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Abstract 

Background Epigenetic clocks are mathematical models used to estimate epigenetic age based on DNA methyla-
tion at specific CpG sites. As new methylation microarrays are developed and older models discontinued, existing epi-
genetic clocks might become obsolete. Here, we explored the effects of the changes introduced in the new EPICv2 
DNA methylation array on existing epigenetic clocks.

Methods We tested the performance of four epigenetic clocks on the probeset of the EPICv2 array using a data-
set of 10,835 samples. We developed a new epigenetic age prediction model compatible across the 450 k, EPICv1, 
and EPICv2 microarrays and validated it on 2095 samples. We estimated technical noise and intra-subject variation 
using two datasets with repeated sampling. We used data from (i) cancer survivors who had undergone different 
therapies, (ii) breast cancer patients and controls, and (iii) an exercise-based interventional study, to test the ability 
of our model to detect alterations in epigenetic age acceleration in response to theoretically antiaging interventions.

Results The results of the four epiclocks tested are significantly distorted by the EPICv2 probeset, causing an average 
difference of up to 25 years. Our new model produced highly accurate chronological age predictions, comparable 
to a state-of-the-art epiclock. The model reported the lowest epigenetic age acceleration in normal populations, 
as well as the lowest variation across technical replicates and repeated samples from the same subjects. Finally, our 
model reproduced previous results of increased epigenetic age acceleration in cancer patients and in survivors 
treated with radiation therapy, and no changes from exercise-based interventions.

Conclusion Existing epigenetic clocks require updates for full EPICv2 compatibility. Our new model translates 
the capabilities of state-of-the-art epigenetic clocks to the EPICv2 platform and is cross-compatible with older micro-
arrays. The characterization of epigenetic age prediction variation provides useful metrics to contextualize the rel-
evance of epigenetic age alterations. The analysis of data from subjects influenced by radiation, cancer, and exercise-
based interventions shows that despite being good predictors of chronological age, neither a pathological state 
like breast cancer, a hazardous environmental factor (radiation), nor exercise (a beneficial intervention) caused signifi-
cant changes in the values of the “epigenetic age” determined by these first-generation models.
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Background
In the rapidly evolving field of epigenomics, the devel-
opment of epigenetic clocks has revolutionized our 
ability to gauge biological aging through DNA methyla-
tion patterns. Changes in the methylation state of CpG 
sites have proven to be highly correlated with chrono-
logical age [1, 2]. Thus, DNA methylation patterns are 
being increasingly used to gain insights into aging and 
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associated pathologies [2] and have led to the develop-
ment of several epigenetic clocks, which are predictive 
models that estimate the age of subjects based on meth-
ylation markers [3]. In these epigenetic clocks, the model 
prediction is interpreted as the “biological” or “epige-
netic” age. Subjects whose biological age is greater than 
their chronological age are considered to have epigenetic 
age acceleration [4] (EAA). EAAs have been linked to 
increased risk for various health issues and mortality, 
independent of traditional risk factors [5–8]. Epigenetic 
clocks have thus not only underscored the potential of 
DNA methylation as a biomarker of aging [9] but also 
represent a valuable tool to gain insight into the com-
plexities of multiple pathologies [4]. In cancer, EAAs 
have been linked to an increased risk of developing 
breast and colon cancer [10, 11]. Moreover, breast tissue 
from breast cancer patients has been shown to exhibit 
EAA [12]; likewise, cancer survivors do present an accel-
erated epigenetic age compared to noncancer patients, 
with an acceleration rate dependent on the treatment 
intensity received [13].

From the initial model of Bockland et al. published in 
2011 [1], the field quickly evolved toward more robust 
models, such as the Hannum [14] and the Horvath [15] 
clocks, and later toward “second generation” approaches, 
which included features beyond DNA methylation with 
the promise of providing a “biological age” prediction 
that could better reflect age-related health status [16–18]. 
The field continues to evolve, with the implementation of 
new predictive models [19–21] and the development of 
species- [22, 23] and tissue-specific [24–27] epigenetic 
clocks. Most recently, Bernabeu et al. conducted a large-
scale study to refine the predictive ability of both first 
(methylation-based) and second (including other fea-
tures) generation epigenetic clocks, which yielded a sig-
nificant improvement over existing models in the ability 
to predict chronological age from DNA methylation data 
across multiple cohorts with subjects of all ages [28].

