohort (ψ/θ − Δψ/θ ≤ 0.1) or nearly always were 
observed to be spliced together (ψ/θ − Δψ/θ ≥ 0.9). 
Significant outlier splicing events within a sample 
were then defined as those having a false discovery 

rate < 0.2, an absolute Z-score ≥ 1, and an absolute Δψ/θ 
score ≥ 0.2, indicating that alternative splicing between 
two sites was observed 20% more or less often than 
expected. This yielded 844 significantly altered genes 
with affected splice junctions and/or intron-retention 
events with a high effect size. A median of 6 genes were 
affected per sample, with 134 genes altered in more 
than one patient. The number of significant outlier 
splicing events in each sample was not associated with 
patient age at surgery (p > 0.05).

We then classified the rare DNA variants identified 
in GS data by whether or not they were associated with 
a matching significant outlier splicing event in myocar-
dial RNA-Seq data from the same proband. This yielded 
100 DNA variants in 95 genes that were associated with 
observable splice disruption in the myocardium, i.e., con-
firmed splicing events (Table  S3), and 8369 DNA vari-
ants where a significant tissue effect was not observed. 
One hundred fourteen DNA variants were excluded due 
to an indeterminate association with an observed splic-
ing event, i.e., more than 100  bp outside of a signifi-
cantly altered splice donor/acceptor pair. Only 33 (33%) 
of the confirmed splicing events occurred at canonical 
splice sites. An overview of our variant prioritization 
strategy is shown in Fig.  1. A comparison of confirmed 
splice-disrupting variants, i.e., DNA variants associ-
ated with a splicing event in the myocardium, versus 
the remaining unconfirmed splice-disrupting variants 
revealed that true positive variants had higher SpliceAI 
Δ scores (p = 1.1 ×  10−22), affected genes with higher RNA 
expression (p = 1.6 ×  10−24), and were less likely to occur 
in repetitive (RepeatMasker) regions of the genome 
(p = 3.8 ×  10−4). Variant features generally had low corre-
lation with one another, though RepeatMasker and low 
complexity regions were positively correlated, whereas 
variants with high SpliceAI scores and SNVs were nega-
tively correlated with RepeatMasker and low complexity 
regions (Fig.  2). Overall, this suggested that annotated 
variant DNA features independently contributed to the 
prediction of true splice-disruption. Although we did not 
compare multiple published tools for the identification of 
putative splice variants, among confirmed variants within 
our Discovery cohort we observed that the maximum 
SpliceAI Δ score and the CADD-Splice PHRED score 
were significantly correlated (p = 1.11 ×  10−9), indicating 
that these two methodologies provide comparable statis-
tics. Of note, all confirmed variants were in genes with a 
median TPM expression > 0.5 in our cohort. Among all 
putative splice-disrupting variants a (SpliceAI Δ score), a 
median TPM expression score threshold of 0.5 yielded a 
sensitivity of 0.65 and specificity of 0.78, while a threshold 
of 0.8 yielded a sensitivity of 0.47 and specificity of 0.92.
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Random forest model to predict cardiac relevant 
non‑canonical splice‑disrupting variants
Utilizing features from the set of confirmed splic-
ing events, we trained random forest models to predict 
whether variants identified in GS data are associated 
with aberrant splicing in human myocardium. Due to 
the imbalance between the number of confirmed ver-
sus unconfirmed putatively splice-disrupting variants, 
trained models were either weighted to prioritize the 

selection of the confirmed class, or utilized the Synthetic 
Minority Oversampling Technique (SMOTE) to artifi-
cially create a balanced training set [65]. Model 1 included 
only SpliceAI Δ scores as input. While SpliceAI has been 
reported to have good accuracy for detecting splice-dis-
rupting variants, it utilizes only the genomic sequence of 
pre-mRNA transcript as input, which does not take into 
account existing splice junction boundaries or the likeli-
hood of false positive variant calls. We therefore trained 

Fig. 1 Schematic workflow for development, validation, and application of a random forest model for selecting high‑confidence splice‑disrupting 
variants for congenital heart disease. Selection strategy is shown for the identification of splice‑disrupting variants in CHD genes. Model 
development: CHD Discovery cohort (n = 106) was used to identify putative splice‑disrupting variants in genome sequencing (GS) data 
and confirm whether the variants were associated with a significant effect in RNA‑sequencing (RNA‑Seq) data derived from patient myocardium. 
These variants and their confirmed effect were then used to construct random forest models for predicting splice‑disrupting variants 
with high‑confidence. Model validation: Model performance was validated using independent CHD validation (n = 48) and cardiomyopathy 
validation (n = 43) cohorts, where both GS and RNA‑Seq profiles were available for all probands. Model application: The optimal random forest 
model was applied to a CHD Extension cohort (n = 947), where only GS data were available for all probands. One hundred thirty two (12%) CHD 
probands harbored 133 rare, high‑confidence splice‑disrupting variants in CHD genes, including 47 variants in Tier 1 CHD genes and 86 variants 
in Tier 2 haploinsufficiency‑intolerant CHD genes. RNA‑Seq, RNA sequencing; GS, genome sequencing; FDR, false discovery rate; MAF, minor allele 
frequency; CHD, congenital heart disease
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a second model 2 which included the DNA variant fea-
tures associated with true splicing, i.e., variant distance 
to the nearest annotated splice junction, the variant type 
(SNV or indel), and whether the variant occurred in a 
branchpoint region, low complexity region, and/or repet-
itive region, while excluding SpliceAI Δ scores. As these 
two models included only DNA variant features, they 
are not trained to predict organ-specific splicing valida-
tion that may be unique to cardiac-expressed genes. A 
third model 3 was thus trained and included the afore-
mentioned DNA variant features from model 2 in addi-
tion to the corresponding median gene expression TPM 
value in patient myocardial samples. Finally, a fourth 
model 4 included all the above, i.e., the DNA variant fea-
tures, myocardial gene expression values, and SpliceAI 
Δ scores. The performance of all four models using each 
training approach was internally assessed using five-fold 
cross validation. While all four models performed bet-
ter than random, the models that included DNA variant 
features and/or DNA variant features with cardiac gene 
expression values showed better model performance 
than the SpliceAI model alone. Overall, model 4, which 

included all DNA variant features and gene expression 
values along with SpliceAI scores, provided highest per-
formance accuracy on five-fold cross validation. This was 
observed using weighted- and using SMOTE-trained 
approaches (five-fold cross-validation AUC = 0.86 and 
0.87, respectively) (Fig. 3d and j). Although the weighted 
model 4 prioritized gene expression values, SpliceAI Δ 
scores and distance from the nearest existing annotated 
splice site also provided independent predictive informa-
tion (Fig.  3e and l). Importantly, regardless of the base 
methodology used to address class imbalance, adding 
additional DNA features and heart-specific information 
improved model performance for selecting cardiac-rele-
vant high-confidence splice disrupting variants. A bias-
variance decomposition analysis similarly demonstrated 
that model 4 had the smallest mean squared error and 
squared bias (Table S4). Although the weighted class and 
SMOTE-trained models both had high AUC values, the 
weighted models had superior sensitivity to select for 
confirmed splicing variants (0.69 and 0.62 on internal 
five-fold cross validation, respectively for model 4). We 
therefore used the weighted-trained model 4 to identify 

Fig. 2 Correlation matrix for DNA variant features used in model development. The matrix shows minimal correlation between DNA variant input 
features used in developing random forest models in the Discovery cohort
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high-confidence splice-disrupting variants in the CHD 
Validation and Extension cohorts.

