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Abstract 

Background Liquid biopsy based on cell-free DNA (cfDNA) analysis holds significant promise as a minimally inva-
sive approach for the diagnosis, genotyping, and monitoring of solid malignancies. Human tumors release cfDNA 
in the bloodstream through a combination of events, including cell death, active and passive release. However, 
the precise mechanisms leading to cfDNA shedding remain to be characterized. Addressing this question in patients 
is confounded by several factors, such as tumor burden extent, anatomical and vasculature barriers, and release 
of nucleic acids from normal cells. In this work, we exploited cancer models to dissect basic mechanisms of DNA 
release.

Methods We measured cell loss ratio, doubling time, and cfDNA release in the supernatant of a colorectal cancer 
(CRC) cell line collection (N = 76) representative of the molecular subtypes previously identified in cancer patients. 
Association analyses between quantitative parameters of cfDNA release, cell proliferation, and molecular features 
were evaluated. Functional experiments were performed to test the impact of modulating DNA methylation 
on cfDNA release.

Results Higher levels of supernatant cfDNA were significantly associated with slower cell cycling and increased cell 
death. In addition, a higher cfDNA shedding was found in non-CpG Island Methylator Phenotype (CIMP) models. 
These results indicate a positive correlation between lower methylation and increased cfDNA levels. To explore this 
further, we exploited methylation microarrays to identify a subset of probes significantly associated with cfDNA shed-
ding and derive a methylation signature capable of discriminating high from low cfDNA releasers. We applied this 
signature to an independent set of 176 CRC cell lines and patient derived organoids to select 14 models predicted 
to be low or high releasers. The methylation profile successfully predicted the amount of cfDNA released in the super-
natant. At the functional level, genetic ablation of DNA methyl-transferases increased chromatin accessibility and DNA 
fragmentation, leading to increased cfDNA release in isogenic CRC cell lines. Furthermore, in vitro treatment of five 
low releaser CRC cells with a demethylating agent was able to induce a significant increase in cfDNA shedding.
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Conclusions Methylation status of cancer cell lines contributes to the variability of cfDNA shedding in vitro. Changes 
in methylation pattern are associated with cfDNA release levels and might be exploited to increase sensitivity of liquid 
biopsy assays.
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Background
Precision oncology relies on the early diagnosis of can-
cer, detection of minimal residual disease, and timely 
characterization of the tumor molecular landscape to 
identify actionable alterations that can guide patient 
treatment [1–4]. Blood from most cancer patients con-
tains cell-free DNA (cfDNA) released predominantly 
by neoplastic cells, although the contribution of normal 
tissue can be substantial under certain circumstances 
[5–7]. Tumor-derived cfDNA has emerged as a mini-
mally invasive biomarker to deliver precision oncology 
[8]. Despite generally increased levels of cfDNA in cancer 
patients compared to healthy individuals, its amount is 
often insufficient to intercept cancer or detect the pres-
ence of residual disease after surgery [9, 10]. To over-
come the limited sensitivity of total cfDNA assessment, 
several liquid biopsy assays encompass the determina-
tion of tumor specific molecular alterations in cfDNA, 
including somatic sequence variants, methylation pat-
terns, and fragmentation profiles [11, 12]. Most of these 
analyses are still rather expensive and labor intensive, 
therefore limiting cfDNA clinical exploitation. Even more 
importantly the application of liquid biopsy tests has 
been delayed by their suboptimal sensitivity. Indeed, false 
negative rates remain a major issue in assays designed to 
detect cancer in population screens or in post-operative 
patients [13], and even a small fraction of cancer patients 
with advanced stage disease remain undiagnosed by liq-
uid biopsy approaches [14–17]. The reasons accounting 
for the low or undetectable shedding behavior of certain 
tumors have not been elucidated. Understanding the 
mechanisms underlying cfDNA release could provide 
novel knowledge that may be applied to improve the sen-
sitivity of liquid biopsy tests.

In comparison to the body of literature describing the 
clinical applications of liquid biopsy, only a few mecha-
nistic studies have investigated the molecular basis of 
cfDNA release. Factors leading to DNA damage, includ-
ing chromosomal instability or external agents such as 
radiation, chemicals, or microorganisms, may trigger 
the release of cfDNA [18–20]. Although the majority of 
cfDNA is passively shed by apoptotic and necrotic cells, 
active cfDNA release by dividing cells is also known to 
occur [21, 22]. Recent studies have shown that the frag-
mentation pattern of tumor-derived cfDNA differs from 
that of normal tissues cfDNA, with changes in fragment 

sizes at different regions [23–25]. Fragment sizes do not 
always display the ladder profile associated with apopto-
sis [26] or the high molecular size of necrosis [27], sug-
gesting that secretion can contribute to shedding [28]. 
This is supported by the observation that alterations con-
ferring acquired drug resistance may appear in the blood 
of cancer patients several months before the radiological 
detection of clinical relapse, suggesting the involvement 
of drug-refractory live cells in the DNA shedding [4, 29, 
30]. It is inherently difficult to dissect the active and pas-
sive mechanisms of cfDNA release directly in the blood 
of cancer patients. Plasma cfDNA contains a high and 
variable amount of DNA derived from non-neoplastic 
cells especially promoted by inflammation and comor-
bidities, and acting as confounding factors [23, 31, 32]. 
We hypothesize that preclinical cancer model systems in 
which only neoplastic cells are present in a known num-
ber can simplify functional studies to unveil novel mech-
anisms of DNA shedding. For instance, a recent CRISPR 
screening identified genes involved in the TNF-related 
apoptosis-inducing ligand (TRAIL) apoptotic pathway 
and other genes encoding RNA-binding proteins as regu-
lators of cfDNA release in a normal breast epithelial cell 
line [33]. In this work, we took advantage of a large col-
lection of colorectal cancer (CRC) cell lines to charac-
terize the impact of cancer cell biology parameters and 
molecular features on cfDNA release.

Methods
Aim, design and setting of the study
Colorectal tumors release variable levels of detectable 
cfDNA [7]. We aimed to investigate whether any cancer 
cell intrinsic features could be associated with release of 
cfDNA. To achieve this goal, we selected from a large 
collection of CRC cell lines, a subset of pre-clinical mod-
els recapitulating the main molecular features found in 
clinical samples [34, 35]. These models were assessed 
for cfDNA release, cell proliferation and death, and cell 
cycle phases. In parallel, genetic and epigenetic data were 
available or generated thus allowing to evaluate associa-
tions with cfDNA release.