The evolution of epigenetic clocks has run in paral-
lel with that of methylation microarrays, whose cover-
age of DNA methylation sites increased from 27,578 in 
2008 [29, 30] to 866,836 in 2015 [31]. In 2023, Illumina 
released the newest iteration of its series of methylation 
arrays, EPICv2, which targets 920,000 methylation sites 
with 936,866 probes [32]. Although the vast majority of 
probes have been conserved across different microarray 
models over the years [32–34], some of them have been 
lost. The probes on the latest (and currently the only 
commercially available) methylation microarray version 
cover more than 80% of the probes used by the most pop-
ular epigenetic clocks (PhenoAge [16], Horvath [15] [15], 
Horvath (2018) [35], Hannum [14], DunedinPACE [17], 
etc.), but they do not offer complete coverage for any of 

them [36]. Given that earlier microarray models are now 
discontinued while there is still a need to use epigenetic 
clocks, it is necessary to evaluate whether the existing 
models can offer reliable results when using EPICv2 data.

Recent studies have shown that DNA methylation is a 
dynamic molecular feature, exhibiting changes which can 
affect epigenetic age predictions even within a 24-h time-
frame [37–39]. Apsley et  al. demonstrated that meth-
ylation values of probes in the EPICv1 array do exhibit 
significant changes using repeated sampling on the same 
subjects on 4 different timepoints within a 5-h interval. 
The effect was observed on multiple probes used by com-
mon epigenetic clocks, although the changes in the epi-
genetic age predictions were not directly reported [38]. 
More recently, Koncevičius et  al. reported oscillations 
in the epigenetic age predictions produced by 17 epige-
netic age models on 48 samples from the same subject 
obtained during a 72-h period, which they attributed to 
circadian oscillations [37]. Therefore, it is necessary to 
quantify the range of spontaneous variation in epigenetic 
age predictions to be able to distinguish truly biologically 
relevant alterations.

In this study, we examined the performance of exist-
ing epigenetic clocks using the CpG probes available in 
the new EPICv2 methylation array in human blood sam-
ples. We observed that the biological age predictions of 
these models were distorted due to missing probes in 
the EPICv2 array. To overcome this hurdle, we trained a 
model that can be applied to data obtained with 450  k, 
EPICv1, or EPICv2 chips and whose performance is at 
least on par with that of state-of-the-art models. We then 
estimated the variation of EAA in normal, non-patholog-
ical populations for our model and for four existing epi-
clocks. We used two datasets with repeated samples from 
the same subjects to obtain estimates of the contributions 
of technical and biological, intra-subject noise to the 
variation observed in the EAA distributions. The extent 
of these variations can set a threshold to distinguish nor-
mal from biologically relevant EAA changes. Finally, our 
model reproduced previously reported EAA differences 
attributed to radiation therapy and to sporadic breast 
cancer, and the negative results from an interventional 
study using physical exercise.

Methods
Study cohorts
We used exclusively publicly available methylation data 
from previous studies, which we collected from the 
GEO database [40, 41]. We provide the GEO accession 
number, related publication doi, number of samples, 
fraction of female subjects, and median age of each of 
the datasets used in Additional file 1: Table S1. The sub-
jects and methods used to generate each of the datasets 
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are fully described in the corresponding GEO entry (see 
the “Availability of data and materials” section below, 
and Additional file 1: Table S1).

Data collection and preprocessing
Methylation data from previous studies were collected 
from the In all cases, the data were preprocessed: we 
used beta values provided by the original authors when 
available; otherwise, we computed the beta value from 
the methylated and unmethylated signals using the fol-
lowing formula:

where M and U are the intensities of the methyl-
ated and unmethylated signals respectively. The main 
dataset consisted of 11,825 subjects with reported 
methylation, age, and sex data. We discarded 147 with 
nonnumerical age values, one with a reported age 
of 891  years, and one with a negative epigenetic age 
according to the cAge model. To generate training and 
test sets with even age distributions, we kept only sam-
ples with an age value present at least twice in the data-
set. This process left a total of 10,835 samples on the 
main dataset, which were split into training and test 
sets with 7259 and 3576 subjects, respectively.

On the main dataset, we computed the average beta 
value of each probe across the whole dataset (Addi-
tional file 2: Table S2) and used this average to impute 
missing values. Among the probes used to train our 
model (see below) or for running other epigenetic 
clocks, we found 1.58% missing values. The number of 
probes missing per dataset is provided in Additional 
file 3: Table S3.

The validation dataset included data from 2098 sub-
jects. Excluding subjects with missing or invalid sex 
and/or age annotations reduced the data to 2095 sub-
jects. A total of 0.23% of the beta values were missing 
for the set of probes used to run our epiclock and the 
cAge models. The missing values were imputed using 
the average values derived from the main dataset. Addi-
tional file  3: Table  S3 reports the number of probes 
missing per dataset.

The data from studies with repeated samples 
(GSE247197, GSE227809, 1 and 31 subjects, respec-
tively), the cancer survivor dataset (GSE197674, 
2138 subjects), the data from the breast cancer study 
(GSE148663, 32 subjects), and the data from the inter-
ventional study (GSE213363, 56 subjects) were also 
retrieved from the GEO database [40, 41]. We used the 
average beta values derived from the main datasets to 

β =
M

M +U + 100
,

impute beta values for 25 missing probes in the cancer 
survivor dataset.

