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Abstract 

Background  Repetitive genome regions, such as variable number of tandem repeats (VNTR) or short tandem 
repeats (STR), are major constituents of the uncharted dark genome and evade conventional sequencing approaches. 
The protein-coding LPA kringle IV type-2 (KIV-2) VNTR (5.6 kb per unit, 1–40 units per allele) is a medically highly 
relevant example with a particularly intricate structure, multiple haplotypes, intragenic homologies, and an intra-VNTR 
STR. It is the primary regulator of plasma lipoprotein(a) [Lp(a)] concentrations, an important cardiovascular risk factor. 
Lp(a) concentrations vary widely between individuals and ancestries. Multiple variants and functional haplotypes 
in the LPA gene and especially in the KIV-2 VNTR strongly contribute to this variance.

Methods  We evaluated the performance of amplicon-based nanopore sequencing with unique molecular identi-
fiers (UMI-ONT-Seq) for SNP detection, haplotype mapping, VNTR unit consensus sequence generation, and copy 
number estimation via coverage-corrected haplotypes quantification in the KIV-2 VNTR. We used 15 human samples 
and low-level mixtures (0.5 to 5%) of KIV-2 plasmids as a validation set. We then applied UMI-ONT-Seq to extract 
KIV-2 VNTR haplotypes in 48 multi-ancestry 1000 Genome samples and analyzed at scale a poorly characterized STR 
within the KIV-2 VNTR.

Results  UMI-ONT-Seq detected KIV-2 SNPs down to 1% variant level with high sensitivity, specificity, and preci-
sion (0.977 ± 0.018; 1.000 ± 0.0005; 0.993 ± 0.02) and accurately retrieved the full-length haplotype of each VNTR 
unit. Human variant levels were highly correlated with next-generation sequencing (R2 = 0.983) without bias 
across the whole variant level range. Six reads per UMI produced sequences of each KIV-2 unit with Q40 qual-
ity. The KIV-2 repeat number determined by coverage-corrected unique haplotype counting was in close agree-
ment with droplet digital PCR (ddPCR), with 70% of the samples falling even within the narrow confidence interval 
of ddPCR. We then analyzed 62,679 intra-KIV-2 STR sequences and explored KIV-2 SNP haplotype patterns across five 
ancestries.

Conclusions  UMI-ONT-Seq accurately retrieves the SNP haplotype and precisely quantifies the VNTR copy number 
of each repeat unit of the complex KIV-2 VNTR region across multiple ancestries. This study utilizes the KIV-2 VNTR, 
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presenting a novel and potent tool for comprehensive characterization of medically relevant complex genome 
regions at scale.
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sequencing, UMI, Unique molecular identifiers, Molecular barcodes, DNA sequencing

Background
Complex genome regions such as copy number vari-
ations (CNVs), variable number of tandem repeats 
(VNTR), short tandem repeats (STRs), and centromeric 
and telomeric regions can hide medically highly relevant 
mutations that shed new light on human phenotypes and 
diseases [1–6]. The development of long-read sequencing 
technologies and new bioinformatic tools have greatly 
improved the resolution of these difficult regions [7–14]. 
However, some overly complex repeat structures remain 
challenging. The LPA KIV-2 VNTR is a medically highly 
relevant protein-coding example of such a difficult region 
[15].

The LPA gene encodes the apolipoprotein(a) [apo(a)] 
and controls most (> 90%) of the lipoprotein(a) [Lp(a)] 
plasma variation [16]. High Lp(a) plasma concentrations 
are considered a nearly monogenically determined, very 
frequent, causal, independent, and heritable risk fac-
tor for atherosclerotic cardiovascular diseases [17–19] 
that increase cardiovascular risk up to threefold [20, 21]. 
Elevated Lp(a) concentrations are found in ≈20% of indi-
viduals of European ancestry and even in ≈50% of indi-
viduals of African ancestry [17]. Median Lp(a) levels vary 
tenfold between ancestries [22] and the individual plasma 
concentrations vary even 1000-fold [16]. The causes of 
this huge phenotypic variance are not fully understood 
but likely result from intricate, haplotype-dependent, 
non-linear interactions between multiple functional LPA 
variants and the KIV-2 VNTR size [15].