Cell lines
A collection of 240 CRC cell lines was employed in 
this study, of which 76 models were analyzed in the 
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screening phase and the remaining 164 were exploited 
as a validation dataset. The majority of cell lines have 
previously been described [36–39] and their source 
and main characteristics are summarized in Additional 
file 2: Table S1. Cells were routinely supplemented with 
FBS 10%, 2  mM L-glutamine, antibiotics (100 U/mL 
penicillin and 100  mg/mL streptomycin), and grown 
in a 37 °C and 5%  CO2 air incubator. The genetic iden-
tity of cell lines was confirmed less than 2 months from 
profiling experiments using the PowerPlex® 16 HS Sys-
tem (Promega), through Short Tandem Repeats (STR) 
tests at 16 different loci (D5S818, D13S317, D7S820, 
D16S539, D21S11, vWA, TH01, TPOX, CSF1PO, 
D18S51, D3S1358, D8S1179, FGA, Penta D, Penta E, 
and Amelogenin). Amplicons from multiplex PCRs 
were separated by capillary electrophoresis (3730 DNA 
Analyzer, Applied Biosystems). The results were ana-
lyzed using GeneMapper V5.0 software. The STR pro-
file of each CRC cell line is reported in Additional file 2: 
Table S1. HCT116 CRC cells with a genetic disruption 
of DNMT3B and DNMT1 (DKO) were obtained from 
Horizon Discovery Plc. An additional small subset of 
commercially available pancreatic cancer cell lines, 
namely BXPC-3 (Cat. No ATCC-CRL-1687), CAPAN-1 
(Cat. No ATCC-HTB-79), HPAF-II (Cat. No ATCC-
CRL-1997), and ASPC-1 (Cat. No ATCC-CRL-1682), 
was obtained from ATCC for additional functional 
experiments.

Basal cfDNA release protocol
For all CRC and pancreatic cancer cell lines selected in 
the screening protocol, a minimum of two release experi-
ments were performed. At day 0, cells were detached 
from growing plates and counted via Countness II (Life 
Technologies). Two million live cells were plated in two 
10-cm dishes, while 5∙105 cells were analyzed for cell 
death by annexin V/propidium iodide staining (Thermo 
Fisher Scientific, 88–8007-74) and flow cytometry analy-
sis (eBioscience). In parallel, a minimum of two million 
live cells were pelleted and fixed by ethanol 70% for cell 
cycle analyses. Cell cycle phases (G1, S, G2, M) were 
determined by flow cytometric analysis of Phospho-His-
tone 3 (PH3) (Abcam, ab14955). After 4 days of culture, 
supernatants from both dishes were collected and cen-
trifuged at 3000 g for 10 min, without break. Then, 10 µl 
of supernatant was measured using the Qubit 4 (Ther-
moFisher) dsDNA HS, with standards corrected with 
10 µl of the matching cell culture media. cfDNA concen-
tration was then calculated using the linear regression 
obtained from the media corrected standards according 
to manufacturer protocol. In parallel, cells were collected 

and analyzed for cell death and cell cycle analyses as 
described below.

Flow cytometry analyses of cell biology parameters 
and immunofluorescence for mitotic phases
All samples were run on a BD accuri C6. A minimum of 
3 ×  104 events were acquired for every experiment. The 
resulting Fcs files were exported from the flow cytom-
eter and analyzed using FlowJo 10 (LLC). For cell death, 
morphological parameters were gated to exclude any 
cell debris. Duplets were removed using the pulse width 
feature and the subset of events were stratified on FL4 
(APC) and FL3 (PI), to identify the different cell popula-
tions. The quarters were adjusted for every experiment 
in order to separate most accurately the clusters of fluo-
rescence. For cell cycle analyses, after removal of the cell 
debris, duplets were removed by gating samples based on 
FL3 area vs. FL3 intensity. Cell cycle phases were calcu-
lated using the default FlowJo algorithm.

To measures the percentage of mitotic cells in the dif-
ferent phases, i.e., from prophase to telophase, cells were 
seeded on poly-L-lysine-coated coverslips, fixed with 2% 
formaldehyde, permeabilized for 10 min with 0.25% Tri-
ton X-100, and blocked for 60 min with 5% BSA in PBS. 
Cells were stained with anti-ß-tubulin-Cy3 Ab (Sigma-
Aldrich). DNA was marked with HOECHST 33342 
(Sigma-Aldrich). Cells were examined with a NIKON 
Eclipse Ti2 microscope equipped with epifluorescence 
and photographs were taken (× 60 objective) using a 
cooled camera device (DS-Qi2). Different mitotic phases 
were counted on 1000 cells per sample, in triplicate.

Cell doubling time assay
In parallel to the cfDNA release experiments, independ-
ent assays were carried out to estimate the doubling 
time of each cell line. A total of 2.5 ×  106 living cells were 
labeled using the CellTrace™ Violet Cell Proliferation 
Kit (Thermo Fisher Scientific, C34554), according to the 
manufacturer’s instructions. The cell doubling time was 
measured for seven consecutive days by flow cytometric 
detection of cell trace violet incorporation.