Independent validation of the random forest model in CHD 
and cardiomyopathy cohorts
In order to externally validate the performance of the 
random forest model, we applied the model to two 
independent Validation cohorts of 48 CHD probands 
and 43 cardiomyopathy probands, for whom both 
GS and matching RNA-Seq profiles derived from the 
right or left ventricular myocardium, respectively, 
were available [6]. We first selected SNVs and indels 

that were predicted with high sensitivity to result in 
the loss of a wild-type splice junction and/or the gain 
of a novel cryptic splice site (SpliceAI Δ score ≥ 0.2), 
and that were rare within the  Validation cohorts, 
i.e., found in no more than one sample (MAF < 0.03). 
Within the CHD and cardiomyopathy Validation 
cohorts this identified 6476 and 4246 DNA variants 
genome-wide, of which 908 and 727 were selected by 
the weighted random forest model 4, respectively. We 
next identified aberrant splicing events in the Valida-
tion cohorts using FRASER. Using the previous thresh-
olds (false discovery rate < 0.2, an absolute Z-score ≥ 1, 

Fig. 3 Performance of random forest models for splice‑disrupting variants on internal cross‑validation. Four types of models each were designed 
using either class weights or SMOTE to address class imbalance; internal performance was assessed using five‑fold cross‑validation to compare 
area under the curves (AUC) for each model. Weighted model performance: a SpliceAI only AUC, b DNA variant features only AUC, c DNA variant 
features + myocardial RNA gene expression AUC, d SpliceAI + DNA variant features + myocardial RNA gene expression AUC. e Gini coefficient 
showing the importance of a specific feature to the nodes and leaves of the random forest model 4. f The odds ratio for selecting variants 
confirmed to affect splicing was highest for model 4. SMOTE model performance: g SMOTE SpliceAI only AUC, h DNA variant features only AUC, 
i DNA variant features + myocardial RNA gene expression AUC, j SpliceAI + DNA variant features + myocardial RNA gene expression AUC. k Gini 
coefficient showing the importance of a specific feature to the nodes and leaves of the random forest model 4. l The odds ratio for selecting 
variants confirmed to affect splicing was highest for model 4
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an absolute Δψ/θ score ≥ 0.2, and ψ/θ − Δψ/θ ≤ 0.1 
or ≥ 0.9) yielded 430 and 360 observations, respec-
tively, of significantly-altered splicing events with a 
high effect size. We applied all random forest models to 
these data and then to further ensure independence we 
excluded variants that were identically shared between 
the Discovery and Validation cohorts. This showed 
that, similar to the Discovery cohort, model 4 outper-
formed all other models, with an AUC of 0.94 and 0.84 
in the CHD and cardiomyopathy Validation cohorts, 
respectively (Fig.  4). DNA variants with confirmed 
altered splicing were significantly enriched among 
those selected by model 4 compared with variants 
without a confirmed splicing effect (p = 1.3 ×  10−27 and 
p = 1.6 ×  10−9, CHD and cardiomyopathy Validation 
cohorts, respectively). Confirmed splicing variants, as 
well as all variants selected by model 4, are included 
in Table S5, while contingency tables and performance 
metrics, including a bias-variance decomposition anal-
ysis, are included in Table S6. We additionally investi-
gated whether selected splice-disrupting DNA variants 
were associated with a reduction in gene expression, 
which may occur due to nonsense-mediated decay. 
Applying OUTRIDER [63] to the Validation cohorts, 
we indeed observed that samples harboring DNA vari-
ants selected by model 4 had lower corresponding gene 
expression Z-scores compared with samples harboring 
variants that were not selected by the random forest 
model (mean Z-score of − 0.22 versus − 0.049 respec-
tively in the CHD Validation cohort, p = 0.00040; mean 
Z-score − 0.23 versus − 0.049 respectively in the car-
diomyopathy Validation cohort, p = 0.00072). Of note, 
the weighted model 4 selected a pathogenic canonical 
splice site variant in a known cardiomyopathy gene, 
FLNC, previously reported by our group to be asso-
ciated with reduced mRNA expression despite only a 
few RNA-Seq reads displaying abnormal splicing (pre-
sumably as a result of nonsense-mediated decay) [6]. 
This variant was confirmed in a clinical testing labora-
tory and deemed to be disease-causing by our return 
of results committee and the clinical testing lab [51]. 
Together these results confirm that our cardiac-spe-
cific random forest model improved the selection of 

true splice-disrupting variants in patients with child-
hood onset heart disease.

High‑confidence splice‑disrupting variants in CHD genes 
in the CHD Extension cohort
Splice‑disrupting variants in Tier 1 CHD genes
The random forest weighted model 4 was applied to 
a CHD Extension cohort of 947 patients. A total of 
51,543 putative splice-disrupting variants were identi-
fied genome-wide (SpliceAI Δ score ≥ 0.2), of which the 
weighted model 4 selected 5658 variants. Filtering for 
variants that were rare in controls (gnomAD v2 allele 
frequency < 0.0001 and gnomAD v3 PopMax allele fre-
quency < 0.0001) and annotated as being in intragenic 
regions of MANE transcripts yielded 4222 variants in 
2819 genes, of which 2818 genes were highly expressed 
in myocardial-derived RNA-Seq samples in the Discov-
ery cohort (median TPM ≥ 1). We further narrowed our 
variant selection by limiting variants to those in a Tier 
1 CHD gene with either a dominant mode of inherit-
ance or homozygous in a gene with a recessive mode of 
inheritance (Table S7). In total, across the CHD Discov-
ery, Validation, and Extension cohorts, we identified 47 
rare high-confidence splice-disrupting DNA variants 
in 49 probands involving 26 Tier 1 genes (Fig.  5). Only 
six variants were located at a canonical splice site, all of 
which were considered to be pathogenic/likely patho-
genic by ACMG/AMP criteria. These included a splice 
donor variant in TBX20 as well as a splice donor vari-
ant in NOTCH1, which were both validated by RNA-Seq 
(Fig.  6). Intronic variants more than 10  bp from exist-
ing splice sites accounted for 47% of high-confidence 
Tier 1 splice-disrupting variants, most of which would 
not be detectable through panel or exome sequencing 
and would have been missed by applying only a high 
SpliceAI score cut-off. Two deeply intronic DNA variants 
in as many genes were observed in multiple unrelated 
probands in the Extension cohort. Of note, only one of 
these probands (carrying a non-canonical splice variant 
in GATA4) harbored an additional pathogenic protein-
coding variant in Tier 1 CHD genes (a missense variant 
in PTPN11) to explain their CHD (Table S7).

Fig. 4 Performance of weighted random forest model for splice‑disrupting variants applied to external validation cohorts. The performance 
of the weighted model was assessed in two external validation cohorts. CHD validation cohort: a SpliceAI only AUC, b DNA variant features 
only AUC, c DNA variant features + myocardial RNA gene expression AUC, d SpliceAI + DNA variant features + myocardial RNA gene expression AUC. 
AUC was highest for model 4 in CHD cohort (n = 48). e The odds ratio for selecting variants confirmed to affect splicing was highest for model 4 
in CHD cohort. Cardiomyopathy validation cohort: a SpliceAI only AUC, b DNA variant features only AUC, c DNA variant features + myocardial RNA 
gene expression AUC, d SpliceAI + DNA variant features + myocardial RNA gene expression AUC. AUC was highest for model 4 in cardiomyopathy 
cohort (n = 43). j The odds ratio for selecting variants confirmed to affect splicing was highest model 4 in cardiomyopathy cohort

(See figure on next page.)
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Fig. 4 (See legend on previous page.)
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Splice‑disrupting variants in Tier 2 CHD genes
In addition to splice-disrupting variants in Tier 1 CHD 
genes, we searched for rare, high-confidence splice-
disrupting variants in haploinsufficiency intolerant Tier 

2 CHD genes (gnomAD v2 pLI ≥ 0.9) in the CHD Dis-
covery, Validation, and Extension cohorts. This search 
yielded 86 variants in 49 genes among 89 probands 
(Table  S3, Table  S5, and Table  S7). Five of these 

Fig. 5 Frequency of high‑confidence splice‑disrupting variants in CHD genes. One hundred thirty three confirmed and high‑confidence splice 
disrupting variants in CHD genes were identified in the 1101 CHD patients—Discovery (n = 106), Validation (n = 48), and Extension (n = 947) 
cohorts. Variants were mapped to their closest annotated wild‑type splice site within their corresponding gene. Canonical splice regions are 
highlighted in gray. a Variant position: Intronic variants > 10 bp from a splice junction accounted for 49% of all variants. b SpliceAI Δ variant scores: 
Splice‑disrupting variants showed high variability in SpliceAI scores. Putatively disease‑causing splice‑disrupting variants in Tier 1 CHD genes 
were found in c 4% of TOF probands, and d 5% of TGA probands without an explained genetic etiology, with non‑canonical variants representing 
a majority of splice disrupting variants. TOF, tetralogy of Fallot; TGA, Transposition of the great arteries; SNV, single‑nucleotide variant; indel, 
insertion‑deletion
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Fig. 6 Representative splice‑disrupting variants in CHD genes. Family pedigrees with CHD harboring representative high‑confidence splice 
disrupting variants in Tier 1 and 2 genes are shown. a TBX20 (Tier 1), b NOTCH1 (Tier 1), c CGNL1 (Tier 2), d CHD7 (Tier 1), e EFTUD2 (Tier 1), and f 
ACTB (Tier 2). Wild‑type exon/intron boundaries below IGV screenshots of RNA‑Seq data are represented in black, and alternatively observed 
boundaries are represented in red. FRASER statistics for outlier splicing events are written below the alternative boundaries. Arrows next to gene 
names represent reading direction. Purple arrows represent location of DNA splice‑disrupting variant. TOF, tetralogy of Fallot; ECA, extracardiac 
anomalies
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variants were observed in multiple cases, and five of 
these probands harbored additional pathogenic protein-
coding variants. The relative positions of these 86 vari-
ants were also consistent with what was observed in Tier 
1 CHD genes, with deeply intronic variants (> 10 bp from 
an existing splice site) accounting for 50% of all Tier 2 
variants. For 73 of 86 variants (85%), the most probable 
predicted effect was the creation of a new cryptic splice 
site rather than the loss of an existing splice junction.