The complex structure of the LPA gene severely com-
plicates genetic analysis [15]. It comprises ten highly 
homologous kringle-IV domains (KIV-1 to -10) [23, 24]. 
Each KIV domain consists of two short exons (≈160 
and 182 bp) interspaced by a mostly ≈4 kb intra-kringle 
intron and a 1.2 kb intron linking it to the next domain 
[15]. The KIV-2 domain is encoded by a polymorphic 
VNTR, which introduces 1 to ≈40 KIV-2 units per gene 
allele (5.6  kb per repeat unit) [23]. This creates an up 
to > 200  kb VNTR region consisting of highly homolo-
gous coding repeat units that encompass up to 70% of the 
protein [25]. The VNTR copy number explains 30–70% 
of Lp(a) variance in a non-linear, ancestry-dependent 
manner [16]. Individuals carrying at least one low molec-
ular weight (LMW) apo(a) isoform (defined as 10–22 
KIV units [16], i.e., 1 to 13 KIV-2 units [15]) present 5 
to 10 times higher median Lp(a) levels compared to high 

molecular weight isoforms (> 22 KIV; HMW) due to 
higher protein production rates [17]. However, the indi-
vidual Lp(a) levels within the same isoforms can still vary 
10- to 200-fold [15] due to multiple, partially unknown 
genetic variants that modify the effect of the VNTR [15].

The interactions between the KIV-2 VNTR size and 
modifier SNPs are complex and multilayered (reviewed 
in detail in [15]). They are haplotype-dependent and 
only partially captured by linkage disequilibrium (LD) 
[15]. Several functional SNPs, including the two SNPs 
(4925G > A [25] and 4733G > A [26]) that explain most of 
Lp(a) variance [25, 26], have been hidden until recently 
in the KIV-2 VNTR [25–28]. These two variants alone 
explain remarkable 11.9% of the Lp(a) variance in the 
general population, are ancestry-specific, are associ-
ated with considerably reduced cardiovascular risk, and 
were hidden in the KIV-2 VNTR until recently [25–28]. 
The background apo(a) isoform size and other variants 
on the same haplotype can both limit and amplify the 
effects of any functional variant [15]. Although the KIV-2 
VNTR encompasses most of the LPA gene region, the full 
genetic and haplotypic diversity of KIV-2 units and the 
LD of KIV-2 haplotypes with the haplotypes in the non-
repetitive kringles remain largely unknown.

Current short-read deep sequencing approaches con-
fidently identify KIV-2 SNPs [24], but mostly lose the 
long-range SNP haplotype data. Early cloning studies 
identified three synonymous KIV-2 haplotypes named 
KIV-2A, KIV-2B, and KIV-2C [29, 30]. These KIV-2 sub-
types are defined by the haplotype of three SNPs in KIV-2 
exon 1 and differ by about 120 bases [23, 24]. The KIV-2 
subtypes have no functional relevance, but their frequen-
cies differ widely between ancestries and correlate with 
known differences of the Lp(a) phenotype across ances-
tries [24, 30]. They may thus reflect distinct evolutionary 
histories of the KIV-2 region and tag novel ancestry-spe-
cific functional variants. Further haplotypic effects in the 
KIV-2 VNTR are unknown and could not be studied so 
far.

Nanopore sequencing (ONT-Seq; Oxford Nanopore 
Technologies, ONT) provides novel means to address 
this knowledge gap. DNA is sequenced by monitoring the 
sequence-specific current fluctuations generated by sin-
gle-stranded DNA molecules translocating through pro-
tein pores [31, 32]. This generates hundred times longer 
read lengths than short-read next-generation sequencing 
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(NGS) [14, 32] and provides single molecule resolu-
tion. It thus allows retrieving the complete haplotype of 
each DNA molecule sequenced, even in DNA mixtures 
[32]. However, at the single molecule level the benefits 
of nanopore sequencing are limited by its relatively high 
raw-read error rate (0.7–1% median error rate per read). 
Especially in highly similar repeat sequences like the 
KIV-2, errors cannot be polished by sequencing deeper 
(because the parental repeat of each read is unknown 
[33]) or by using double-stranded (“duplex”) basecalling 
(because of erroneous matching of strands originating 
from different parental molecules).

Coupling of ONT-Seq with unique molecular iden-
tifiers (UMI-ONT-Seq) allows lowering the ONT-Seq 
error rate considerably [33, 34]. UMIs are oligonucle-
otide libraries that randomly tag each template mole-
cule with a unique identifier (Fig. 1). The tagged library 
is amplified by PCR to generate multiple copies of 
each UMI-tagged template molecule and full-length 
sequenced [34]. The reads are clustered according to 
terminal UMI combination, which reflects their original 

template, and a consensus sequence is generated for 
each UMI cluster. This removes PCR and sequenc-
ing errors [34] (Fig.  1), while preserving the complete 
SNP haplotype of each input molecule. In highly repeti-
tive and homologous regions such as the LPA KIV-2 
repeats, this finally provides highly accurate consensus 
sequences of each repeat unit.