Annotation of cell line molecular features
Annotation of sequence variants was performed based 
on Whole Exome data as previously described [40]. 
Sample mutational status for APC, TP53, KRAS, NRAS, 
and BRAF (Additional file  2: Table  S1) was determined 
based on presence of somatic mutations that are associ-
ated with the alteration of protein sequences (missense 
SNVs, nonsense SNVs, and indels). Absolute total copy 
number of each gene in the genome was determined as 
the ratio of median gene depth and the overall median 
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depth in the whole exome. The aneuploidy score (AS), 
defined as the sum of the number of altered chromosome 
arms [41], was calculated by assigning to each arm + 1 if 
different from 2 copies and 0 if diploid. It ranges from 0 
(all arms are diploids) to 39 (all arms are not diploids). 
For the score assessment, long and short arms for each 
non-acrocentric chromosome and only long arms for 
chromosomes 22, 21, 15, 14, and 13 were considered. 
The microsatellite instability (MSI) status was evaluated 
by using the MSI Analysis System Kit (Promega) accord-
ing to the manufacturer’s protocol. The analysis requires 
a multiplex amplification of seven markers including 
five mononucleotide repeat markers (BAT-25, BAT-26, 
NR-21, NR-24, and MONO-27) and two pentanucleotide 
repeat markers (Penta C and Penta D). The microsatel-
lite status of each CRC cell line is reported in Additional 
file  2: Table  S1 as MSS (microsatellite stability) or MSI 
(microsatellite instability). The products were analyzed 
by capillary electrophoresis in a single injection using 
ABI 3730 DNA Analyzer capillary electrophoresis system 
(Applied Biosystems). The results were analyzed using 
GeneMapper V5.0 software (Life Technologies). Anno-
tations of CMS transcriptional subtypes (CMS1, CMS2, 
CMS3, or CMS4) and CRIS transcriptional subtypes 
(CRIS-A, CRIS-B, CRIS-C, CRIS-D, or CRIS-E) were 
based on RNA seq data as defined by Eide et al. and Isella 
et al., respectively [42, 43].

DNA methylation microarray experiments
DNA methylation data were previously obtained using 
the Infinium HumanMethylation450 BeadChip array [14] 
or recently analyzed with the Infinium MethylationE-
PIC BeadChip microarray. DNA samples (500  ng) were 
treated with sodium bisulfite using the Zymo EZ-96 DNA 
Methylation-Lightning Kit (Zymo Research, CA, USA). 
The bisulfite-converted DNA was then processed and 
hybridized onto the BeadChips according to manufac-
turer instructions (Illumina Infinium HD Assay Methyla-
tion Protocol Guide).

After single base extension and fluorescent staining, 
the BeadChips were imaged with the Illumina iScan high 
sensitivity scanner (Illumina Inc., San Diego, CA), and 
raw data recorded as *.idat files.

Bioinformatic analyses of methylation microarray data
HM450 and EPIC raw data (IDAT files) were processed 
with a similar workflow using the minfi R Bioconductor 
package and corresponding annotation packages [44]. 
In each sample, probes with detection p-value > 0.05 
were masked in the RGChannelSet. In addition, cross-
reactivity probes and probes matching SNPs at the tar-
get CpG site were filtered using previously published 

lists [45, 46]. Then, methylation and unmethylation 
signals were obtained for each CpG site using the pre-
processnoob function and β-values were computed 
[47]. Results obtained in all samples were subsequently 
merged in a single β-matrix, thus keeping only CpG 
sites targeted by both HM450 and EPIC platforms 
(452,832 CpG sites). Furthermore, CpG sites that are 
located on sex chromosomes or chrM were excluded 
(13,836 CpG sites). We performed PCA to rule out the 
potential batch effects due to slide or position (data not 
shown). The annotation of probes differentially methyl-
ated between high and low releasers was retrieved from 
the Infinium HumanMethylation450k manifest file. 
Genes were then associated with hallmark gene sets 
from MsigDB collection by using the msigdbr R pack-
age [48].

For the annotation of DNA methylation-based sub-
types, we referred to a previously published list of 318 
probes that showed significantly higher DNA methyla-
tion level in both CIMP-H and CIMP-L tumors with 
respect to non-CIMP tumors (CIMP-associated probes) 
[49]. Starting from the β-matrix obtained as described 
above, 284 out of 318 CIMP associated probes were 
selected by excluding those containing missing val-
ues. Then, we performed unsupervised clustering 
using recursively partitioned mixture model (RPMM) 
with max level = 2 and finally we associated the result-
ing clusters to CIMP classes based on their median 
DNA methylation level (CIMP-H, CIMP-L, CIMP3, 
and CIMP4, for high to low median DNA methylation 
level).

cfDNA release protocol from organoids
The characteristics of 12 CRC patient-derived orga-
noids (IRCC105_A_PDO, IRCC105_C_PDO, IRCC105_ 
E_PDO, IRCC107_A_PDO, IRCC10_A_HL, IRCC120_PDO,  
IRC C125_A_PD O,IRC C131_PD O,IRC C148_A_
PDO,IRCC150_A_PDO,IRCC161_A_PDO, IRCC166_PDO,  
IRCC174_A_PDO) are summarized in Additional file  3: 
Table  S2. PDOs were suspended in a 3D extracellular 
matrix substitute (Matrigel®, Corning) and dispensed in 
the 12-well plates as 200-µL droplets. After matrix polym-
erization (20 min at 37 °C), the droplets were overlaid with 
pre-warmed Dulbecco’s modified Eagle medium/F12 sup-
plemented with penicillin–streptomycin, 2  mM L-glu-
tamine, 1 mM n-Acetyl Cysteine, 1X B27, 1X N2, and 20 ng/
ml EGF (Sigma-Aldrich).

For cfDNA analyses, at baseline (day 0) PDOs were 
plated in Matrigel coated 12-well plates with a medium 
supplemented with 2% Matrigel. After 4  days, superna-
tants were collected and centrifuged at 3000 g for 10 min, 
without break. Then, 10 µl of supernatant was measured 
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using the Qubit 4 (ThermoFisher) dsDNA HS. The 
cfDNA concentration was calculated by normalizing the 
Qubit value in relation to the number of cells.

Patient‑derived xenografts (PDXs)
The mutational, transcriptional, and methylation pro-
files of PDXs presented in this paper represent a subset 
of a larger xenograft cohort, which is described in [50], 
collected and characterized in the Translational Cancer 
Medicine laboratory in Candiolo Cancer Institute FPO-
IRCCS. Research involving human specimens was per-
formed in accordance with the Declaration of Helsinki. 
The characteristics of these 490 PDXs are summarized in 
Additional file 4: Table S3. A dataset of 490 PDX meth-
ylation profiles was obtained using Illumina Methylatio-
nEPIC (v1) bead chip. Raw data was processed with the 
Minfi package (v1.32.0), using the function preproc-
essNoob [47]. To account for possible methylation sig-
nals originating from the murine infiltrate, we removed 
probes known to specifically map on the mouse genome. 
To this end, we combined two lists of murine-specific 
probes, obtained from Gujar et  al. and Needhamsen 
et al. which resulted in removal of 22,537 probes [51, 52]. 
Six samples were removed in quality control (median 
intensity < 10.5); 64,361 probes were removed for detec-
tion P > 0.01. Probes mapping on X and Y chromosomes 
(19,627), on SNPs (8423), and on multiple loci on the 
genome (43,177) were also removed as gold standard fil-
tering [53]. CIMP annotation for this dataset has been 
obtained using the CIMP-general (CIMP-H & CIMP-L) 
markers panel from Hinoue et al. [49].