Across both Tier 1 and Tier 2 CHD genes in all CHD 
probands (n = 1101), 11/133 (8%) of high-confidence 
splice-disrupting variants occurred at canonical splice 
sites, and 65/133 (49%) were in deeply intronic regions 
(> 10  bp from an existing splice site). We observed that 
15/133 (11%) of high-confidence variants were predicted 
to only disrupt existing splice sites, 107/133 (80%) were 
predicted to create a cryptic splice site without disrupt-
ing a canonical splice site, and the remaining 11/133 (8%) 
were predicted to have both effects (Table S3, Table S5, 
and Table  S7). None of these variants were observed in 
branchpoint regions, although confirmed variants in 
branchpoint regions of non-CHD genes were observed 
in the Discovery and Validation cohorts. Among all genes 
expressed in the myocardial tissue of Discovery cohort 
cases (median TPM ≥ 1), the genes harboring these 133 
rare, high-confidence splice-disrupting variants were 
enriched for a diverse set of Human Phenotype Ontology 
terms that included abnormal heart and vessel morphol-
ogies (Fig. 7, Table S8).

Genotype–phenotype correlation
We performed reverse phenotyping in probands harbor-
ing splice-disrupting variants in syndromic genes and 
identified some patients that harbored extra-cardiac fea-
tures consistent with a syndrome even though it had not 
been clinically diagnosed at the time of the study. For 
example, within the Extension cohort, one patient had 
an intronic CHD7 c.5607 + 17A > G variant that was de 
novo with the patient demonstrating features consistent 
with CHARGE syndrome (Fig. 6). Previous clinical test-
ing for gene defects had been negative. Our study find-
ing triggered repeat clinical genetic evaluation that led 
to confirmation of the genetic diagnosis of CHARGE 
syndrome. In another example, a proband with classic 
TOF harboring a cryptic splice acceptor gain variant in 
the protein-coding region of EFTUD2 displayed partial 
clinical features of EFTUD2-associated syndrome includ-
ing delayed speech, and mild to moderate hearing loss, 
likely of middle ear origin  [74]. Another TOF proband 
harboring a splice region variant in the Tier 2 gene ACTB 
(c.364-3C > G) had extracardiac anomalies including bifid 

uvula with submucosal cleft, dysmorphic features, and 
clinodactyly, consistent with expected phenotype associ-
ated with this gene defect.

One proband harbored significantly increased intron 
retention in RNA-Seq in the first exon of the MAP2K1 
gene, despite no candidate DNA variant being identified, 
including after searching for more common variants in 
the gene (Fig. 8). This individual was found to have con-
genital facial malformations on reverse phenotyping, 
which appeared to be consistent with cardiofaciocutane-
ous syndrome associated with this gene defect, and sup-
ports the pathogenicity of this alternative splicing event. 
It is noteworthy that a total of 27 significant splicing 
events in CHD genes were found without correspond-
ing DNA variants (Fig. 8, Table S3, and Table S5). These 
events were not included in model development but 
remain candidates for further investigation.

Burden of splice‑disrupting variants in cases 
versus controls
We compared the characteristics of splice-disrupting 
variants in CHD patients to controls without CHD utiliz-
ing case–control burden analyses. We first assessed the 
burden of rare, genome-wide, autosomal, synonymous 
protein-coding variants in 947 Extension cohort CHD 
cases vs 2570 healthy controls with GS. This analysis was 
performed to ensure that differences in non-synonymous 
variant burden were not secondary to technical sequenc-
ing and workflow differences. Additionally, a stringent 
gnomAD PopMax threshold was used to ensure that dif-
ferences in cohort ancestries did not drive differences 
in burden between cohorts. Moreover, both gnomAD 
v2 and v3 thresholds were used in order to account for 
differences in variant frequencies of reference genomes 
between the Extension and Control cohorts. This analy-
sis confirmed that the two cohorts had a similar burden 
of synonymous variants (medians of 41 and 40.5 rare, 
synonymous variant alleles per sample for the Exten-
sion and Control cohorts respectively, nominal p > 0.05). 
We next assessed the burden of rare, splice-disrupting 
(SpliceAI Δ score ≥ 0.2) high-confidence variants selected 
by weighted random forest model 4, in the CHD Exten-
sion versus Control cohorts. Genome-wide, we did not 
observe a significant difference (nominal p > 0.05) in 
variant burden in cases versus controls (Fig. 9). However, 
there was a significantly higher burden in cases versus 
controls of splice-disrupting variants in all Tier 1 and 2 
CHD genes (nominal p = 0.005). On subgroup analysis, 
cases had a higher frequency of variants located at canon-
ical splice sites, splice regions, protein-coding regions, 
and intronic regions of Tier 1 CHD genes, although these 
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Fig. 7 Gene sets enriched for splice‑disrupting variants in CHD genes in the CHD Discovery, Validation, and Extension cohorts (n = 1101). Graph 
showing significantly enriched Human Phenotype Ontology (HP) terms among genes affected by high‑confidence splice‑disrupting variants 
in CHD genes
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differences did not reach statistical significance. This may 
be due in part to the low variant numbers within each of 
the gene  gene sub-regions, resulting in reduced statisti-
cal power. While the Extension and Control cohorts had 
a similar proportion of male participants (56 and 49%, 
respectively), there was a lower proportion of samples of 
European descent in cases compared with controls (78 
and 96%, respectively). To eliminate confounding related 
to ancestral differences between cases and controls, we 
did subgroup analysis in individuals of European descent 
and observed similar trends, with a significantly higher 

burden of high-confidence splice-disrupting variants 
among CHD genes despite a reduced statistical power 
from the smaller sample size (nominal p = 0.04).

In summary, a heart-specific model identified high-
confidence splice-disrupting variants in CHD genes 
at canonical splice sites in 1% all CHD cases and non-
canonical variants in 11% cases, with splice-disrupting 
variants accounting for up to 75% of all putatively dis-
ease-causing variants in CHD cases (Fig. 5). In particular, 
deeply intronic cryptic splice variants represented 49% of 
all high-confidence DNA splicing variants in CHD genes.

Fig. 8 Altered splicing events in CHD genes in myocardium without an identified DNA variant. Family pedigrees with CHD showing representative 
aberrant splicing events in CHD genes without corresponding DNA variants are shown. a MAP2K1 (Tier 1), b ACTB (Tier 2), and c FBN2 (Tier 2). IGV 
screenshots of RNA‑Seq data for all samples are shown TOF, tetralogy of Fallot; ECA, extra cardiac anomalies
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Fig. 9 CHD case–control burden of splice‑disrupting variants. The burden of variants was compared between 947 CHD cases vs 2570 healthy 
controls. Synonymous variants: The per‑sample allele frequency of synonymous variants is shown for a all samples and b the subset of samples 
with European genetic ancestry. A median of 41 and 40.5 synonymous variant alleles were found in cases and controls, respectively (p > 0.05), 
indicating that the two cohorts were directly comparable. Splice-disrupting variants: High‑confidence splice‑disrupting variants found in cases 
and controls were limited to those selected by weighted model 4, and annotated according to the intragenic region they were located at. Odds 
ratios and 95% confidence intervals are shown comparing variant burden in CHD cases and controls for c all samples and d the subset of samples 
with European genetic ancestry. Splice‑disrupting variants were predominantly enriched in CHD genes, especially Tier 1 CHD genes. CHD, 
congenital heart disease; pLI, probability of being loss‑of‑function intolerant
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Discussion
Our study applied genome sequencing coupled with 
myocardial RNA sequencing to identify and validate 
splice-disrupting variants, including non-canonical splice 
variants, associated with CHD. Splice-disrupting vari-
ants in CHD genes were enriched in cases compared to 
controls and were associated with altered myocardial 
gene splicing. The findings were leveraged to develop a 
machine learning model to predict cardiac-specific, high-
confidence non-canonical splice variants. Together, this 
model identified disease-associated splice-disrupting 
variants in 12% of CHD patients (75% of all putatively 
pathogenic CHD associated variants), representing a sig-
nificant expansion of the role of these variants in heart 
disease.