We describe a comprehensive assessment of UMI-
ONT-Seq for SNP detection, SNP haplotyping, genera-
tion of consensus sequences for each VNTR unit, and 
copy number determination by coverage-corrected 
quantification of the unique haplotypes, using the 
LPA KIV-2 VNTR region as an example for a medi-
cally highly relevant complex VNTR region. We cre-
ated a scalable freely available UMI-ONT-Seq Nextflow 
analysis pipeline that can be generalized to also any 
other UMI-ONT-Seq experiment (https://​github.​com/​
genepi/​umi-​pipel​ine-​nf ) and demonstrate LPA KIV-2 
haplotyping by UMI-ONT-Seq in 48 multi-ancestry 
samples from the 1000 Genomes [35] (1000G) Project.

Fig. 1  Technical aspects: LPA structure, amplicon location, and UMI design. A Partial LPA gene structure (second exon of KIV-4, KIV-5 to KIV-10 
and the C-terminal protease domain omitted) and amplicon location. B UMI-ONT-Seq primer design, including a universal primer (UVP) binding 
site for amplification of the tagged KIV-2 repeats, the UMI sequence, and a locus-specific primer sequence (LSP) (e.g., KIV-2 specific). The UMI 
design leads to about 43 million possible unique tagging sequences. C The LSP primer site is used to tag specifically each KIV-2 repeat in a sample 
with a unique UMI sequence (1). Subsequent amplification with a universal primer (UVP) (2) and sequencing (3) causes random errors that cannot 
be differentiated from genuine low-level variants (red boxes in 3). The UMI sequences are used to cluster all sequences originating from one 
KIV-2 repeat unit and create molecule-wise consensus sequences. This removes errors that occur only in subset of sequences in each UMI cluster, 
but retains genuine variants that occur in a majority of the sequences in within each UMI cluster

https://github.com/genepi/umi-pipeline-nf
https://github.com/genepi/umi-pipeline-nf
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Methods
KIV‑2 amplicon naming and reference sequence
All KIV-2 VNTR units were amplified using two ampli-
cons that amplify all KIV-2 units as an overlapping 
amplicon mixture [24, 25, 30] (Fig. 1A). Any variants that 
are present only in a subset of KIV-2 units are seen in the 
corresponding fraction of amplicon molecules, respec-
tively sequencing reads. The “variant level” corresponds 
to the fraction of reads presenting a certain variant. This 
resembles sequencing of somatic variation and corre-
sponds to the LPA “batch sequencing” concept described 
by Rosby et al. [36] and adapted to NGS recently [24, 25]. 
The PCR5104 amplicon spans one KIV-2 unit and por-
tions of the inter-kringle intron. The PCR2645 amplicon 
spans one inter-KIV-2 intron with the flanking exons and 
parts of the intra-kringle intron. All positions and frag-
ment lengths in this manuscript are based on the refer-
ence sequences for a single KIV-2 unit used in [24].

Recombinant standards
Generation of the recombinant KIV-2A and KIV-
2B standards has been described before [24, 25]. The 
PCR5104 plasmids differ by 87 positions from each other 
(including four insertions/deletions [indels]; exclud-
ing a microsatellite region in the intra-KIV-2 intron of 
LPA5104) [24]. The PCR2645 plasmids differ at 120 posi-
tions to each other. The plasmids also differ from the 
respective reference sequences at 28 (PCR5104 KIV-2A), 
85 (PCR5104 KIV-2B), 8 (PCR2645 KIV-2A), and 116 
(PCR2645 KIV-2B; 113 being in the first intron) posi-
tions. Mimicking the in  vivo situation, where the KIV-
2B represents always the minor component in the KIV-2 
VNTR [24, 30], we generated five mixtures of KIV-2B 
plasmids in KIV-2A background, ranging from 5 to 0.5% 
KIV-2B. All variants present on the same plasmid rep-
resent one haplotype and should be thus detected at the 
same fractional representation in the reads (i.e., the same 
variant level) (Additional file  1: Fig. S1). Mixture accu-
racy was validated by ddPCR (Biorad QX200) (Additional 
file 1: Table S1).

Human samples and KIV‑2 ddPCR
Sixteen unrelated samples from the healthy-working 
population SAPHIR (Salzburg Atherosclerosis Preven-
tion Program in subjects at High Individual Risk; sample 
codes EUR in figures and tables) [37] with KIV-2 SNP 
data from ultra-deep NGS from Coassin and Schönherr 
et  al. [24] were used to evaluate UMI-ONT-Seq perfor-
mance in human samples using amplicon PCR5104. The 
samples were selected to provide a diverse number of 
KIV-2 repeats per allele and sample (based on Western 
blot [24] and ddPCR), with an enrichment of carriers of 
extreme number KIV-2 repeats and medically relevant 

mutations (e.g., 4925G > A [25] and 4733G > A [26]; Addi-
tional file 1: Fig. S2). The genomic KIV-2 repeat number 
was quantified by ddPCR (Additional file 1: Supplemen-
tary Methods and Table  S2). Mean confidence interval 
(CI) width of ddPCR KIV-2 quantification was as low as 
4.81 ± 2.34 KIV-2 copies. One sample was excluded due 
to technical failure.