Pharmacological treatment
Five CRC cell lines were treated with decitabine (DAC, 
5′-Aza-2’-deoxycytidine) that was purchased from 
Sigma-Aldrich, diluted in DMSO and added at 1 nM con-
centration. After 4 days of treatment, without significant 
changes in cell viability, the media was refreshed and cell 
lines were seeded for cfDNA screening for additional 
4 days in the absence of drug. The same treatment pro-
tocol was applied to BXPC-3, CAPAN-1, HPAF-II, and 
ASPC-1 pancreatic cancer cell lines using experimentally 
determined sub-lethal concentrations of DAC.

Assay for transposase‑accessible chromatin sequencing 
(ATAC‑seq) analysis
HCT116 and HCT116 DKO cells were detached from 
growing plates, at baseline (day 0). One million living 
cells were plated in 10-cm dishes and cultured for 3 days. 
For ATAC-seq analysis, cells were cryopreserved in 1 ml 
of serum-free cryopreservation media (Bambanker, Nip-
pon Genetics Europe) containing 1 × 10^6 cells in biolog-
ical triplicate. The ATAC-seq analyses were performed 

following manufacturer instructions (Diagenode ATAC-
seq kit, Cat. No. C01080002). Raw FASTQ files were 
initially trimmed using the Trim Galore tool and mito-
chondrial reads were discarded using Xenome [54]. The 
samples were aligned to hg38 genome using BWA-mem, 
duplicates were marked using Picard Tools MarkDupli-
cates and only deduplicated properly paired reads were 
selected for further analysis. In order to account for Tn5 
shift, all positive strand reads were shifted by + 4 bps and 
all negative strand reads were shifted by − 5 bps. Peak 
calling was then performed individually for each sam-
ple using MACS2 [55] and peak scores for each sample 
were normalized to a “score per million” for read depth 
variations [56]. Next, the peak summits were extended by 
250 bp on either side to a final width of 501 bp, filtered by 
the ENCODE hg38 blacklist [57], and filtered to remove 
peaks that extend beyond the ends of the chromosomes. 
Overlapping peaks for each condition (HCT116 WT and 
DKO) were handled to generate consensus peak sets [56]. 
The number of fragments overlapping the consensus 
peak set were computed using SAMtools depth result-
ing in an insertion counts matrix [56]. Next, DESeq2 was 
used to perform differential chromatin accessibility anal-
ysis. Adjusted p-values were calculated using the Ben-
jamini–Hochberg (BH) method and only regions with 
adjusted p-value of less than 0.05 were considered [56].

Transcriptomics analysis
RNA from cells was extracted using the Maxwell® RSC 
miRNA Tissue Kit (Promega, Cat# AS1460) and RNA-
seq analysis was performed using TruSeq® Stranded 
mRNA Library Prep (Illumina, cat# 20020594), accord-
ing to the manufacturer’s protocols. RNA-seq reads were 
aligned to hg38 using STAR aligner and subsequently 
RSEM was used for transcript and gene quantification 
and GENCODE v44 as gene annotation. Then, start-
ing from RSEM genes results, robust FPKM values were 
computed using DESeq2. Two conditions (HCT116 WT 
and DKO) were compared. Independent filtering was 
applied using the results function, and adjusted p-values 
were calculated using the BH method. Coherently with 
other analysis, adjusted p-values of less than 0.05 were 
considered.

Whole genome sequencing of nuclear and supernatant 
DNA
NGS libraries for DNA released in the supernatant of 
CRC cell lines were prepared starting with 2 µg of DNA 
and processed with Illumina TruSeq DNA PCR-Free kit 
(Illumina Inc., San Diego, CA, USA). In order to main-
tain the precise fragment distribution, we introduced 
some modifications to the manufacturer’s protocol. In 
particular, any fragmentation step has been avoided, as 
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well as bead-based clean up steps have been modified 
with the aim to preserve all short fragments. Quality 
of final libraries has been assessed using the 2100 Bio-
analyzer with a High-Sensitivity DNA assay kit (Agilent 
Technologies, Santa Clara, CA). Equal amounts of DNA 
libraries were pooled and sequenced on NovaSeq6000 
(Illumina Inc., San Diego, CA, USA). Fastq files were ana-
lyzed as previously reported [58, 59], and the identity of 
all cell lines was determined using unique allelic profiles 
based on Single Nucleotide Polymorphism Identification 
(SNP_ID) annotated using the dbSNP version 153. Only 
alleles with a fractional abundance above 30%. SNP_ID 
were considered matched when the fractional abundance 
between two profiles exceeded 95% [60]. Mutational call-
ing was performed as previously reported [58, 59].

Statistics
Statistical analyses were performed using Graph-
Pad Prism software. All data are presented as either 
mean ± S.D. or ± S.E.M. (as indicated in figure legends). 
To determine statistical significance for cfDNA values in 
relation to analytical variables, we applied nonparamet-
ric tests because the data did not follow a Gaussian-like 
distribution. Single-variable Spearman correlation was 
performed between cfDNA and cell doubling time, cell 
cycle, cell loss, or aneuploidy score. In all other cases, 
the Mann–Whitney test was performed. Symbols for sta-
tistical comparison are *p < 0.05; **p < 0.01; ***p < 0.005; 
****p < 0.001.