Epigenetic age prediction using existing models
We applied the Horvath [15], Hannum [14], Pheno-
Age [16], and cAge [28] epiclocks to the methylation 
data in the main dataset by using the methods and 
parameters reported by the authors for each case and 
validated using the implementations in the pyaging 
Python library [42]. In the case of the Horvath clock, 
this implies computing an initial value using a linear 
model and then applying additional transformations 
for the “young” (≤ 20) and “adult” (> 20) subjects [15]. 
Similarly, the cAge model uses one model to predict 
age and another to predict log(age); if the age predic-
tion is ≤ 20, then it is replaced by the exponential of the 
log(age) prediction [28].

Training of the new epigenetic clock
We trained a general epigenetic age prediction model 
using the beta values of 10,000 probes and the squared 
beta values of 300 probes to perform a regularized lin-
ear regression of chronological age using elastic net 
[43]. The linear and quadratic features were chosen 
based on an EWAS study [28]: we chose the 10,000 
probes with a significant linear association with age 
with the lowest association p-value and the 300 probes 
with a significant quadratic association with age with 
the lowest association p-value.

To train our general epigenetic age prediction model, 
we separated the main dataset into training and test 
sets using a 70/30 split stratified by age (i.e., all ages 
present in the dataset were sampled in both the training 
and test sets). Elastic net combines L1 and L2 regulari-
zations, which in the scikit-learn implementation [44] 
are mixed in proportions given by the parameter L1_
ratio, which takes values between 0 and 1. This param-
eter multiplies the L1 penalty term whereas the L2 term 
is multiplied by 1-L1_ratio. Based on its performance 
in previous studies, we set the L1_ratio to 0.5 [15, 45]. 
The value of the parameter alpha (i.e., 1/C), which mul-
tiplies both the L1 and L2 penalties, was optimized to 
0.001 through fivefold cross-validation.

Age-specific models were trained using the same 
approach on 3 different batches of data with subjects 
of specific ages: age ≤ 46 (young), 26 < age < 69 (middle-
aged), and age ≥ 59 (old). The alpha value was set to 
0.001 in all cases. The three age-specific models were 
then used to perform predictions on nonoverlapping 
putative age (age values assigned by the general model) 
groups: age ≤ 36 (young), 36 < age < 59 (middle-aged), 
and age ≥ 59 (old).
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Results
DNA methylation datasets
We explored public repositories to assemble a large 
and diverse DNA methylation dataset to examine the 
performance of existing epigenetic clocks and to train 
and test new models. We used public data to generate 
two separate datasets: (1) a main dataset for evaluating 
existing models and training new ones and (2) a valida-
tion dataset to test the generalizability of new models.

The main dataset included whole blood DNA meth-
ylation data of human subjects from 24 previous 
studies (Additional file  1: Table  S1). We filtered the 
data to retain exclusively subjects labeled as controls, 
with reported age and sex values, resulting in a total 
of 11,825 individuals. To be able to split the data in a 
stratified fashion into training and test sets, we kept 
only the samples with an age value present at least 
twice in the dataset, leaving a total of 10,835 subjects 
(Fig.  1A). The subjects in this main dataset had ages 
between 8 and 96 years, with a mean of 47.68 years and 
an almost even distribution of sexes (5456 females and 
5379 males) (Fig. 1B).

The validation dataset was composed of data from 
6 additional studies (Additional file  1: Table  S1). We 
selected only control subjects with reported age and 
sex values, which resulted in a total of 2095 individuals. 
The age range in this validation set was between 14 and 
94  years, and the sex distribution was slightly biased, 
with 828 females and 1267 males (Fig. 1C–D).

Existing epigenetic clocks generate distorted results 
from EPICv2 data
Although more than 80% of the probes used by existing epi-
clocks are conserved in the EPICv2 methylation array [36], 
applying these models to data limited to the probes present 
in the EPICv2 array results in differences in epigenetic age 
predictions. We applied four different models (Horvath 
[15], Hannum [14], PhenoAge [16], and the recent chrono-
logical age prediction model (cAge) from Bernabeu et  al. 
[28]) to the main dataset of 10,835 individuals, using either 
all the required probes (complete models) or only those pre-
sent in the new EPICv2 array (truncated models). The pro-
portion of probes relevant for these models in the EPICv2 
ranged from 84.5% (Hannum) to 97.1% (cAge).

Fig. 1 Public DNA methylation datasets compiled for the study. A Number of subjects present in each of the datasets included in the main set. 
B Distribution of ages and sex in the datasets included in the main set. C and D Distribution of the number of subjects and their age and sex 
in the datasets used for the validation set
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We observed a high degree of correlation between 
chronological age and the predicted biological age in all 
cases, with cAge obtaining the highest value (r = 0.979). 
After the models were truncated to the EPICv2 probe-
set, they maintained this correlation, which was still 
strong (r > 0.88) in all cases (Fig. 2A).