Three trios (9 samples) and 48 unrelated multi-ancestry 
samples from the 1000 Genomes [35] (1000G) Project 
(Yoruba [YRI], Dai Chinese [CDX], Japanese [JPT], Pun-
jabi [PJL]; 12 samples per group) were obtained from the 
Coriell NHGRI sample repository. They were selected 
from the following DNA panels of the NHGRI Sample 
Repository for Human Genetic Research at the Coriell 
Institute for Medical Research: MGP00009, MGP00012, 
MGP00013, MGP00020.

The 1000G samples were selected to be well separated 
based on the probabilistic ancestry maps presented by 
Gaspar and Breen [38], which are better suited to sepa-
rate populations within the same continental super-
population of 1000G than the commonly used principal 
component analysis clustering [38]. We selected one pop-
ulation per African (AFR), South Asian (SAS), and East 
Asian (EAS) superpopulation. To explore how UMI-
ONT-Seq and especially the haplotype-based copy num-
ber calling behaves between distinct but related groups, 
we added a Japanese population to the already present 
Chinese CDX group, as Japanese and Chinese popu-
lations show subtle yet significant genetic differences 
[38–40]. We opted to exclude the admixed AMR super-
populations for this validation experiment, as they are 
highly heterogeneous, including European, East Asian, 
and African genetic components, depending on the spe-
cific sub-population.

KIV‑2 UMI‑ONT‑Seq principle
UMI-ONT-Seq follows the approach developed by Karst 
et  al. [34] and uses the oligo design from ONT techni-
cal note CPU_9107_v109_revC_09Oct2020 (generating 
316 diverse oligos; Fig.  1B). The UMI primers consist of 
a 3′ locus-specific primer (LSP) [24], the UMI, and a 5′ 
universal priming site (UVP; Fig.  1B; Additional file  1: 
Table  S3). Experimental conditions are given in Addi-
tional file  1: Table  S4. The LSP parts correspond to the 
primers 422L and 421U_2 (PCR5104) and 422U and 
421L (PCR2645) for LPA batch sequencing described by 
Noureen et al. [30]. The primers bind at conserved loca-
tions in the inter-kringle (PCR5104) and intra-kringle 
(PCR2645) introns (see Fig.  3 in [30]). By tagging the 
batch sequencing primer with UMIs, each UMI combina-
tion tags uniquely a single KIV-2 unit within the KIV-2 
wide amplicon mixture produced by the primers.
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All PCRs were performed with the ThermoFisher 
Platinum SuperFi II ultra-high fidelity polymerase (accu-
racy > 100-fold over Taq [41, 42]). About 2  ng gDNA 
(i.e., 50,000 KIV-2 template copies under assumption 
of maximum 80 KIV-2 genomic repeats; observation 
from our database with > 13,000 apo(a) Western blots 
[43] and from [44–46]) was tagged with two UMI-PCR 
cycles (Fig. 1C1) followed by New England Biolabs Exo-
CIP treatment. The tagged templates were then ampli-
fied in two rounds of PCR with UVP primers (early 
and late UVP-PCR) to produce multiple copies of each 
tagged molecule (Fig.  1C2). A 0.9 × SPRI beads purifi-
cation between the two rounds of UVP-PCR was used 
to reduce background (Additional file  1: Supplemen-
tary Methods). After full-length nanopore sequencing 
(Fig. 1C3), reads are clustered based on the terminal UMI 
pairs and a consensus sequence is created for every UMI 
cluster with a defined minimal read number (UMI cluster 
size; Fig.  1C4). Each consensus sequence represents the 
sequence of a single genomic KIV-2 VNTR repeat unit.

Sequencing and basecalling
All samples were full-length sequenced on a MinION 
1B system (ONT, Oxford, UK) with either the earlier 
R9 chemistry (SQK-LSK109 with native barcoding kits 
NBD-104 and NBD-114 and R9.4.1/MIN106D flow cells) 
or the newer V14 chemistry (SQK-NBD114 and R10.4.1/
MIN114 flow cells) [47]. About 100,000 on-target, full-
length reads were generated per sample (Additional file 1: 
Tables S5 to S9). This was sufficient to recall all expected 
variants in preliminary experiments with plasmid stand-
ards (both unmixed plasmids and mixtures at 1% and 
5%) and two human samples. Basecalling was done using 
guppy v6.3.8 with either “high accuracy” (HAC; for R9 
and V14) or “super accuracy” (SUP; for V14) settings. 
The 15 human PCR5104 SUP samples were additionally 
duplex basecalled (SUPDUP; for V14) using ONT duplex 
tools v0.2.20 [48]. The 1000G dataset was basecalled with 
dorado basecalling model v4.3 [49] and SUP algorithm.