Results
cfDNA release shows large inter‑cell variability
To identify cancer cell intrinsic features associated with 
cfDNA release, we exploited a large collection of 240 
CRC cell lines, most of which were previously reported 
(Additional file 1: Fig S1) [36–39]. We selected a panel 
of 76 CRC models representative of the main molecu-
lar subtypes occurring in clinical samples. As depicted 
in Fig.  1, evaluation of cfDNA release was performed 
at a standardized arbitrary time point after seeding 
recently thawed cells in their recommended culture 
media. The raw cfDNA values in the supernatant were 
normalized by the number of cells at the end of the 
assay to account for samples with different proliferation 
kinetics. Surprisingly, our screening revealed a wide 
dynamic range of cfDNA shed by CRC cells in culture 
with values between 7.8 and 540.8 ng/µl (Fig. 2A, Addi-
tional file  5: Table  S4). We investigated if the genomic 
features in the supernatant cfDNA were in line with 
the nuclear DNA by performing WGS of both intracel-
lular DNA and supernatant cfDNA in a representative 
subset of eight CRC cell lines. By analyzing genomic 
positions annotated as common single-nucleotide poly-
morphisms (dbSNPs) version153, we found more than 
95% similarity between the supernatant cfDNA samples 
and their matched nuclear DNA samples (Additional 
file 6: Table S5). We also found that 99.67–99.99% of the 
reads from intracellular DNA and supernatant cfDNA 
aligned with chromosomal DNA, respectively. At least 

Fig. 1 Workflow of cfDNA release detection protocol. The release of cfDNA was measured in a collection of 76 CRC cell lines 
including patient-derived primary models. Two million live cells were seeded in duplicate, and the supernatant was collected for cfDNA 
quantification after 4 days in culture without changing the medium. In parallel, the cell pellet was analyzed for cell cycle and cell death parameters
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in the small set of cell lines analyzed for this purpose 
(HCT116, HCT15, C75), mitochondrial reads accounted 
for only 0.220 ± 0.151% (mean ± SD of the three cell 
lines) of intracellular DNA and 0.012 ± 0.012% of super-
natant DNA. Therefore, in our setting, the contribution 
of mitochondrial DNA to the overall amount of cfDNA 
appears negligible (Additional file 7: Table S6).

The release of cfDNA is influenced by cell proliferation 
and cell death‑related parameters
We found that the slowest cycling cells released more 
DNA, as shown by the correlation between cell doubling 
time and cfDNA amount (r = 0.72; ****p < 0.001, Fig.  2A 
and Additional file  1: Fig S2). To corroborate this evi-
dence, we analyzed cell cycle phases, and we found that 
the levels of cfDNA were significantly anti-correlated 
with the percentage of cells in phase 2N (rho =  − 0.31, 
**p < 0.005). On the other hand, cfDNA quantity showed 

a positive correlation with the percentage of cells in phase 
S (rho = 0.24, *p < 0.05), in phase 4N (rho = 0.27, *p < 0.05) 
and particularly in the mitotic (M) phase (rho = 0.42, 
***p < 0.001). Further evaluation of the M phase in repre-
sentative cells from the different cfDNA release quartiles 
showed enrichment in the prophase/metaphase stages in 
the highest quartile (Additional file  1: Fig S3). We then 
reasoned that, in addition to dividing cells, also dead or 
dying cells could play a major role in cfDNA release. A 
cell loss index was calculated by experimentally assess-
ing the number of apoptotic and/or necrotic cells that 
contributed to cfDNA release in the supernatant. As 
expected, the cell loss index was significantly correlated 
to cfDNA quantity (rho = 0.55, **** p < 0.001) (Fig.  2A, 
Additional file 1: Fig S2).

All together, these observations suggest that higher lev-
els of cfDNA release are associated with both slower cell 
cycling and increased cell death.

Fig. 2 Association of cfDNA release with biological parameters and molecular features in CRC cell lines. A  Histograms indicate the amount 
of cfDNA (ng/µl) detected in the supernatant of 76 CRC cell lines after 4 days in culture. cfDNA values detected by Qubit were normalized 
on the number of cells at the final day of each experiment. Data points and error bars indicate mean + SD. The column color code groups the cell 
lines according to the quartiles of cfDNA release. The cell doubling time was measured by fluorescent analysis of cell trace violet incorporation. Cell 
cycle phases (2N, S, 4N, M) were determined by flow cytometric analysis of Phospho-Histone 3 (PH3). The cell loss index (apoptotic and necrotic 
cells) was calculated by annexin V/ propidium iodide staining. Annotated molecular features depicted in color boxes indicate Microsatellite Instable 
or Stable status (MSI or MSS); aneuploidy score based on NGS data as defined by Taylor et al. [36]; CIMP classification based on four methylation 
classes (CIMP-1, CIMP-2, CIMP-L, CIMP-H) according to Hinoue et al. [42].  B  Comparative analyses of cfDNA values in CRC cell line groups based 
on MSI and MSS status was performed using the non-parametric Mann Whitney test (*  p < 0.05).  C  Comparative analyses of cfDNA values 
in CRC cell lines with grouped methylation classes labeled as CIMP negative (CIMP classes 1 and 2) or CIMP positive (low and high CIMP classes) 
was performed using the non-parametric Mann Whitney test (*p < 0.05)
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The release of cfDNA is associated with CRC molecular 
features
Next, cfDNA release values were associated with molec-
ular features such as MSI phenotype, aneuploidy score, 
and methylation classes (CIMP). We found that the MSI 
phenotype was negatively associated with cfDNA release 
in CRC cell lines (*p < 0.05; Fig. 2A, Additional file 1: Fig 
S2), recapitulating what has recently been reported in 
patients [61].

A trend towards an increased aneuploidy score was 
found in cells shedding more cfDNA (rho = 0.22, p = 0.05; 
Additional file 1: Fig S2). We then investigated the impact 
of the epigenotype by classifying cell lines according to 
Hinoue and colleagues [49]. Lower cfDNA release was 
observed in CIMP positive (Low and High) cells versus 
CIMP negative (CIMP3 and CIMP4) samples (*p < 0.05; 
Fig. 2B). These results suggest that the phenotype defined 
by high level of methylation and normal ploidy such as 
MSI would release less cfDNA; on the other hand, the 
phenotype with chromosomal instability caused by hypo-
methylation may lead to higher cfDNA release.