RNA-Seq of patient myocardium enabled us to directly 
identify splice-disrupting events across the genomes of 
TOF probands. By integrating these validated events with 
DNA variants obtained from GS, we generated an in sil-
ico model that predicted heart-specific splice-disrupting 
variants with greater accuracy than using models based 
on SpliceAI alone. Importantly, model performance was 
validated in an independent CHD cohort. Application of 
the model to an additional 947 CHD GS samples iden-
tified 11% of CHD cases that harbored non-canonical 
splice-disrupting variants in Tier 1 or 2 CHD genes. As 
nearly half (49%) of these variants were intronic, our 
combined use of RNA-Seq and GS enabled the identifi-
cation of putatively pathogenic variants that would not 
be detected by panel or exome sequencing, as intronic 
variants beyond ~ 50 bp are not reliably found with these 
methods [14, 15].

A recent exome sequencing study highlighted a role 
for splice-disrupting variants in CHD [11]. In particular, 
2% of genome-wide, de novo, computationally predicted 
splice-disrupting variants in CHD probands were vali-
dated by minigene assays. In addition, in a case–control 
burden analysis, an enrichment for rare splice region 
variants predicted to result in the loss of nearby existing 
splice junctions among CHD genes was observed. Unfor-
tunately, exome sequencing is unable to detect deeply 
intronic splice-disrupting variants [14, 15], and minigene 
assays alone have technical limitations since they are not 
cardiac specific, cannot test variants in repetitive regions, 
and often provide indeterminate results [75, 76].

In this regard, our machine learning model was highly 
accurate for identifying non-canonical variants that result 
in confirmed splicing events specific to the human heart 
(AUC = 0.86). When applied to independent cohorts of 
TOF and cardiomyopathy, the model was able to iden-
tify non-canonical variants that affect splicing in CHD 
and cardiomyopathy genes respectively. This approach 

allowed us to recover deeply intronic cryptic splicing var-
iants that cannot be captured by exome sequencing, and 
have not been previously reported. Of note, direct inves-
tigation of patient myocardium identified aberrant splic-
ing events in CHD and other cardiac genes even when a 
causal DNA variant responsible for the effect could not 
be definitively confirmed. This may be due to the causal 
variant having a predicted SpliceAI Δ score below our 
minimum threshold (0.2), the variant affecting splicing at 
a greater distance than our maximum threshold (100 bp), 
or somatic mosaicism resulting in variants in the heart 
that are undetectable in blood and/or saliva [77]. Deci-
phering the nature of these tissue-only events requires 
further study.

Seventy nine percent of predicted high-confidence 
Tier 1 CHD splice-disrupting variants occurred in genes 
with associations to syndromic disease that had not been 
clinically identified. Intriguingly, an intronic de novo 
variant in CHD7 was observed in a TOF proband who 
had phenotypic features consistent with CHARGE syn-
drome which is caused by CHD7 variants. Yet, the patient 
had tested negative on previous clinical genetic testing 
for CHD7 variants (Fig.  6). The intronic CHD7 variant 
found on research GS (coupled with phenotypic con-
cordance with CHARGE syndrome) was adjudicated by 
our clinical genetics committee to be likely pathogenic, 
was subsequently confirmed on clinical genetic testing 
and returned to the family, resulting in the resolution of 
the diagnostic odyssey for this patient. Crucially, a pre-
diction model trained only on SpliceAI scores failed to 
select this variant, again reinforcing the value of using 
a heart-specific prediction model. In other patients, 
splice-disrupting events were observed in the syndromic 
genes EFTUD2 and MAP2K1 (Fig. 8), with patient phe-
notypes consistent with known genotype–phenotype 
associations.

While at this time, most non-canonical splice-dis-
rupting variants must be functionally validated in order 
to be considered pathogenic/likely pathogenic, our use 
of variant segregation and deep phenotyping meant 
that we were able to classify variants like the aforemen-
tioned CHD7 de novo variant as likely pathogenic. As 
computational tools continue to improve the accuracy 
of variant selection with specific effects on splicing, it 
may allow for more streamlined clinical reporting of 
such variants. Indeed, our results support and extend 
on the recently published ACMG/AMP framework for 
validating and reporting splice-disrupting variants, 
including those outside of canonical splice sites [13]. 
In particular, our findings reinforce the utility of using 
heart-specific models trained on patient myocardium 
to improve the accuracy of variant selection in CHD. 
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Moreover, our observation that deeply intronic cryptic 
splice variants contribute to CHD highlight the neces-
sity of including these types of variants in clinical tests. 
The inclusion of our validated variant selection model 
into clinical GS workflows has the potential to increase 
the diagnostic yield for CHD and to reduce the num-
ber of variants that would require functional valida-
tion, which can be a time-consuming and expensive 
endeavor, and limited by availability of relevant patient-
derived tissue. Simultaneously, our strategy offers to 
increase sensitivity for selecting splice-disrupting vari-
ants that are not in close proximity to previously anno-
tated splice junctions. As many standard panel and 
exome tests do not capture and report these variants, 
the shift to clinical GS tests will better identify such 
deeply intronic splice-disrupting variants, and will in 
turn provide supporting evidence for how these genes 
and variants contribute to the genetic etiology of CHD.

Our study had some limitations. (i) While RNA-Seq 
of patient myocardium allowed us to directly identify 
altered splicing events in  vivo, these types of events 
may sometimes lead to nonsense-mediated decay, 
thereby limiting the ability to detect them in patient 
tissue although only 19% of Tier 1 and 22% of Tier 2 
CHD genes had very low expression (TPM < 1). While 
in  vitro methods for the inhibition of nonsense-medi-
cated decay can be used to validate splicing effects, they 
are not feasible to test for a large number of variants. 
Similarly, CHD genes and transcriptional isoforms 
expressed during embryogenesis but not in mature 
patient myocardium may not have been detectable 
in our RNA-Seq data which may also have resulted in 
underestimation of some splice-disrupting variants. 
(ii) Another limitation is that short-read sequencing 
for both RNA-Seq and GS may have missed variants in 
homologous and low complexity regions, due to unre-
liable alignments in such regions. Similar studies per-
formed with higher depth sequencing and/or long-read 
sequencing may further extend our ability to reliably 
detect splice-disrupting events in known and candi-
date CHD genes. (iii) We were unable to resolve false 
negative calls which may have occurred as a result 
of very low SpliceAI scores, altered splicing occur-
ring more than 100  bp from a variant, or trans-acting 
effects caused by, for example, changes to the spliceo-
some. (iv) Although all variants in the Discovery cohort 
were subsequently excluded from validation, it is pos-
sible that new variants tested by our models had such 
similar profiles to those used in training so as to con-
stitute “mirroring.” (v) Our study was limited to rare 
splice-disrupting events and therefore more common 

events, including shifts between well-annotated RNA 
splice isoforms, may have been missed. (vi) Finally, we 
acknowledge technical differences including sequenc-
ing facility, GS platform, reference genome version, and 
variant detection workflows between cases and controls 
have the potential to confound variant burden testing 
results. However, there was no difference in the burden 
of synonymous variants between cases and controls 
suggesting that the observed differences in the burden 
of rare variants was not related to technical sequencing 
differences.

Conclusions
By coupling myocardial RNA-Seq and GS data, we devel-
oped and validated a cardiac-specific machine-learning 
model that identified high-confidence canonical and 
non-canonical splice-disrupting variants associated with 
CHD. The high burden of non-canonical splice-disrupt-
ing variants in patients with CHD makes a strong case 
for the use of GS to facilitate evaluation of non-canonical 
sites, including deeply intronic regions.