UMI‑ONT‑Seq Nextflow analysis pipeline
Initially, our analysis pipeline corresponded to the proof-
of-principle UMI analysis pipeline published online 
by ONT [50] (which follows the pipeline steps of Karst 
et al. [34]), but was migrated to the Nextflow [51] frame-
work with several optimizations to improve performance 
and parallelization. The pipeline steps are described 
in Additional file  1: Fig. S3 and in the Supplementary 
Methods. In brief, all reads of each barcode are merged, 
filtered for length (> 1000  bp) and mean per-base qual-
ity (> Q9), and aligned to the target reference sequence. 
Only primary alignments with more than 95% overlap 

are retained to remove chimeric amplicons. The reads are 
clustered according to the terminal UMI sequences using 
VSEARCH [52] and only UMI clusters with ≥ 20 reads 
were retained for consensus sequence generation (as 
recommended by Karst et  al. [34]). Each cluster is then 
polished using Medaka v1.7.0 [53]. The UMI extraction, 
clustering, and reference alignment steps are repeated for 
the polished consensus sequences to generate the final 
consensus sequences (clustering step 2).

Extensive analysis of the migrated pipeline revealed 
inaccurate clustering by VSEARCH (see “Results” section 
for details). In both clustering steps, VSEARCH clustered 
distant UMI combinations and separated identical UMI 
combination into different clusters. We therefore modi-
fied the clustering strategy of the pipeline. Looser clus-
tering parameters (80% sequence identity) in clustering 
step 1 prevent separation of identical UMI sequences. 
To prevent mixing of distant UMIs into one cluster, all 
clusters containing more than 12 (R9 HAC), 10 (V14 
HAC), and 8 (V14 SUP) reads were then split by tak-
ing the first UMI sequence of the cluster file and clus-
tering it with all remaining UMI sequences in the same 
file that show ≤ 2  bp edit distance (UMI collision prob-
ability < 0.01%). The remaining UMIs were treated as a 
new cluster and clustered iteratively. The minimal UMI 
cluster size required for consensus creation was derived 
based on plateauing of the consensus quality at these 
values (see “Results”). Subsequently, in clustering step 2 
stringent clustering parameters (> 99% sequence identity) 
were used to remove PCR duplicates without mixing dis-
tinct UMI clusters.

Our analysis pipeline and test data is available at 
https://​github.​com/​genepi/​umi-​pipel​ine-​nf/​tree/​v0.2.1 
under GNU General Public License v3.0. For reproduc-
ibility, we provide also the migrated ONT pipeline at 
https://​github.​com/​genepi/​umi-​pipel​ine-​nf/​tree/​ONT_​
defau​lt_​clust​ering_​strat​egy.

UMI‑ONT‑Seq residual error rate estimation
Sequencing the unmixed plasmids provides an intui-
tive way to estimate the residual error rate of the UMI-
ONT-Seq as any variation in the consensus sequences 
can be considered an error. The error rate can be quan-
tified by either averaging the Phred (Q-) scores of each 
consensus sequence (“consensus sequence Q-score”) 
and or dataset-wide (“dataset Q-score”). The latter 
was introduced because the fragment length limits the 
maximum achievable consensus-sequence Q-score 
and because perfect consensus sequences produce infi-
nite Q-score. The dataset Q-score was defined as Error 
rate = ndifferences/nsequences × lengthsequences with the Q-score 
being Q =  − 10 × log10(error rate) [54].

https://github.com/genepi/umi-pipeline-nf/tree/v0.2.1
https://github.com/genepi/umi-pipeline-nf/tree/ONT_default_clustering_strategy
https://github.com/genepi/umi-pipeline-nf/tree/ONT_default_clustering_strategy
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Variant calling
Variants in the UMI consensus sequences were called 
using a modified version of Mutserve [55] v2.0.0-rc13 
[56] that does not require bidirectional confirmation. The 
minimum KIV-2 variant level that needs to be detected 
is 1.25% (1 in ≈80 KIV-2 units) [25]. To allow for ran-
dom fluctuations and sequence-context effects, vari-
ants > 0.85% variant level were considered true. Variant 
KIV-2 calling without UMIs was done by omitting the 
UMI clustering. This resembles ultra-deep KIV-2 NGS 
sequencing as done in [24, 25]. All reads were aligned 
to the reference sequence for one repeat unit and con-
ventional low-level variant calling was performed using 
default Mutserve v2.0.0-rc15 [56] and ClairS-TO v0.0.2 
[57]. Extraction of the intronic KIV-2 STR sequences and 
variants for each KIV-2 unit is described in Additional 
file 1: Supplementary Methods.