Derivation and validation of a methylation signature 
to predict cfDNA release in CRC cell lines
Intrigued by the above findings, we decided to investigate 
more thoroughly the impact of the DNA methylation 
profile on cfDNA release. We performed a linear regres-
sion modeling using methylation microarray probes to 
stratify the previously screened 76 cell lines by quartiles 
of cfDNA values. Using methylomes from cell lines fall-
ing in the first (n = 19) and fourth (n = 19) quartiles of 
detected cfDNA values, we identified a subset of 145 
differentially methylated probes that were significantly 
associated with cfDNA release (FDR < 0.01). Annotation 
of the genes associated with differentially methylated 
gene promoter regions in high versus low releasers did 
not reveal any specific pathway enrichment (Additional 
file  8: Table  S7). Cells with higher levels of methylation 
at these 145 loci displayed lower cfDNA shedding and 
the signature discriminated high from low releaser sam-
ples (Fig. 3A, Additional file 9: Table S8). We then applied 
this methylation signature to predict cfDNA release in 
an independent collection of 164 CRC lines and 12 CRC 
patient-derived organoids (PDOs) for which methylomes 
had been previously reported [14] or purposely generated 
(Fig. 3B, Additional file 10: Table S9). By this analysis, a 
total of 79 and 97 CRC models were predicted to be low 
and high releasers, respectively. When our methylome 
signature was applied to these CRC models, samples pre-
dicted as low cfDNA releasers were strongly enriched 
in CIMP-high (hypergeometric test p-value = 5.3e − 09) 
and MSI status (hypergeometric test p-value = 5.7e − 09). 
From this validation collection of preclinical models, we 

selected 12 CRC lines predicted to be high or low releas-
ers. To increase the translational relevance of this data-
set, eight of these models were primary cell lines recently 
established from CRC patients. Cell lines employed as 
a validation dataset were subjected to the previously 
described protocol depicted in Fig.  1 to experimentally 
detect cfDNA in the supernatant. Similarly to the screen-
ing results (Fig. 2A), we observed again a large variability 
of cfDNA amounts among validation cell lines (Fig. 3C). 
Cancer cell lines predicted to be low releasers accord-
ing to the methylation classifier displayed decreased 
supernatant cfDNA compared to models predicted to 
be high releasers (**p < 0.005). By this approach, all but 
one organoid were predicted to be high cfDNA releas-
ers (Fig.  3B). Two of these models (one predicted to be 
a high releaser CRC131, and the one predicted to be low 
releaser CRC161) were then experimentally validated. 
Our results showed that the organoid predicted to be low 
releaser sheds significantly less cfDNA than an organoid 
predicted among the high releasers (Fig. 3D).

In order to have in  vivo validation for cfDNA meas-
urements and for improving the clinical relevance of our 
work, we analyzed the methylome profiles of a previ-
ously established collection of 490 CRC patient-derived 
xenografts (PDXs). When our methylome signature was 
applied to the PDXs, all MSI cases clustered in the group 
of samples predicted as low cfDNA releasers (Fig.  3E). 
CIMP-high tumors were enriched in samples predicted 
as low cfDNA releasers (*p < 0.005).

Genetic or pharmacological depletion of DNA methylation 
promotes cfDNA release
Our data indicated an association between DNA meth-
ylation status and cfDNA release. To functionally char-
acterize the impact of DNA methylation on cfDNA 
release, we undertook two functional approaches. We 
first exploited the HCT116 DNMT1/DNMT3B knock-
out (HCT116 DKO) cell line which lacks the enzymes 
establishing and maintaining the methylation patterns, 
leading to an almost completely demethylated genome 
as previously described [62]. We found that HCT116 
DKO released significantly more cfDNA as compared to 
the parental cell line (***p < 0.001; Fig. 4A). Consistently, 
we observed that the supernatant of HCT116 DKO con-
tained more abundant copies of the KRAS G13D mutant 
allele compared to parental cells (Additional file  1: Fig 
S4). As a second functional approach, we treated five 
low releaser models with the demethylating agent decit-
abine at a 1  nM concentration which has been shown 
to deprive cells from methylation without impacting 
cell survival [63]. We found that decitabine significantly 
increased the amount of cfDNA shedding in all tested 
cell lines (Fig.  4B). This suggests that global changes in 
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Fig. 3 Derivation and validation of a methylation signature to predict cfDNA release in CRC cell lines, patient-derived organoids 
and patient-derived xenografts. A Heatmap depicting β-values of individual CpG Islands differentially methylated between cell lines experimentally 
classified in two groups (high vs low cfDNA) based on the amount of cfDNA shed in the supernatant. High cfDNA and low cfDNA screening classes 
include cell lines distributed in the top two or bottom two quartiles, respectively. Rows in the heatmap indicate samples sorted by cfDNA release 
values, while columns represent probes sorted by mean methylation level across samples. B Differentially methylated probes between high and low 
cfDNA releasing cells were applied to a validation dataset of 164 CRC cell lines and 12 PDOs to predict cfDNA release classes. Heatmap rows rank all 
samples from expected high to expected low cfDNA based on silhouette width values. Columns indicate probes sorted by mean methylation level 
across all samples. C Evaluation of cfDNA release in the supernatant of the indicated CRC cell lines, including patient-derived models (HROC257_
T0M1, HROC131_T0M3, IRCC1_XL, HROC383_T0M2, HROC278_MET, CRC0078_XL, HROC277_T0M1, CRC0104_XL), chosen among those predicted 
to be high or low releasers based on the heatmap shown in panelB. The color code of each bar is based on cfDNA screening quartiles highlighted 
in Figure 2A. Columns and error bars indicate mean + SD. D Evaluation of cfDNA release in the supernatant of the indicated CRC patient-derived 
organoids, chosen among those predicted to be high or low releasers based on the heatmap shown in right panel A. Columns and error bars 
indicate mean + SEM. E Heatmap depicting β-values of individual CpG Islands (125/145, due to the filtering of probes that could hybridize 
to the mouse genome, see Methods) of the signature in 490 CRC PDXs, divided in the two groups identified by the methylation classifier. Molecular 
annotations and the clusters identified by NMF with k=2 are shown on the left. MSI or CIMP positive samples are enriched in the low cfDNA release 
group (Fisher’s test, all *** P < 0.005)
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the methylation pattern can promote cfDNA release in 
CRC models. To generalize our findings to another tumor 
type, we applied decitabine to four pancreatic cancer cell 
lines and we observed an increase of cfDNA in the super-
natant also in these models (Additional file 1: Fig S4).

cfDNA release is associated with increased chromatin 
accessibility and fragmentation
ATAC-seq was employed to characterize the chromatin 
accessibility of intracellular DNA of the HCT116 DKO 
cells in comparison to their parental cells (HCT116 
WT). As expected, we observed a genome-wide rewir-
ing of chromatin accessibility by identifying 10,551 
gain of accessibility events in DKO cells, in compari-
son to 4470 regions that were more accessible in WT 
(Fig. 5A).