Abbreviations
CHD  Congenital heart disease
TOF  Tetralogy of Fallot
TGA   Dextro‑transposition of the great arteries
ACMG/AMP  American College of Medical Genetics and Genomics and the 

Association for Molecular Pathology
GS  Genome sequencing
RNA‑Seq  RNA‑sequencing
MGRB  Medical Genome Reference Bank
SNV  Single‑nucleotide variant
indel  Insertion‑deletion
TCAG   The Centre for Applied Genomics
GATK  Genome Analysis Toolkit
gVCF  Genotype Variant Call Format
VQSR  Variant quality score recalibration
GQ  Genotype Quality
CNV  Copy number variant
SV  Structural variant
OMIM  Online Mendelian Inheritance in Man
ClinGen  Clinical Genome Resource
MANE  Matched Annotation from NCBI and EMBL‑EBI
HGMD  Human Gene Mutation Database
DFP  Disease‑associated polymorphism with supporting functional 

evidence
DP  Disease‑associated polymorphism
DM  Disease causing mutation
o/e  Observed/expected
LoF  Loss‑of‑function
gnomAD  Genome Aggregation Database
IGV  Integrative Genomics Viewer
CMP  Cardiomyopathy
AUC   Area under the curve
SCS  Set Counts and Sizes
MAF  Minor allele frequency
TPM  Transcript per million



Page 22 of 24Lesurf et al. Genome Medicine          (2024) 16:119 

Supplementary Information
The online version contains supplementary material available at https:// doi. 
org/ 10. 1186/ s13073‑ 024‑ 01383‑8.

Additional file1: Table S1. Study cohorts. Clinical characteristics of 
congenital heart disease probands in the CHD Discovery, Validation, and 
Extension cohorts (n=1,101), as well as characteristics of the cardiomyopa‑
thy Validation (n=43) and Medical Genome Reference Bank Control cohort 
(n=2,570).

Additional file2: Table S2. CHD gene list. Genes were categorized into Tier 
1 (moderate to strong association with CHD) or Tier 2 (limited association 
with CHD). Gene Median gene expression (Transcripts Per Million) was cal‑
culated for the entire Discovery cohort. Gene annotations and constraint 
metrics are additionally shown.

Additional file3: Table S3. Myocardial RNA outlier splicing events and con‑
firmed associated DNA splice variants in CHD Discovery cohort (n=106). 
100 rare (internal MAF < 0.01) genome‑wide DNA splice‑disrupting vari‑
ants within the Discovery cohort were confirmed by myocardial RNA‑Seq. 
In addition, six significant RNA splicing events were observed without a 
causative DNA splice‑disrupting variant in Tier 1 CHD genes or haploin‑
sufficiency‑intolerant (pLI≥0.9) Tier 2 CHD genes. All variant features used 
in random forest models are included. Clinical features of the proband 
harboring each RNA splicing event are additionally shown.

Additional file4: Table S4. Performance of random forest models using five‑
fold cross‑validation in CHD Discovery cohort (n=106). Contingency tables 
and associated statistics are shown for whether variants were selected by 
random forest models and whether splicing was confirmed by FRASER.

Additional file5: Table S5. High‑confidence DNA splicing variants within 
the CHD (n=48) and cardiomyopathy (n=43) Validation cohorts. All 
genome‑wide high‑confidence DNA variants in the CHD and cardiomyo‑
pathy Validation cohorts selected by weighted and SMOTE random forest 
model 4 are shown, along with confirmed variants that were not selected 
by the model. Variants are annotated by their matching splicing and 
gene expression outlier statistics obtained from FRASER and OUTRIDER, 
respectively.

Additional file6: Table S6. Performance of random forest models in CHD 
(n=48) and cardiomyopathy (n=43) Validation cohorts. Contingency 
tables and associated statistics are shown for whether variants were 
selected by random forest models and whether splicing was confirmed 
by FRASER.

Additional file7: Table S7. High‑confidence DNA splice variants in 
CHD genes in CHD Extension cohort (n=947). Rare (gnomAD v2 allele 
frequency < 0.0001 and gnomAD v3 PopMax allele frequency < 0.0001) 
high‑confidence splice‑disrupting DNA variants in Tier 1 CHD genes or 
haploinsufficiency‑intolerant (pLI≥0.9) Tier 2 CHD genes were identified 
in the Extension cohort. DNA variants were selected by weighted random 
forest model 4 (Extension cohort), yielding an additional 42 variants in Tier 
1 CHD genes and 79 variants in Tier 2 CHD genes. All variant features used 
in random forest models are included. Clinical features of the proband 
harboring each DNA variant are additionally shown. 

Additional file8: Table S8. Gene sets enriched for genome‑wide high‑confi‑
dence splicing variants in CHD genes in the CHD Discovery, Validation, and 
Extension cohorts (n=1,101). 133 high‑confidence splice‑disrupting vari‑
ants in CHD genes were identified in the 1,101 CHD patients ‑ Discovery 
(n=106), Validation (n=48), and Extension (n=947) cohorts. Variants were 
tested for enrichment within Human Phenotype Ontology gene sets. 
Significantly enriched terms (adjusted p < 0.01) are shown.

Acknowledgements
We acknowledge the Labatt Family Heart Centre Biobank at the Hospital for 
Sick Children for access to DNA and RNA samples, and The Centre for Applied 
Genomics at the Hospital for Sick Children for performing GS and RNA‑Seq. 
We thank Roderick Yao for his work in identifying and assessing putatively 
pathogenic protein‑coding and canonical splice site SNVs and indels in CHD 
genes. We thank Doris Škorić‑Milosavljević for valuable help regarding the 
patients obtained through the CONCOR registry. We also thank the patients 

and family members who participated in this study. This research was enabled 
in part by support provided by Compute Ontario (computeontario.ca) and 
the Digital Research Alliance of Canada (alliancecan.ca). The results shown 
here are in whole or part based upon data generated by the MGRB Partners: 
https:// sgc. garvan. org. au/ initi atives/ mgrb. The Medical Genome Reference 
Bank was funded by the NSW State Government. This study makes use of data 
generated by the DECIPHER community. A full list of centers who contributed 
to the generation of the data is available from https:// decip herge nomics. org/ 
about/ stats and via email from contact@deciphergenomics.org. DECIPHER is 
hosted by EMBL‑EBI and funding for the DECIPHER project was provided by 
the Wellcome Trust [grant number WT223718/Z/21/Z].

Authors’ contributions
RL and SM conceived and designed the work, drafted the work, and substan‑
tively revised it. SM acquired funding for the project. All authors contributed to 
acquisition, analysis, or interpretation of data. All authors read and approved 
the final manuscript and have agreed both to be personally accountable for 
the author’s own contributions and to ensure that questions related to the 
accuracy or integrity of any part of the work, even ones in which the author 
was not personally involved, are appropriately investigated, resolved, and the 
resolution documented in the literature.

Funding
This project was supported by the Canadian Institutes of Health Research 
(ENP 161429) under the frame of ERA PerMed (RL, MH, CB, SM), the Canadian 
Institutes of Health Research Canadian Heart Function Alliance Network Grant 
(HFN 181992) (SM), the Ted Rogers Centre for Heart Research (SM), and the 
Data Sciences Institute at the University of Toronto (SM). SM holds the Heart 
and Stroke Foundation of Canada & Robert M Freedom Chair in Cardiovas‑
cular Science. CRB and AVP are supported by the CVON project 2014–18 
CONCOR‑genes. EO held the Bitove Family Professorship of Adult Congenital 
Heart Disease until March 2021. GB is supported by a NSW Health Cardio‑
vascular Research Capacity Program Early‑Mid Career Researcher Grant and 
a NSW CVRN Career Advancement Grant. JB is supported by a senior clinical 
investigator fellowship of FWO Flanders and by the Frans Van de Werf fund for 
clinical cardiovascular research.

Availability of data and materials
Variant data for the Discovery, CHD Validation, and Extension cohorts from 
all three biobank registries is available in the European Genome‑Phenome 
Archive (EGA) under accession EGAS50000000586 (https:// ega‑ archi ve. org/ 
studi es/ EGAS5 00000 00586) [16], and will be available for download upon 
approval by the Data Access Committee (https:// thehe artce ntreb iobank. 
com/ sample‑ reque st). Sequencing data for the cardiomyopathy Validation 
cohort is available in EGA under accession EGAS00001004929 (https:// ega‑ 
archi ve. org/ studi es/ EGAS0 00010 04929) [6], and are available for download 
upon approval by the Data Access Committee (https:// thehe artce ntreb 
iobank. com/ sample‑ reque st). Sample level Variant Call Format (VCF) files for 
Canadian and Australian cohorts are available on the seqr platform [78] and 
can be accessed at https:// seqr. ccm. sickk ids. ca. For sample‑level genomic 
data from the Netherlands cohort, request should be sent to the PI (C.B.) due 
to consent restrictions. Control cohort MGRB data are available by controlled 
access in EGA under accession EGAS00001003511 (https:// ega‑ archi ve. org/ 
studi es/ EGAS0 00010 03511) [17]. Computational workflow code is available on 
GitHub (https:// github. com/ mital lab/ CHD_ Splic ing_ Lesurf ). Additional data 
generated or analyzed during this study are included in the supplementary 
information files, and additional raw data used for figures and results are avail‑
able from the corresponding author on reasonable request.