However, limiting the number of probes distorted 
the epigenetic age predictions in all the models. In 
all four epiclocks, we observed a significant differ-
ence (p < 0.001, one sample t-test) in the biological age 
predicted by the complete and the truncated models 
(Fig. 2B). This effect was greater on the Hannum clock 
model, with an average difference of 25.45  years. The 
larger models PhenoAge (513 parameters) and cAge 
(4058 parameters) had average differences of − 1.11 
and − 1.67 years, respectively, whereas the average dif-
ference on the Horvath clock was just − 0.82 years.

To characterize the performance of these models in pre-
dicting chronological age, we computed the Pearson corre-
lation coefficient between the predictions and chronological 
age (r), the mean squared error (MSE), and the median abso-
lute error (MAE) for each of them. We computed the mean 
(μEAA) and standard deviations (σEAA) of the EAA distribu-
tions associated to each epigenetic (Table 1).

A new epigenetic clock compatible with the EPICv2 array
The changes in the CpG probes present in the EPICv2 
array produce significant alterations in the results of 
existing epigenetic clocks. To overcome this limitation 
and to produce robust biological age predictions using 
EPICv2 data, we trained a new epiclock model using 
CpG probes common to the 450 k, EPICv1, and EPICv2 
methylation arrays. Based on the epigenome-wide asso-
ciation study (EWAS) from Bernabeu et al. [28], there are 
42,728 probes with a significant (p-adjusted < 0.05) linear 
association with chronological age that are present in the 
three different methylation arrays. Similarly, according to 
the EWAS, there are 63,324 CpG probes with significant 
(p-adjusted < 0.05) quadratic associations with age which 
are present in the three microarray models (Fig. 3A).

Following the strategy employed by Bernabeu et  al. 
[28], we ranked the probes by their p-value on the EWAS 
and preselected the first 10,000 with linear and the first 
300 with quadratic associations to chronological age to 
train an epiclock using elastic net regression [43] (Addi-
tional file 4: Table S4).

We split the main dataset with 10,835 subjects into 
training and test sets using a 70/30 split, resulting in 7259 
and 3576 samples, respectively, and trained a general 

Fig. 2 Epigenetic clock age prediction drifts caused by the loss of probes in the EPICv2 microarray. A Epigenetic age predictions by four existing 
epigenetic clocks in 10,835 subjects using either their complete sets of CpG probes (blue) or only those available in the EPICv2 array (orange). B 
Distribution of differences between the values predicted using the full sets of probes or only those present in the EPICv2 array (drift) for the same 
four epigenetic clocks
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age-prediction model. The model used an L1 ratio of 
0.5 [28], and the alpha value was optimized to 0.001 
through fivefold cross-validation. This general model 
obtained a low prediction error (mean squared error 
(MSE) = 3.14  years) and a high correlation between the 

predicted and chronological ages (r = 0.982) in the test 
set (Fig. 3B).

Previous works have suggested that the relationship 
between methylation state and age is nonlinear [14, 28, 
46–49]. Therefore, we decided to stratify our training data 

Fig. 3 Results of the new epigenetic clocks in the test dataset. A Methylation probes with significant linear (left) and quadratic (right) associations 
with chronological age in the EWAS from Bernabeu et al. present in the 450 k, EPICv1, and EPICv2 arrays. B Prediction results on the test set 
by the General and Combined models. The blue line indicates the 1:1 correspondence. C. Schematic overview of the training of the different 
age prediction models. D Absolute error of the ages predicted in the test set by the general and combined models. E Absolute error 
from the predictions on the test set by each model, broken down by age group. *Indicates significant differences (p < 0.05, one-sided Wilcoxon 
rank-sum test) between groups
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into three age groups and train separate predictors for 
“young,” “middle-aged,” and “old” subjects. The predictors 
were intended to work on nonoverlapping age groups, 
but we did use overlapping age ranges during training 
to limit the inconsistencies between models assigned to 
contiguous groups. We produced a combined model in 
which the general model assigned a sample to one of the 
three age groups, and then the corresponding age-strat-
ified model generated the age prediction (Fig.  3C). This 
combined model reduced the age prediction error signifi-
cantly (p < 0.05, one-sided Wilcoxon rank-sum test) with 
respect to the general model (Fig.  3B, D), lowering the 
MSE to 3.06 years in the test set and increasing the cor-
relation between the predicted and chronological ages to 
0.983. Although the combined model reduced the error 
in all age groups, the difference was statistically signifi-
cant (p < 0.05, one-sided Wilcoxon rank-sum test) only 
in the younger subjects (Fig. 3E). Weights for the general 
and age-specific models are provided in Additional file 5: 
Tables S5 to S8. The overlap of EPICv2 probes used by 
our general and combined models and by the rest of the 
epiclocks examined is presented schematically in Addi-
tional file 6: Fig. S1A and B. To underscore the numerical 
differences between models, we present the coefficients 
used for the overlapping probes in our models, cAge and 
the Horvath clock in Additional file 6: Fig. S1C.