RNA-seq analysis revealed a total of 4455 genes dif-
ferentially expressed between isogenic pairs. Among 
these, 1676 genes were downregulated, and 2779 genes 
were upregulated in DKO cells in comparison to WT 
cells (L2FC > 1 and adjusted p < 0.05, Wald test with BH 
correction). Of the 2779 upregulated genes, 373 (13.4%) 
exhibited increased chromatin accessibility in their pro-
moters (Fig. 5B). This overlap was higher than the over-
lap obtained by chance when the same number of genes 
with random promoter accessibility (iterating 10 times) 
was intersected against the set of more expressed genes 
in DKO (5.6 ± 0.4%).

We also analyzed the fragmentation pattern of 
DNA associated with differentially accessible chro-
matin regions. We observed a statistically signifi-
cant enrichment of shortened intracellular DNA 

fragments in HCT116 DKO in comparison to WT cells 
(****p < 0.0001; Wilcoxon rank-sum test) by the analysis 
of ATAC-seq data (Fig. 5C).

It is plausible that specific nucleases could more eas-
ily cut DNA within nucleosomes in regions with higher 
nucleosome accessibility.

Discussion
Recent technological advances have allowed the isolation 
and analyses of circulating nucleic acids in different phys-
iopathological conditions beyond oncology, including 
non-invasive prenatal screening, autoimmune diseases, 
organ transplantation, and chronic liver disease [64, 65]. 
In oncology, analysis of cfDNA in blood can be applied 
for early cancer detection, monitoring of tumor burden 
as well as to study tumor heterogeneity and mechanisms 
of drug resistance [66–68]. The amount of cfDNA shed 
by human cancers has consistently been correlated to 
tumor stage. However, some advanced tumors release 
minimal to undetectable amounts of cfDNA, defining the 
concept of non-shedders; while some early malignancies 
are clearly revealed by liquid biopsy [14, 17, 31]. Some 
of the discrepancies in cfDNA release among tumors 
with different histology can be attributed to anatomical 
and vascular barriers. However, highly variable levels of 
cfDNA have also been found in patients with tumors of 
the same stage and histopathological origin, raising ques-
tions about the factors affecting cfDNA release [10]. We 
believe that basic functional studies should complement 
clinical observations and help elucidate the mechanisms 
of cfDNA shedding. We tested the hypothesis that can-
cer cell intrinsic features could influence the amount of 

Fig. 4 Genetic and pharmacological depletion of DNA methylation stimulates cfDNA release. A cfDNA release was increased in the supernatant 
of CRC cells with inactivation of DNA Methyltransferases 1 and 3B (HCT116DKO) compared to their parental counterpart (HCT116). Circles indicate 
individual replicates. Unpaired test with Welch’s correction (* p < 0.05).B cfDNA shedding was increased in the supernatant of low releasing CRC cells 
exposed to non-toxic concentrations (1 nM) of the demethylating agent decitabine. Statistical significance: * p < 0.05, ** p < 0.01
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cfDNA release. We exploited a large collection of can-
cer cell lines sharing colorectal origin, to experimentally 
quantify the cfDNA release in the supernatant. The pre-
clinical models employed for the large initial screen were 
selected to mirror the main molecular and pathological 
subtypes observed in patients. Surprisingly, cfDNA val-
ues shed by CRC cell lines spanned over nearly three 
logarithms of concentration, thereby reproducing the 

variability in cancer patients [69]. Experiments car-
ried out under controlled laboratory conditions allowed 
measuring cell biology parameters in preclinical mod-
els, such as cell doubling time, cell cycle phases and cell 
death that are not easily determined in patient samples. 
Previous works also exploited cancer cells in culture to 
study the basic biology underlying the process of cfDNA 
shedding in the supernatant [70]. However, these studies 

Fig. 5 Association between cfDNA release and chromatin accessibility. A Differential chromatin accessibility analysis between HCT116 DKO 
and their parental WT counterpart. B Differential gene expression analysis between HCT116 DKO and their parental WT counterpart. Out 
of the 2779 genes upregulated in DKO in comparison to WT cells, 373 showed increased chromatin accessibility in their promoter. C Fragment 
length distribution of intracellular DNA from HCT116 WT and DKO cells analyzed by ATAC-seq. Statistical significance: **** p<0.0001
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investigated in detail only a limited number of cell lines 
of different histology. Our work represents the first large 
atlas depicting cfDNA of CRC origin in relation to the 
intrinsic variability of different cell biology parameters. 
We found that slower cycling cells release more cfDNA 
in the supernatant which is associated with an increased 
fraction of cells in the mitotic phase. Conversely, high 
turn-over of the cells, defined by fast growth, was pre-
viously suggested to be the origin of increased cfDNA 
values (reviewed in [71]). Interestingly, a correlation 
has been found between the staining of the prolifera-
tion marker Ki67 in patient samples and cfDNA release 
in breast and lung cancer but not in CRC [72, 73]. In 
accordance with previous studies, we found a clear asso-
ciation between increased cell death and cfDNA release 
reporting that apoptotic and necrotic cells contribute to 
cfDNA in the circulation [74].

We noted that high cfDNA releaser cells often dis-
played a concomitantly high cell loss index as well as an 
increased percentage of cells in the M-phase with enrich-
ment in the prophase to metaphase in representative 
lines, suggesting the presence of chromosome segrega-
tion [75]. The co-occurrence of these factors suggests 
a possible link between cfDNA release, aneuploidy, or 
mitotic catastrophe often associated with large chromo-
somal DNA damage [21].

Among the molecular features associated with cfDNA, 
we found that low releaser cancer cell lines were enriched 
for MSI and CIMP positivity, while aneuploid and CIMP 
negative cells tended to release higher levels of cfDNA. 
Despite the fact that levels of plasma cfDNA are often 
sufficient to detect MSI status in metastatic CRC patients 
[76], a recent study has shown that MSI-high status was 
significantly associated with a decreased probability 
of detecting tumor derived circulating DNA in a large 
cohort of surgically resected CRC patients [69].