Declarations

Ethics approval and consent to participate
Institutional Research Ethics Boards of The Hospital for Sick Children, Amster‑
dam Medical Center, The Children’s Hospital at Westmead and Kompetenznetz 
Angeborene Herzfehler gave ethical approval for the collection and use of 
biospecimens through respective registries The Heart Centre Biobank (Ontario, 
Canada), CONCOR (Amsterdam, Netherlands), Kids Heart BioBank (Sydney, 
Australia), and German Heart Registry (Berlin, Germany). Written informed con‑
sent to participate was obtained from all patients and/or their parents/legal 
guardians. This study protocols adhered to the Declaration of Helsinki.

https://doi.org/10.1186/s13073-024-01383-8
https://doi.org/10.1186/s13073-024-01383-8
https://sgc.garvan.org.au/initiatives/mgrb
https://deciphergenomics.org/about/stats
https://deciphergenomics.org/about/stats
https://ega-archive.org/studies/EGAS50000000586
https://ega-archive.org/studies/EGAS50000000586
https://theheartcentrebiobank.com/sample-request
https://theheartcentrebiobank.com/sample-request
https://ega-archive.org/studies/EGAS00001004929
https://ega-archive.org/studies/EGAS00001004929
https://theheartcentrebiobank.com/sample-request
https://theheartcentrebiobank.com/sample-request
https://seqr.ccm.sickkids.ca
https://ega-archive.org/studies/EGAS00001003511
https://ega-archive.org/studies/EGAS00001003511
https://github.com/mitallab/CHD_Splicing_Lesurf


Page 23 of 24Lesurf et al. Genome Medicine          (2024) 16:119  

Consent for publication
Written informed consent was obtained from all patients and/or their parents/
legal guardians.

Competing interests
SM is on the Advisory Board of Bristol Myers Squibb, Rocket Pharmaceuticals, 
and Tenaya Therapeutics. The remaining authors declare that they have no 
competing interests.

Author details
1 Genetics and Genome Biology Program, The Hospital for Sick Children, 
Toronto, ON, Canada. 2 Center for Human Genetics, University Hospitals Leu‑
ven, Leuven, Belgium. 3 The Centre for Computational Medicine, The Hospital 
for Sick Children, Toronto, ON, Canada. 4 Division of Cardiology, Children’s 
Hospital of Eastern Ontario, Ottawa, ON, Canada. 5 Division of Cardiology, 
Department of Pediatrics, McMaster Children’s Hospital, Hamilton, ON, 
Canada. 6 Division of Cardiology, Department of Pediatrics, Kingston Health 
Sciences Centre, Kingston, ON, Canada. 7 Division of Cardiology, Department 
of Pediatrics, London Health Sciences Centre, London, ON, Canada. 8 Division 
of Cardiology, Department of Medicine, Toronto Adult Congenital Heart 
Disease Program at Peter Munk Cardiac Centre, University Health Network, 
and University of Toronto, Toronto, ON, Canada. 9 Institute of Medical Genetics, 
University Medicine Oldenburg, Carl von Ossietzky University, Oldenburg, 
Germany. 10 Department of Congenital Heart Disease and Pediatric Cardiology, 
University Hospital of Schleswig‑Holstein, Kiel, Germany. 11 German Center 
for Cardiovascular Research (DZHK), Kiel, Germany. 12 Department of Medical 
Biology, Amsterdam University Medical Center, Amsterdam, The Netherlands. 
13 Department of Human Genetics, Amsterdam University Medical Center, 
Amsterdam, The Netherlands. 14 Department of Internal Medicine, Amsterdam 
University Medical Center, Amsterdam, The Netherlands. 15 Department of Car‑
diology, Amsterdam University Medical Center, Amsterdam, The Netherlands. 
16 Department of Clinical and Experimental Cardiology, Amsterdam University 
Medical Center, Amsterdam, The Netherlands. 17 Heart Centre for Children, The 
Children’s Hospital at Westmead, Sydney, NSW, Australia. 18 Sydney Medical 
School, The University of Sydney, Sydney, NSW, Australia. 19 Heart Center, 
Ann and Robert H. Lurie Children’s Hospital of Chicago and Feinberg School 
of Medicine, Northwestern University, Evanston, IL, USA. 20 Ted Rogers Centre 
for Heart Research, Toronto, ON, Canada. 21 Division of Cardiology, Department 
of Pediatrics, The Hospital for Sick Children, University of Toronto, Toronto, ON, 
Canada. 

Received: 2 December 2023   Accepted: 16 September 2024

References
 1. van der Linde D, Konings EEM, Slager MA, Witsenburg M, Helbing WA, 

Takkenberg JJM, et al. Birth prevalence of congenital heart disease 
worldwide: a systematic review and meta‑analysis. J Am Coll Cardiol. 
2011;58:2241–7.

 2. Øyen N, Poulsen G, Boyd HA, Wohlfahrt J, Jensen PKA, Melbye M. 
Recurrence of congenital heart defects in families. Circulation. 
2009;120:295–301.

 3. Blue GM, Kirk EP, Giannoulatou E, Sholler GF, Dunwoodie SL, Harvey RP, 
et al. Advances in the Genetics of Congenital Heart Disease: A Clinician’s 
Guide. J Am Coll Cardiol. 2017;69:859–70.

 4. Page DJ, Miossec MJ, Williams SG, Monaghan RM, Fotiou E, Cordell HJ, 
et al. Whole Exome Sequencing Reveals the Major Genetic Contributors 
to Nonsyndromic Tetralogy of Fallot. Circ Res. 2019;124:553–63.

 5. Blue GM, Mekel M, Das D, Troup M, Rath E, Ip E, et al. Whole genome 
sequencing in transposition of the great arteries and associations 
with clinically relevant heart, brain and laterality genes. Am Heart J. 
2022;244:1–13.

 6. Lesurf R, Said A, Akinrinade O, Breckpot J, Delfosse K, Liu T, et al. Whole 
genome sequencing delineates regulatory, copy number, and cryptic 
splice variants in early onset cardiomyopathy. NPJ Genom Med. 2022;7:18.

 7. Škorić‑Milosavljević D, Tadros R, Bosada FM, Tessadori F, van Weerd JH, 
Woudstra OI, et al. Common Genetic Variants Contribute to Risk of Trans‑
position of the Great Arteries. Circ Res. 2022;130:166–80.

 8. Rowlands C, Thomas HB, Lord J, Wai HA, Arno G, Beaman G, et al. 
Comparison of in silico strategies to prioritize rare genomic variants 
impacting RNA splicing for the diagnosis of genomic disorders. Sci Rep. 
2021;11:20607.

 9. Blakes AJM, Wai HA, Davies I, Moledina HE, Ruiz A, Thomas T, et al. A 
systematic analysis of splicing variants identifies new diagnoses in the 
100,000 Genomes Project. Genome Med. 2022;14:79.

 10. O’Neill MJ, Wada Y, Hall LD, Mitchell DW, Glazer AM, Roden DM. Func‑
tional Assays Reclassify Suspected Splice‑Altering Variants of Uncertain 
Significance in Mendelian Channelopathies. Circ Genom Precis Med. 
2022;15:e003782.

 11. Jang MY, Patel PN, Pereira AC, Willcox JAL, Haghighi A, Tai AC, et al. 
Contribution of Previously Unrecognized RNA Splice‑Altering Variants to 
Congenital Heart Disease. Circ Genom Precis Med. 2023;16:224–31.

 12. Singer ES, Crowe J, Holliday M, Isbister JC, Lal S, Nowak N, et al. The 
burden of splice‑disrupting variants in inherited heart disease and unex‑
plained sudden cardiac death. NPJ Genom Med. 2023;8:29.

 13. Walker LC, de la Hoya M, Wiggins GAR, Lindy A, Vincent LM, Parsons MT, 
et al. Using the ACMG/AMP framework to capture evidence related to 
predicted and observed impact on splicing: Recommendations from the 
ClinGen SVI Splicing Subgroup. Am J Hum Genet. 2023;110:1046–67.

 14. Guo Y, Long J, He J, Li C‑I, Cai Q, Shu X‑O, et al. Exome sequencing gener‑
ates high quality data in non‑target regions. BMC Genomics. 2012;13:194.

 15. Zhang L, Shen M, Shu X, Zhou J, Ding J, Zhong C, et al. Intronic position +9 
and ‑9 are potentially splicing sites boundary from intronic variants analysis 
of whole exome sequencing data. BMC Med Genomics. 2023;16:146.