The performance of the new clock is on par with that of 
a state‑of‑the‑art model
To examine the performance of our model, we compared 
it against cAge, a refined model that has shown signifi-
cant improvement over previous epigenetic clocks [28]. 
We tested the complete cAge and our general and com-
bined models on a validation dataset with 2095 samples 
from 6 studies. We included all the probes used for cAge 
and those required by our models and predicted the age 
of each sample based on the methylation data. In all 
cases, the predicted ages were strongly correlated with 
the chronological ages (Fig. 4A).

Our general model performed as well as cAge, with no 
significant difference (p > 0.05, one-sided Wilcoxon rank-
sum test) in the distribution of errors between the two, 
whereas the error from the predictions of our combined 
(age-segregated) model was significantly lower (p > 0.05, 
one-sided Wilcoxon test) (Fig.  4B). By breaking down 
the data by age group, we could observe differences in 
the prediction error. In the young (≤ 36) and old (≥ 59) 
groups, the error from the combined model was signifi-
cantly lower (p > 0.05, one-sided Wilcoxon test) than that 
of the cAge and the general models. In the group of mid-
dle-aged subjects, the error of the general model was sig-
nificantly greater (p > 0.05, one-sided Wilcoxon test) than 
that of the other two models (Fig. 4C).

To be able to perform a more general comparison, we 
computed again the values of r, MSE, MAE, μEAA, and 
σEAA for our models and of the other four epigenetic 
clocks using the validation dataset (Table  1, Additional 
file  6: Fig. S2). These metrics were largely compatible 
with those obtained on the main dataset, with the excep-
tion of cAge, which had a large decrease in MAE, MSE, 
μEAA, and σEAA.

Technical and intra‑subject EAA variations
It has recently been shown that epigenetic clocks are 
affected by spontaneous variation in DNA methylation 
values, leading to changes in epigenetic age predictions 
[37, 38]. Additionally, the experimental process to obtain 
methylation values might introduce another source of 
variation. In order to establish the magnitude of these 
variations, we applied our model and the four epiclocks 
discussed above to data obtained from repeated sampling 
of the same subjects.

First, we examined the data from the study of 
Koncevičius et  al., which reported DNA methylation of 
blood samples of a 52-year-old male subject taken every 
3 h over a period of 72 h [37] (GSE247197). This dataset 
included technical replicates, which we used to estimate 
the EAA deviations associated with technical noise, i.e., 
variations across multiple experimentally determined 
beta values on the same sample. All the (complete) mod-
els tested exhibited variation across technical replicates 
(Fig.  5A). To characterize this variation, we subtracted 
the mean value obtained on each set of replicates and 
then computed the standard deviation across all the 
mean-centered values. We interpreted the resulting 
measure as an estimate of the technical noise (σnoise). The 
predictions of our general model had the lowest σnoise 
(0.78  years), whereas Horvath’s model had the highest, 
reaching 1.26 years (Fig. 5B, Table 1). We then computed 
the standard deviation across all samples in the dataset 
as a first estimate for the intra-subject variability (σsubject). 
The values of σsubject were in all cases larger than σnoise, 
and in this case, the largest and lowest values corre-
sponded to our combined model (0.83 years) and to Phe-
noAge (2.36 years), respectively (Fig. 5B, Table 1).

We then applied all the models to the data from Aps-
ley et  al., discarding the samples from subjects under 
the stress test. This data includes DNA methylation data 
from blood drawn from 31 subjects at 4 different time 
points over a period of 4  h and 45  min under stress or 
control conditions [38] (GSE227809). Using data from the 
14 subjects in control condition, we computed the stand-
ard deviation across the mean-subtracted predictions of 
all subjects for all the models. We interpreted this meas-
ure as another estimate of σsubject. The results were largely 
compatible with the estimate of σsubject from Koncevičius’ 
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data; the largest difference was observed on Horvath’s 
model, for which σsubject rose from 1.99 to 3.31 years. In 
all the other models, σsubject changed by less than 1 year. 
Also in this dataset, our combined model’s predictions 
suffered the least variation, whereas those from Horvath’s 
model changed the most (Fig. 5C, Table 1).

According to these results, the sum of technical and 
intra-subject variation of the EAA predictions repre-
sents ~ 50 to 60% of the population-wide σEAA depend-
ing on the model. Taken together, the metrics in Table 1 
provide a means to judge whether the magnitude of 
EAA findings puts them beyond the range of normal 
variations.