Variant truth set
Ultra-deep targeted KIV-2 NGS data obtained previously 
for all SAPHIR samples [24, 25] was used as truth set for 
UMI-ONT-Seq evaluation. The 1000G variant truth set 
was generated using a KIV-2 NGS variant calling pipe-
line on the 1000G 30X whole-genome (WGS) sequencing 
data [58] (with minor adaptions for WGS data). All UMI-
ONT-Seq datasets were benchmarked in terms of sensi-
tivity (true positive rate), specificity (true negative rate), 
precision (positive predictive value, i.e., the proportion 
of genuine variants among all variants found), and F1 
score (harmonic mean of sensitivity and precision). For 
the polymorphic intronic short tandem repeat (STR) in 
PCR5104 (position 2472–2506), no NGS reference data 
was available and it thus was analyzed separately.

KIV‑2 units haplotype extraction
Haplotypes were extracted using a three-step algorithm 
(available at https://​github.​com/​Amstl​erSte​phan/​haplo​
typing-​KIV2-​nf/​tree/​v0.1.0). (1) Extraction of uniquely 
occurring haplotypes including all positions that were 
called as variants in any of the samples (unique haplo-
types; see Additional file 1: Fig. S4). (2) Noise polishing 
and removal of “unlikely” haplotypes (noise-filtered hap-
lotypes). (3) Estimating the repeat number per haplotype 
by coverage correction (coverage-corrected haplotypes).

The unique haplotypes were determined by extracting 
from the consensus sequences of each sample the base 
present at any polymorphic position in the dataset, as 
found by mutserve variant calling. At positions per sam-
ple with a variant frequency < 0.85%, only the major vari-
ant was used in the haplotype. Next, only the uniquely 
occurring haplotypes per sample were retained, includ-
ing their occurrence in the consensus sequences (unique 
haplotypes).

To obtain the noise-filtered haplotypes, the residual 
noise was reduced by clustering identical haplotypes 
and assigning each haplotype cluster below the thresh-
old nsequences × 0.0085 to the haplotype cluster with the 
smallest edit distance, but not more than a maximum 
edit distance of 1. Next, assuming unbiased and random 
tagging of KIV-2 repeats in our samples and unbiased 
PCR amplification, we applied a binomial distribution to 
determine the minimal occurrence required for a haplo-
type to be considered genuine. The binomial distribution 
formula in this context is expressed as:

Here, n represents the total number of haplotypes 
observed after the UMI sequencing, p is the probability 
of a haplotype to occur, and k the minimal occurrence 
threshold for a haplotype to be considered genuine. The 
probability is set to 0 (stringent filtering) to calculate the 
sample-specific minimal occurrence threshold (k) for 
any given haplotype. Haplotypes falling below the deter-
mined minimal occurrence threshold k have 0 probability 
to be genuine (being, e.g., generated by the residual noise 
in the UMI sequencing) and were therefore excluded 
from the analysis.

To correct the remaining filtered-haplotypes for identi-
cal KIV-2 repeats, we calculate the median occurrence of 
all haplotypes within the consensus sequences, and then 
divided the occurrence of each haplotype by the median 
and rounded that to the next integer (coverage-corrected 
haplotype occurrence). This is done separately for each 
individual. The sum of the coverage-corrected haplotype 
occurrence across all haplotypes gives the coverage-cor-
rected number of KIV-2 repeats.

Data processing
Data processing and visualization was done in R 4.3.1 
[59] with ggplot2 v3.3.6 [60] or in bash scripts (avail-
able at https://​github.​com/​Amstl​erSte​phan/​UMI-​ONT-​
Seq_​Analy​sis). Reading and manipulation of BAM and 
FASTQ/A files was done using BioStrings [61] v2.68.1. 
R-squared values were calculated using the linear model 
(lm) function. Bland–Altman plots were generated using 
BlandAltmanLeh v0.3.1 [62]. The coverage-corrected 
haplotypes were used to generate unrooted KIV-2 phy-
lograms using MAFFT v7.520 [63] with global iterative 
refinement (G-INS-i) and modified UPGMA guide trees. 
Visualization was done with ggtree v.3.8.2 [64]. R package 
ggvenn v0.1.10 [65] was used to create Venn diagrams 
directly from the haplotype sequence.