 16. Lesurf R, Jeroen B, Jade B, Nour H, Anjali J, Yijing L, et al. Genome 
sequencing identifies splice‑disrupting variants in childhood heart 
disease [Internet]. European Genome‑Phenome Archive (EGA); 2024. 
Available from: https:// ega‑ archi ve. org/ studi es/ EGAS5 00000 00586

 17. Pinese M, Lacaze P, Rath EM, Stone A, Brion M‑J, Ameur A, et al. The Medi‑
cal Genome Reference Bank contains whole genome and phenotype 
data of 2570 healthy elderly. Nat Commun. 2020;11:435.

 18. Bolger AM, Lohse M, Usadel B. Trimmomatic: a flexible trimmer for Illu‑
mina sequence data. Bioinformatics. 2014;30:2114–20.

 19. Li H, Durbin R. Fast and accurate short read alignment with Burrows‑
Wheeler transform. Bioinformatics. 2009;25:1754–60.

 20. DePristo MA, Banks E, Poplin R, Garimella KV, Maguire JR, Hartl C, et al. A 
framework for variation discovery and genotyping using next‑generation 
DNA sequencing data. Nat Genet. 2011;43:491–8.

 21. Trost B, Walker S, Wang Z, Thiruvahindrapuram B, MacDonald JR, Sung 
WWL, et al. A Comprehensive Workflow for Read Depth‑Based Identifica‑
tion of Copy‑Number Variation from Whole‑Genome Sequence Data. Am 
J Hum Genet. 2018;102:142–55.

 22. Zhu M, Need AC, Han Y, Ge D, Maia JM, Zhu Q, et al. Using ERDS to infer 
copy‑number variants in high‑coverage genomes. Am J Hum Genet. 
2012;91:408–21.

 23. Abyzov A, Urban AE, Snyder M, Gerstein M. CNVnator: an approach to 
discover, genotype, and characterize typical and atypical CNVs from fam‑
ily and population genome sequencing. Genome Res. 2011;21:974–84.

 24. Chen X, Schulz‑Trieglaff O, Shaw R, Barnes B, Schlesinger F, Källberg M, 
et al. Manta: rapid detection of structural variants and indels for germline 
and cancer sequencing applications. Bioinformatics. 2016;32:1220–2.

 25. Rausch T, Zichner T, Schlattl A, Stütz AM, Benes V, Korbel JO. DELLY: struc‑
tural variant discovery by integrated paired‑end and split‑read analysis. 
Bioinformatics. 2012;28:i333–9.

 26. Pedersen BS, Bhetariya PJ, Brown J, Kravitz SN, Marth G, Jensen RL, et al. 
Somalier: rapid relatedness estimation for cancer and germline studies 
using efficient genome sketches. Genome Med. 2020;12:62.

 27. DRAGEN DNA Pipeline [Internet]. Illumina; Available from: https:// suppo rt‑ docs. 
illum ina. com/ SW/ DRAGEN_ v38/ Conte nt/ SW/ DRAGEN/ GPipe lineI ntro_ fDG. htm

 28. Picard toolkit [Internet]. Broad Institute; 2019. Available from: http:// broad 
insti tute. github. io/ picard/

 29. Richards S, Aziz N, Bale S, Bick D, Das S, Gastier‑Foster J, et al. Standards 
and guidelines for the interpretation of sequence variants: a joint con‑
sensus recommendation of the American College of Medical Genetics 
and Genomics and the Association for Molecular Pathology. Genet Med. 
2015;17:405–24.

 30. Riggs ER, Andersen EF, Cherry AM, Kantarci S, Kearney H, Patel A, et al. 
Technical standards for the interpretation and reporting of constitu‑
tional copy‑number variants: a joint consensus recommendation of the 

https://ega-archive.org/studies/EGAS50000000586
https://support-docs.illumina.com/SW/DRAGEN_v38/Content/SW/DRAGEN/GPipelineIntro_fDG.htm
https://support-docs.illumina.com/SW/DRAGEN_v38/Content/SW/DRAGEN/GPipelineIntro_fDG.htm
http://broadinstitute.github.io/picard/
http://broadinstitute.github.io/picard/


Page 24 of 24Lesurf et al. Genome Medicine          (2024) 16:119 

American College of Medical Genetics and Genomics (ACMG) and the 
Clinical Genome Resource (ClinGen). Genet Med. 2020;22:245–57.

 31. Li Q, Wang K. InterVar: Clinical Interpretation of Genetic Variants by the 
2015 ACMG‑AMP Guidelines. Am J Hum Genet. 2017;100:267–80.

 32. Stenson PD, Mort M, Ball EV, Evans K, Hayden M, Heywood S, et al. The 
Human Gene Mutation Database: towards a comprehensive repository 
of inherited mutation data for medical research, genetic diagnosis and 
next‑generation sequencing studies. Hum Genet. 2017;136:665–77.

 33. Griffin EL, Nees SN, Morton SU, Wynn J, Patel N, Jobanputra V, et al. 
Evidence‑Based Assessment of Congenital Heart Disease Genes to 
Enable Returning Results in a Genomic Study. Circ Genom Precis Med. 
2023;16:e003791.

 34. Amberger JS, Bocchini CA, Schiettecatte F, Scott AF, Hamosh A. 
OMIM.org: Online Mendelian Inheritance in Man (OMIM®), an online 
catalog of human genes and genetic disorders. Nucleic Acids Res. 
2015;43:D789–798.

 35. Rehm HL, Berg JS, Brooks LD, Bustamante CD, Evans JP, Landrum MJ, et al. 
ClinGen–the Clinical Genome Resource. N Engl J Med. 2015;372:2235–42.

 36. Yang A, Alankarage D, Cuny H, Ip EKK, Almog M, Lu J, et al. CHDgene: A 
Curated Database for Congenital Heart Disease Genes. Circ Genom Precis 
Med. 2022;15:e003539.

 37. Morales J, Pujar S, Loveland JE, Astashyn A, Bennett R, Berry A, et al. A 
joint NCBI and EMBL‑EBI transcript set for clinical genomics and research. 
Nature. 2022;604:310–5.

 38. Karczewski KJ, Francioli LC, Tiao G, Cummings BB, Alföldi J, Wang Q, et al. 
The mutational constraint spectrum quantified from variation in 141,456 
humans. Nature. 2020;581:434–43.

 39. Smit A, Hubley R, Green P. RepeatMasker Open‑4.0. 2013. Available from: 
http:// www. repea tmask er. org

 40. Robinson JT, Thorvaldsdóttir H, Winckler W, Guttman M, Lander ES, Getz 
G, et al. Integrative genomics viewer. Nat Biotechnol. 2011;29:24–6.

 41. Robinson JT, Thorvaldsdóttir H, Wenger AM, Zehir A, Mesirov JP. Variant 
Review with the Integrative Genomics Viewer. Cancer Res. 2017;77:e31–4.

 42. Koboldt DC. Best practices for variant calling in clinical sequencing. 
Genome Med. 2020;12:91.

 43. Landrum MJ, Lee JM, Benson M, Brown G, Chao C, Chitipiralla S, et al. Clin‑
Var: public archive of interpretations of clinically relevant variants. Nucleic 
Acids Res. 2016;44:D862–868.

 44. Landrum MJ, Kattman BL. ClinVar at five years: Delivering on the promise. 
Hum Mutat. 2018;39:1623–30.

 45. Trost B, Thiruvahindrapuram B, Chan AJS, Engchuan W, Higginbotham 
EJ, Howe JL, et al. Genomic architecture of autism from comprehensive 
whole‑genome sequence annotation. Cell. 2022;185:4409–4427.e18.

 46. Firth HV, Richards SM, Bevan AP, Clayton S, Corpas M, Rajan D, et al. DECI‑
PHER: Database of Chromosomal Imbalance and Phenotype in Humans 
Using Ensembl Resources. Am J Hum Genet. 2009;84:524–33.

 47. MacDonald JR, Ziman R, Yuen RKC, Feuk L, Scherer SW. The Database 
of Genomic Variants: a curated collection of structural variation in the 
human genome. Nucleic Acids Res. 2014;42:D986–992.

 48. Collins RL, Brand H, Karczewski KJ, Zhao X, Alföldi J, Francioli LC, et al. 
A structural variation reference for medical and population genetics. 
Nature. 2020;581:444–51.

 49. Belyeu JR, Chowdhury M, Brown J, Pedersen BS, Cormier MJ, Quinlan 
AR, et al. Samplot: a platform for structural variant visual validation and 
automated filtering. Genome Biol. 2021;22:161.