The new epigenetic clock reflects the influence of radiation 
therapy and breast cancer
Several studies have employed different epigenetic clocks 
to assess the impact of pathologies and environmental 

factors on epigenetic age acceleration (EAA) [50]. Using 
PhenoAge [16], Qin et al. demonstrated that exposure to 
different anticancer treatments had a significant influ-
ence on the EAA of childhood cancer survivors [51]. To 
validate the performance of our model, we tested it in 
public datasets that have already shown increased EAA 
in cancer patients. Using data made public in a subse-
quent study by Dong et al. [52] (GEO accession number 
GSE197674) which contained data from 2138 childhood 
cancer survivors, we studied the influence of radiation 
therapy (RT) on the EAA determined by cAge and our 
models. In this dataset, all the models produced epi-
genetic age predictions highly correlated with chrono-
logical age, with r values above 0.9 in all cases (Fig. 6A). 
When comparing subjects who had received RT in one 
or more body areas (chest, abdomen or pelvis, brain) 
to those who had not been exposed to RT, all models 
revealed that the latter group had a significantly lower 

Fig. 4 Age predictions on the validation set. A Chronological age and age values predicted by cAge and the general and combined models 
in the validation set. B Distribution of the absolute prediction error for each of the three models. C Distribution of the absolute error of each model 
in the validation set broken down by age group. *Indicates significant differences (p < 0.05, one-sided Wilcoxon rank-sum test) between groups
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(p < 0.05, one-sided Wilcoxon test) EAA (Fig.  6A). This 
is in line with the results reported in the original study 
[51], and similar observations have been made in other 
studies in which radiation exposure was associated with 
an increased EAA [53, 54]. The rest of the complete and 
truncated models assign very large EAA values to virtu-
ally all samples and do not attribute significantly larger 
EAAs (p > 0.05 in all cases, one-sided Wilcoxon test) to 
the groups with RT treatments (Additional file  6: Fig. 
S3). In all cases, the magnitude of these EAA changes is 
smaller than the σEAA in the general population (Table 2). 
Therefore, it is questionable whether the observed EAA 
differences (here as well as in previous studies) are a true, 
biologically relevant, reflection of the RT treatment dur-
ing childhood.

Next, we leveraged a dataset with DNA methylation 
data from peripheral blood leukocytes of sporadic breast 
cancer patients and control subjects [55] (GEO accession 
number GSE148663) to study the effect of the disease on 
the EAA determined by the different models. We com-
puted the predicted epigenetic age for 22 sporadic breast 
cancer patients and 10 controls using our models and 
cAge. Although the correlation between the epigenetic 
age predictions and the chronological ages of the subjects 
remained high (0.914–0.951), our models predicted a sig-
nificantly greater (p < 0.05, one-sided Wilcoxon test) EAA 
in the cancer group (Fig. 6B). As reported in the original 
study [55], the cancer patients had no previous cancer 
history and were sampled at the time of diagnosis, so 
the difference in EAA cannot be attributed to anticancer 

Fig. 5 Age predictions on technical replicates and repeated samples. A Age values predicted by the different models on the dataset 
from Koncevičius et al., with multiple samples of the same subject (52-year-old male) obtained at different times and with replicates. Solid lines 
indicate the mean values, whereas the colored area marks the 95% confidence intervals. B Distribution of mean-centered EAA values on technical 
replicates (left) and repeated samples from the same subject (right) on the Koncevičius et al. data for the models with the highest and lowest 
standard deviations. C Distribution of mean-centered age predictions for the 14 subjects from the Apsley et al.’s dataset



Page 11 of 16Garma and Quintela‑Fandino  Genome Medicine          (2024) 16:116  

therapy but rather to the disease itself. The rest of the 
complete and truncated models do not assign a signifi-
cantly greater EAA (p > 0.05 in all cases, one-sided Wil-
coxon test) to the breast cancer group (Additional file 6: 
Fig. S4). In this case, the magnitude of the EAA differ-
ences between cancer patients and controls determined 
by our models are larger than the σEAA. Therefore, we can 

consider that these changes do reflect differences larger 
than the normal variations across individuals in the gen-
eral population (Table 3).

Finally, we explored data from an interventional study 
using resistance and aerobic training [56] (GEO accession 
number GSE213363). Besides its numerous benefits for 
overall health [57, 58] and aging [59, 60], physical activity 

Fig. 6 Effects of radiation therapy and spontaneous breast cancer in EAA. A Chronological age and predicted age for childhood cancer survivors, 
colored by the number of body areas (brain, chest, abdomen/pelvis) in which they received radiation therapy (top). Distribution of the EAA for each 
group of subjects determined by each of the models (bottom). B Chronological ages of spontaneous breast cancer patients (BC) and control 
subjects and the corresponding epigenetic ages determined by the combined model and cAge (left). Distribution of the EAA estimated for each 
group by the different models (right)
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has demonstrated an influence on DNA methylation [61, 
62]. Yet, the study by Furtado et al. reported that after a 
16-week exercise intervention, they did not detect sig-
nificant changes in the epigenetic age calculated by the 
Horvath model [56]. We applied all the models discussed 
here to the data from subjects before and after the inter-
vention and found the same result: none of the epiclocks 
showed significant reductions in epigenetic age after the 
intervention (p > 0.05 in all cases, one-sided Wilcoxon 
test), neither in the resistance nor in the aerobic train-
ing groups (Additional file 6: Fig. S5). This suggests that 
although the first-generation models examined here can 
predict chronological age with considerable accuracy, 
they are less responsive in terms of ability to reflect other 
biological factors or the effect of certain interventions.