P(X = k) =
n

k
pk(1− p)n−k

https://github.com/AmstlerStephan/haplotyping-KIV2-nf/tree/v0.1.0
https://github.com/AmstlerStephan/haplotyping-KIV2-nf/tree/v0.1.0
https://github.com/AmstlerStephan/UMI-ONT-Seq_Analysis
https://github.com/AmstlerStephan/UMI-ONT-Seq_Analysis
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Results
We performed a comprehensive evaluation of the perfor-
mance of UMI-ONT-Seq for variant calling, haplotyp-
ing, generation of consensus sequences for each VNTR 
unit, and VNTR copy number determination in the com-
plex LPA KIV-2 VNTR [15]. We generated 28 sequenc-
ing libraries encompassing both PCR products of two 
unmixed plasmid standards differing by 87 (PCR5104) 
and 120 (PCR2645) bases, five plasmid mixtures (ddPCR-
validated, Additional file 1: Table S1), and two sequenc-
ing chemistries (R9, V14). Moreover, the KIV-2-spanning 
PCR5104 amplicon was sequenced on 15 human valida-
tion gDNA samples and finally used to call mutations, 
map haplotypes, and quantify the genomic KIV-2 units in 
48 1000G samples from 4 different populations.

UMI‑ONT‑Seq recapitulates expected variant levels 
and KIV‑2B haplotype fractions in plasmid mixtures
The switch from R9 to V14 chemistry, as well as base-
calling V14 data with SUP or SUPDUP instead of HAC, 
had, as expected, a large impact on sequencing accuracy 
(Additional file  1: Table  S5). For technical performance 
values across all experiments see Additional file 1: Tables 
S6 to S9. Variant calling performance of UMI-ONT-Seq 
was excellent in all plasmid mixtures down to 1% for both 
amplicons (Fig. 2A, for R9 data see Additional file 1: Fig. 
S5A). Notably, no performance difference was seen for 
V14 data between HAC and the computationally much 
more expensive SUP basecalling. Specificity was 99.9 to 
100% in all samples (Additional file  1: Table  S10), but a 
residual background noise at 0.2 to 0.5% variant level was 
observed in all plasmid mixtures and sequencing chem-
istries (Fig. 2B, Additional file 1: Fig. S5B). Therefore, we 
introduced a cut-off of 0.85% for all further experiments, 
which includes all bona-fide KIV-2 variants while allow-
ing some technical variation.

Since the variants present on the two plasmids repre-
sent distinct haplotypes, we expected all mutations from 
the same plasmid to occur at the same level. We found 
that all mutations from the same plasmid were, indeed, 
close to the expected level on average, but showed con-
siderable per-position noise when analyzed with the 
ONT UMI analysis pipeline using the default clustering 
strategy (Fig. 2B). Systematic analysis of the UMI clusters 
revealed that inaccurate clustering of the UMI sequences 
by VSEARCH resulted in partially heterogeneous UMI 
clusters (Fig. 2C, Additional file 1: Table S11). If the UMI 
clusters contained a mixture of sequences (e.g., KIV-
2A and KIV-2B sequences), the cluster-polishing step 
produced noisy variant levels (Fig.  2B, Additional file  1: 
Table S12).

Implementation of the cluster splitting strategy 
reduced the edit distance in the UMI clusters consid-
erably (Fig.  2D). This had no impact on variant calling 
performance in the V14 chemistry (Fig.  2E, Additional 
file 1: Table S13) and most importantly, mutations origi-
nating from the same plasmid now showed virtually no 
residual variation and matched the expected values very 
accurately (Fig.  2F). The number of plasmid standards 
with no variant level noise increased from 4/14 to 12/14 
samples in HAC and SUP. The median variant level noise 
was reduced by 3.1-fold and 2.3-fold for V14 HAC and 
SUP (R9 HAC: 0.8-fold, Additional file 1: Table S14). This 
indicates that our cluster splitting strategy allows accu-
rate recalling of the haplotype of each read (Additional 
file  1: Table  S15). All further results are based on the 
UMI-ONT-Seq analysis pipeline using the cluster split-
ting strategy. All plasmid sequencing data is available at 
reference [47].

UMI‑ONT‑Seq produces highly accurate KIV‑2 consensus 
sequences at ≥ 6 reads per UMI cluster
We investigated the relationship between the UMI cluster 
size and consensus sequence qualities using the unmixed 
plasmids (KIV-2A and KIV-2B), where it can be assumed 
that any difference between the consensus sequences 
represents a PCR or sequencing error.

Up to 10 reads per UMI cluster, the dataset Q-score 
increased rapidly in the V14 data, reaching Q40 already 
at 6–10 reads per cluster (Fig.  3A, Additional file  1: 
Table  S16; 14 reads for R9 data, Additional file  1: Fig. 
S6A). The consensus sequence Q-score increased in 
a similar manner as the dataset Q-score, reaching the 
maximal quality after 6 reads per cluster for the V14 
chemistry (14 for R9 HAC; Additional file  1: Fig. S7A). 
At 6 reads per cluster already 96.8% (HAC) and 98.3% 
(SUP) of all consensus sequences showed no more than 
2 errors, and 58.1% (HAC) and 62.5% (SUP) were even 
error-free (Fig. 3B; R9: 79.6% and 33.5%; Additional file 1: 
Table S17 and Fig. S7B).