 50. Xiang J, Peng J, Baxter S, Peng Z. AutoPVS1: An automatic classification 
tool for PVS1 interpretation of null variants. Hum Mutat. 2020;41:1488–98.

 51. Papaz T, Liston E, Zahavich L, Stavropoulos DJ, Jobling RK, Kim RH, et al. 
Return of genetic and genomic research findings: experience of a pediat‑
ric biorepository. BMC Med Genomics. 2019;12:173.

 52. Jaganathan K, Kyriazopoulou Panagiotopoulou S, McRae JF, Darbandi SF, 
Knowles D, Li YI, et al. Predicting Splicing from Primary Sequence with 
Deep Learning. Cell. 2019;176:535–548.e24.

 53. Danecek P, Bonfield JK, Liddle J, Marshall J, Ohan V, Pollard MO, et al. 
Twelve years of SAMtools and BCFtools. Gigascience. 2021;10:giab008.

 54. McLaren W, Gil L, Hunt SE, Riat HS, Ritchie GRS, Thormann A, et al. The 
Ensembl Variant Effect Predictor. Genome Biol. 2016;17:122.

 55. Mercer TR, Clark MB, Andersen SB, Brunck ME, Haerty W, Crawford J, et al. 
Genome‑wide discovery of human splicing branchpoints. Genome Res. 
2015;25:290–303.

 56. Paggi JM, Bejerano G. A sequence‑based, deep learning model accurately 
predicts RNA splicing branchpoints. RNA. 2018;24:1647–58.

 57. Rentzsch P, Schubach M, Shendure J, Kircher M. CADD‑Splice‑improving 
genome‑wide variant effect prediction using deep learning‑derived 
splice scores. Genome Med. 2021;13:31.

 58. Dobin A, Davis CA, Schlesinger F, Drenkow J, Zaleski C, Jha S, et al. STAR: 
ultrafast universal RNA‑seq aligner. Bioinformatics. 2013;29:15–21.

 59. Aken BL, Achuthan P, Akanni W, Amode MR, Bernsdorff F, Bhai J, et al. 
Ensembl 2017. Nucleic Acids Res. 2017;45:D635–42.

 60. Li B, Dewey CN. RSEM: accurate transcript quantification from RNA‑
Seq data with or without a reference genome. BMC Bioinformatics. 
2011;12:323.

 61. Mertes C, Scheller IF, Yépez VA, Çelik MH, Liang Y, Kremer LS, et al. Detec‑
tion of aberrant splicing events in RNA‑seq data using FRASER. Nat Com‑
mun. 2021;12:529.

 62. Durinck S, Spellman PT, Birney E, Huber W. Mapping identifiers for the 
integration of genomic datasets with the R/Bioconductor package 
biomaRt. Nat Protoc. 2009;4:1184–91.

 63. Brechtmann F, Mertes C, Matusevičiūtė A, Yépez VA, Avsec Ž, Herzog M, 
et al. OUTRIDER: A Statistical Method for Detecting Aberrantly Expressed 
Genes in RNA Sequencing Data. Am J Hum Genet. 2018;103:907–17.

 64. Liaw A, Wiener M. Classification and Regression by randomForest. R News. 
2002;2:18–22.

 65. Chawla NV, Bowyer KW, Hall LO, Kegelmeyer WP. SMOTE: synthetic minor‑
ity over‑sampling technique. J Artif Int Res. 2002;16:321–57.

 66. Millson A, Lewis T, Pesaran T, Salvador D, Gillespie K, Gau C‑L, et al. 
Processed Pseudogene Confounding Deletion/Duplication Assays for 
SMAD4. J Mol Diagn. 2015;17:576–82.

 67. Reimand J, Kull M, Peterson H, Hansen J, Vilo J. g:Profiler–a web‑based 
toolset for functional profiling of gene lists from large‑scale experiments. 
Nucleic Acids Res. 2007;35:W193–200.

 68. Raudvere U, Kolberg L, Kuzmin I, Arak T, Adler P, Peterson H, et al. 
g:Profiler: a web server for functional enrichment analysis and conver‑
sions of gene lists (2019 update). Nucleic Acids Res. 2019;47:W191–8.

 69. Gargano MA, Matentzoglu N, Coleman B, Addo‑Lartey EB, Anagnosto‑
poulos AV, Anderton J, et al. The Human Phenotype Ontology in 2024: 
phenotypes around the world. Nucleic Acids Res. 2024;52:D1333–46.

 70. Kent WJ, Sugnet CW, Furey TS, Roskin KM, Pringle TH, Zahler AM, et al. The 
human genome browser at UCSC. Genome Res. 2002;12:996–1006.

 71. Frankish A, Diekhans M, Ferreira A‑M, Johnson R, Jungreis I, Loveland 
J, et al. GENCODE reference annotation for the human and mouse 
genomes. Nucleic Acids Res. 2019;47:D766–73.

 72. Wickham H. ggplot2: Elegant Graphics for Data Analysis [Internet]. Springer‑
Verlag New York; 2016. Available from: https:// ggplo t2. tidyv erse. org

 73. Robin X, Turck N, Hainard A, Tiberti N, Lisacek F, Sanchez J‑C, et al. pROC: 
an open‑source package for R and S+ to analyze and compare ROC 
curves. BMC Bioinformatics. 2011;12:77.

 74. Wu J, Yang Y, He Y, Li Q, Wang X, Sun C, et al. EFTUD2 gene deficiency 
disrupts osteoblast maturation and inhibits chondrocyte differentiation 
via activation of the p53 signaling pathway. Hum Genomics. 2019;13:63.

 75. Aicher JK, Jewell P, Vaquero‑Garcia J, Barash Y, Bhoj EJ. Mapping RNA 
splicing variations in clinically accessible and nonaccessible tissues 
to facilitate Mendelian disease diagnosis using RNA‑seq. Genet Med. 
2020;22:1181–90.

 76. Lin J‑H, Wu H, Zou W‑B, Masson E, Fichou Y, Le Gac G, et al. Splicing 
Outcomes of 5’ Splice Site GT>GC Variants That Generate Wild‑Type Tran‑
scripts Differ Significantly Between Full‑Length and Minigene Splicing 
Assays. Front Genet. 2021;12:701652.

 77. Hsieh A, Morton SU, Willcox JAL, Gorham JM, Tai AC, Qi H, et al. EM‑
mosaic detects mosaic point mutations that contribute to congenital 
heart disease. Genome Med. 2020;12:42.

 78. Pais LS, Snow H, Weisburd B, Zhang S, Baxter SM, DiTroia S, et al. seqr: A 
web‑based analysis and collaboration tool for rare disease genomics. 
Hum Mutat. 2022;43:698–707.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in pub‑
lished maps and institutional affiliations.

http://www.repeatmasker.org
https://ggplot2.tidyverse.org

	A validated heart-specific model for splice-disrupting variants in childhood heart disease
	Abstract 
	Background 
	Methods 
	Results 
	Conclusions 

	Background
	Methods
	Study cohorts
	Congenital heart disease (CHD) cases
	Controls

	Genome sequencing processing, alignment, and variant calling
	Identification and interpretation of pathogenic protein-coding variants
	Variant identification
	Variant mapping to genes
	SNV and indel classification for pathogenicity
	CNV classification for pathogenicity

	Identification of putatively splice-disrupting variants in GS data
	Identification of aberrant splicing events in myocardial RNA-Seq
	Myocardial RNA-Seq
	Identification of aberrant splicing events in myocardial RNA-Seq data
	Identification of gene expression outliers in myocardial RNA-Seq data

	Generation and validation of random forest models for selecting heart-specific splice-disrupting variants
	Validation of model performance in independent CHD and cardiomyopathy cohorts

	Identification of high-confidence splice-disrupting variants in extended CHD cases and controls using the optimal random forest model
	Gene set enrichment analysis
	Case–control burden analyses

	Data analyses and visualizations

	Results
	Study cohort
	Protein-coding variants in CHD genes
	Discovery of splice-disrupting variants affecting cardiac-expressed genes
	Random forest model to predict cardiac relevant non-canonical splice-disrupting variants
	Independent validation of the random forest model in CHD and cardiomyopathy cohorts
	High-confidence splice-disrupting variants in CHD genes in the CHD Extension cohort
	Splice-disrupting variants in Tier 1 CHD genes
	Splice-disrupting variants in Tier 2 CHD genes
	Genotype–phenotype correlation

	Burden of splice-disrupting variants in cases versus controls

	Discussion
	Conclusions
	Acknowledgements
	References