Discussion
Epigenetic clocks are valuable tools for research on aging 
and pathological states. In this work, we evaluated the 
applicability of existing epigenetic clocks to the data gen-
erated by EPICv2, the newest methylation microarray 
model from Illumina. The EPICv2 will phase out previous 
microarray models (namely, 450 k and EPIC), which were 
used for the development of some widely used epigenetic 
clocks (e.g., Hannum, Horvath). As the EPICv2 discon-
tinued the use of some of the probes used by existing epi-
clocks [36], we felt urged to test whether this would affect 
the performance of the models.

We generated a large DNA methylation dataset by 
compiling data from whole blood samples obtained in 
24 different studies. This dataset allowed us to quantify 
the effect of running 4 different epiclocks (Hannum [14], 

Horvath [15], PhenoAge [16], and the cAge model from 
Bernabeu et al. [28]) restricted to the set of methylation 
probes present in the EPICv2 methylation array. Our 
observations indicate that the results of these 4 mod-
els are significantly altered by probes absent from the 
EPICv2 array.

Epigenetic age models are routinely applied in epi-
genetic research and are also exploited commercially 
[63–65]. In the face of commercial discontinuation of the 
450 k and EPICv1 arrays, our findings suggest that both 
researchers and commercial vendors alike will need to 
update their epigenetic clock models to make them com-
patible with EPICv2 data. Future studies and commercial 
solutions using this new microarray will require read-
justed or new epigenetic age models, which are currently 
lacking.

As our results show, none of the epiclocks tested 
work as intended on data generated by the EPICv2 
microarrays, showing significant differences between 
the epigenetic ages predicted using data from dif-
ferent chip models. Therefore, we sought to produce 
a model compatible across the 450  k, EPICv1, and 
EPICv2 microarray platforms, aiming to obtain results 
in accordance with those of existing methods rather 
than outperforming them. The approach that we used 
closely followed the one applied by Bernabeu et al. in 
the development of their cAge model [28], so that we 
would rely on established methodologies. Our results 
on the training and test datasets indicate that our epi-
clock offered very high performance in the predic-
tion of ages from DNA methylation values. Similar 
to Bernabeu’s model, these results highlight the ben-
efit of using feature preselection, nonlinear terms, and 

Table 2 Differences between average EAA of the RT > 0 and RT = 0 groups observed in the different complete (C) and truncated (T) 
models

HannumC HannumT HorvathC HorvathT PhenoAgeC PhenoAgeT cAgeC cAgeT General model Combined 
model

EAART1‑RT0 
(years)

 − 0.82  − 1.23  − 1.65  − 1.65  − 1.70  − 1.70 0.96 0.54 0.39 0.39

EAART2‑RT0 
(years)

 − 0.19  − 1.07  − 1.68  − 1.68  − 1.87  − 1.87 2.37 1.73 1.34 1.48

EAART3‑RT0 
(years)

0.35  − 0.15  − 0.65  − 0.65  − 0.35  − 0.35 2.05 1.46 1.43 1.44

Table 3 Average EAA differences between cancer patients and healthy controls observed in the different complete (C) and truncated 
(T) models

HannumC HannumT HorvathC HorvathT PhenoAgeC PhenoAgeT cAgeC cAgeT General model Combined model

EAABC‑EAAControl (years) 2.41 2.46  − 0.03  − 0.03  − 0.76  − 0.76 1.30 1.27 3.37 3.12
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age-based stratification. We followed a simple strategy 
regarding these aspects, as we relied on a prior EWAS 
study [28] to preselect features, we considered only lin-
ear and quadratic features, and we stratified our sub-
jects into three arbitrary age groups. We are confident 
that follow-up work can improve the results presented 
here by, for example, conducting more thorough fea-
ture selection, deriving more features from the original 
beta values, and/or exploring different data stratifica-
tion strategies.

Despite its simplicity, our implementation outper-
formed cAge in the validation dataset, where it obtained 
significantly lower prediction errors. These results dem-
onstrate that our model can be generalizable (as it is 
applicable to new data) and that its performance is on par 
with that of state-of-the-art models.