The MSI status is often associated with BRAF muta-
tions and a positive CIMP phenotype in CRC samples 
[77–80]. The abovementioned study on resected CRC 
patients found an impact on cfDNA of concomitant 
BRAF mutations within the MSI positive subgroup, but it 
did not provide methylome classification [81]. The small 
number of cell lines displaying overlap between MSI sta-
tus and BRAF mutations prevented us from performing 
subgroup analysis of experimental data. Nevertheless, 
we were able to perform correlation analyses between 
cfDNA in the supernatant and methylome classification. 
Despite the observation that MSI and CIMP positivity 
were enriched in low cfDNA releasers, these molecular 
variables were not sufficient to fully explain the variability 
in the release of cfDNA in our collection of CRC models. 
The unexpected association between methylation classes 
and cfDNA prompted us to exploit methylome data to 

derive a methylation signature that could efficiently pre-
dict cfDNA release. By applying this classifier to methy-
lome data of an independent dataset of CRC preclinical 
models, we were able to successfully predict the releas-
ing behavior by individual primary cell lines and patient-
derived organoids. Methylome signatures have been 
described to detect the presence or estimate the quan-
tity of tumor-derived DNA in plasma cfDNA of cancer 
patients [82]. However, we are not aware of studies that 
have derived a methylation-based signature to predict 
the intrinsic propensity of cfDNA release. Although we 
were not able to provide direct patient measurements, 
we applied our release signature to methylomes of a very 
large PDX dataset. We found that tumors classified as 
CIMPs or MSI high were predicted as low releasers of 
cfDNA. In the future, our methylation signature should 
be tested prospectively in CRC patients enrolled in liquid 
biopsy trials. If validated, it might have clinical implica-
tions in the prediction of low cfDNA shedding tumors 
and the identification of cfDNA false negative assays in 
individuals with cancer.

Aberrant methylation patterns occur very early and are 
considered a hallmark in the carcinogenesis process with 
global hypomethylation followed by altered hypermeth-
ylation of specific DNA regions [83, 84]. We hypoth-
esized that the functional modulation of methylation 
patterns could impact the propensity of cancer cells to 
release cfDNA. We found that methylation depletion was 
associated with increased cfDNA in the supernatant of a 
genetically engineered cancer model. We sought to cor-
roborate this finding by pharmacological demethylation 
treatment. All tested CRC cell lines released significantly 
more cfDNA when treated with a short course of decit-
abine at a concentration known to affect DNA methyla-
tion without inducing cytotoxicity. We replicated these 
observations in a panel of pancreatic cancer cell lines 
indicating that the impact of demethylation on cfDNA 
is not dependent on histology. Demethylating agents 
are approved for hematological malignancies and their 
use in patients with solid tumors is limited to clinical 
trials [85]. In this regard, the ORIENTATE clinical trial 
(NCT05360264) is designed to test the efficacy of decit-
abine in selected pancreatic adenocarcinoma patients. 
Plasma samples from patients enrolled in this trial may 
be collected to test whether demethylating agents can 
improve the release of cfDNA from solid tumors. The 
potential limitation to this model is that the decitabine 
treatment may induce an increase in release of cfDNA by 
normal cells.

Our finding that enhancing demethylation promotes 
cfDNA release leaves open questions on the underlying 
molecular mechanisms, which we attempted to partially 
explain by performing ATAC-seq and WGS in the cells 
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knocked out for DNA methyltransferases in comparison 
with the wild type. We found that the cfDNA release is 
associated with increased nucleosome accessibility and 
higher cfDNA fragmentation. Our observation is indeed 
consistent with prior work reporting that the length of 
cfDNA fragments is shortened in the presence of lower 
DNA methylation levels, which presumably impacts 
higher nucleosome accessibility that in turn favors cut-
ting within the nucleosomes by specific nucleases [23].

Our work presents some limitations. As we solely 
relied on microarray technology for methylation analysis, 
in the future we wish to exploit advanced next-genera-
tion sequencing methods for epigenetic analysis. We did 
a partial investigation of intrinsic parameters of cfDNA 
such as fragmentation and nucleosome accessibility. 
Although these analyses provided initial mechanistic 
clues on cfDNA variability, we believe that in-depth anal-
ysis is beyond the scope of this work. Differently from 
other cfDNA studies on cell lines, we did not assess the 
release kinetics. Due to the complexity of testing a large 
number of models, we carefully selected a single time-
point for supernatant collection to ensure optimal culture 
conditions and avoid over-growth. We limited the analy-
sis to cell biology parameters including proliferation, cell 
cycle and cell death, but we did not investigate the impli-
cations of cellular metabolic pathways. Interestingly, a 
previous study proposed that the pattern of cfDNA could 
be dependent on the glycolytic activity of cancer cell lines 
[86]. Future metabolomics profiling of our large CRC col-
lection might allow correlative analyses with cfDNA.

Another caveat of our cell culture approach is that we 
did not assess the impact of the local tumor microenvi-
ronment. The crosstalk of cancer cells with fibroblasts, 
endothelial, and immune cells could influence the release 
of cfDNA [4, 70], and future co-culture experiments 
could shed light on this aspect. We acknowledge that 
our initial screening was performed in conventional 2D 
cell culture conditions and did not take into account the 
presence of factors or forces of the extracellular matrix 
[87]. For instance, it would be interesting to investigate 
how stiffness can influence cfDNA release by growing 
cells in different mixed collagen-matrigel matrices. We 
also note that we measured cfDNA in the supernatant of 
cells cultured at conventional laboratory gas and media 
conditions, which may not recapitulate the oxygen and 
nutrient concentrations found in the tumor microenvi-
ronment. In this regard, perhaps the major limitation of 
our in  vitro work is the lack of vascular barriers, blood 
supply, and clearance that are typical of the human body. 
To address these issues, others had proposed to employ 
xenograft models of human tumors to study cfDNA [88]. 
However, this in  vivo approach also has caveats due to 

the lack of vascularization in subcutaneous xenografts, 
and the low volume of blood circulating in mice.

Conclusions
This is the first work dissecting the release of cfDNA in 
a large dataset of CRC preclinical models. This study 
brings some clinically relevant insights potentially 
describing tumor intrinsic features that contribute to 
explain the variability of cfDNA amounts seen in CRC 
patients.
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