We tested the variability of epigenetic age predic-
tions on two datasets with repeated samples from the 
same subjects obtained hours apart from each other. The 
results indicated that the predictions of cAge and our 
combined model had the lowest variations across repli-
cates and across repeated samples. We claim that these 
spontaneous variations of epigenetic age predictions 
should be considered when examining EAA-related find-
ings: differences smaller than those seen on repeated 
samples of the same subject obtained on the same day 
could hardly be considered biologically relevant. Con-
sequently, the significance of previous reports of altered 
EAAs based on the models d here might need to be 
re-evaluated.

To demonstrate the ability of our model to reproduce 
the results of previous models in the detection of EAA 
alterations, we first applied it to methylation data from 
cancer survivors [51]. The results of our epiclock indi-
cated an increased EAA induced by radiation therapy, in 
agreement with previous studies [53, 54]. However, the 
magnitude of this increase (0.39 to 1.44 years) was smaller 
than the variation we observed in the general popula-
tion (σEAA). Thus, we cannot claim that the EAA changes 
detected are a reflection of the RT effect on the subjects.

Next, we applied our model to data obtained from 
breast cancer patients. Our epiclock revealed a signifi-
cant increase in the EAA of cancer patients compared 
to that of control subjects, suggesting that the epigenetic 
age predicted by the model could be sensitive to this par-
ticular pathology. In this case, the average EAA difference 
between the cancer patients and the control group (3.13–
3.37 years) was larger than the σEAA from the non-patho-
logical subjects in the validation dataset (2.43–2.7 years). 
Therefore, these changes could indeed be a reflection of 
the pathological state. Notably, the cAge model did not 
detect a significant difference in the EAA between the 
control and the cancer groups.

Finally, we analyzed data from an interventional study 
aimed at improving the health of patients suffering from 
polycystic ovary syndrome. As in the original study, 
none of the models we tested reported significant dif-
ferences in the epigenetic age of the subjects before and 
after the intervention. Considering the large and exten-
sively documented benefits of physical exercise on health, 
these results support the idea that despite being good 
predictors of chronological age, first-generation epige-
netic clocks do not necessarily reflect biological factors 
such as pathological states, environmental exposures, or 
interventions.

As a relevant limitation of our model, we would like to 
highlight that it is limited to methylation data obtained 
from whole blood samples, a constraint that is also 
shared by multiple other models [28, 66, 67]. Its appli-
cability to data obtained from other tissues has not been 
assessed. Likewise, we would like to emphasize that its 
ability to reflect pathological states beyond the sporadic 
breast cancer cases we have shown here remains to be 
explored.

Taken together, our results demonstrate that our epi-
genetic clock is compatible with data generated using the 
450 k, EPICv1, and EPICv2 microarray platforms. Its epige-
netic age predictions are highly correlated with chronologi-
cal age in control subjects of all ages. Our model exhibited 
consistency across technical replicates and across repeated 
samples of the same subjects, with lower variation than 
the rest of the models tested. As a first-generation epige-
netic clock, our model can predict chronological age from 
DNA methylation data with high accuracy, but its ability to 
reflect the effects of environmental exposures, pathologi-
cal states, or beneficial interventions is limited. Our work 
solves a technical barrier derived from technological devel-
opment that has not yet been addressed and has important 
implications both for aging research and for biotechnology 
companies offering services in this field.

Conclusions
Our results reveal that existing epigenetic clocks experi-
ence significant distortions due to the transition to the 
new EPICv2 microarray, underscoring the need for their 
adaptation to ensure full compatibility with its data. We 
developed a new epigenetic clock model that is compat-
ible across 450 k, EPICv1, and EPICv2 platforms, achiev-
ing superior accuracy in chronological age prediction for 
the new microarray and even outperforming a state-of-
the-art model in validation tests.

To enable a more nuanced interpretation of epigenetic 
age acceleration (EAA), we established benchmarks by 
quantifying normal variation, technical noise, and intra-
subject variability. These metrics provide a critical con-
text for assessing the biological relevance of observed 
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EAA changes and suggest that some previously reported 
alterations may require re-evaluation given these vari-
ability thresholds.

Our findings highlight both the potential and limita-
tions of first-generation epigenetic clocks. While these 
clocks excel in predicting chronological age, their ability 
to reflect biological factors—such as pathological states, 
environmental exposures, or lifestyle interventions—
appears constrained. Given the higher accuracy of our 
new model in predicting chronological age and its mini-
mal response to theoretical anti-aging interventions, an 
important question arises: Is the concept of biological 
aging actually measurable or modifiable, and is it distinct 
from chronological age, at least with the current technol-
ogy? Regardless of the answer, this question necessitates 
further, more comprehensive studies, which must be con-
ducted using tools as precise as our new model. Future 
research should also focus on extending EPICv2 compat-
ibility to second-generation models to further refine our 
understanding of biological aging.
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