For high minimal cluster sizes (≥ 10), indels became 
the most prominent error type for the older R9 chemistry 
(Additional file  1: Fig. S6B), while both V14 conditions 
were primarily characterized by C to A and G to T trans-
versions (Fig.  3C). Disregarding these systematic errors, 
which were all below the 0.85% variant level, further 
improved the consensus sequence qualities for both V14 
kits considerably (Fig.  3D). Both basecalling algorithms 
again reached dataset Q-score Q40 at 6 reads per cluster 
and even Q50 at 10 and 8 reads (V14 HAC: 92 errors in 
10 Mb; V14 SUP: 94 errors in 11.9 Mb; Additional file 1: 
Table S19). Already at cluster size 6, 89.9 to 95.5% of all 
consensus sequences were error-free (Additional file  1: 
Fig. S7 and Table S16).
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Accurate variant calling of variants within the KIV‑2 VNTR 
in human samples
We evaluated the performance of UMI-ONT-Seq on the 
KIV-2 PCR5104 fragment, which encompasses about 
92% of the KIV-2 VNTR region, in 15 human validation 
samples with KIV-2 batch NGS sequencing data avail-
able [24]. Sensitivity, specificity, precision, and F1 score 
were mostly very close or equal to 100% (Fig.  4A; see 
Additional file 1: Table S20 for single sample values and 
Additional file 1: Fig. S8 for R9 HAC). Most importantly, 

specificity (mean ± SD) was 1.0 ± 0.001 for all conditions, 
demonstrating a very low false-positive rate of UMI-
ONT-Seq despite its relatively high raw-read error rate 
(Additional file  1: Table  S21). Also in human samples 
V14 data performed generally better than R9, while V14 
SUP provided marginal benefit over V14 HAC (Fig. 4A). 
Importantly, despite providing considerably higher raw 
read accuracy (median read quality ≈Q28; Additional 
file  1: Table  S5), UMI-ONT-Seq with duplex basecall-
ing (SUPDUP) leads to very low sensitivity and F1 score 

Fig. 2  Variant detection in plasmid mixtures with the ONT UMI analysis pipeline using the default clustering strategy and the cluster splitting 
strategy for the V14 chemistry and HAC basecalling. A to C show the results for the default clustering strategy; D to F show the corresponding 
results for cluster-splitting strategy. A and E Performance measures for the default clustering strategy in recalling variants of the two unmixed 
plasmids and plasmid mixtures from 5 to 0.5% KIV-2B in KIV-2A background of two fragments (PCR2645, PCR5104). B and F Variant levels 
for the plasmid mixtures from 0.5 to 5% across every position of both fragments. Gray points: low-level residual noise. Variation of detected variant 
levels of up to ± 1% in absolute values was observed (blue points, 5% mixture). C and D Edit distance of the UMI sequences for different UMI cluster 
sizes. Gray: single clusters. Red: average cluster size. Using the default clustering strategy admixing of UMI sequences up to an edit distance of 25 
within one cluster (i.e., the sequences did not originate from the same KIV-2 repeat) led to considerable variance in the observed variant levels (C). 
Using the cluster splitting strategy with maximal edit distance 2 between the UMI sequences (D) reduced the variant level noise considerably (E, 
colored points) for both fragments and all mixture levels
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(0.481 ± 0.298; 0.578 ± 0.221; Fig.  4B; Additional file  1: 
Table S21). This was actually expected due to the specific 
technical implementation of duplex basecalling and is 
addressed in the “Discussion” section.

To evaluate the advantage of the UMI-ONT-Seq, we 
called the KIV-2 variants on the same ONT-Seq data 
without UMI clustering (simulating a conventional KIV-2 
deep sequencing approach [24]). The performance of 
the variant calling without UMIs increased continuously 
from R9 HAC to V14 HAC to V14 SUP to V14 SUPDUP 
(Fig. 4C, Additional file 1: Table S22), but precision and 
F1 score were considerably below UMI-ONT-Seq in all 

conditions. For V14 SUPDUP without UMIs, sensitivity 
and specificity reached 0.950 ± 0.031 and 0.971 ± 0.008, 
but precision and F1 score were only 0.399 ± 0.122 and 
0.554 ± 0.123. For V14 SUP without the UMIs, 9644 
unique variants were detected, of which 1695 were con-
firmed by UMI-ONT-Seq, while 7949 variants were fil-
tered as amplification/sequencing errors (mean ± SD; 
529.93 ± 142.19 filtered variants per sample). UMI-ONT-
Seq also considerably exceeded the performance of the 
nanopore-specific low-level variant caller ClairS-TO 
(Additional file 1: Fig. S9).

Fig. 3  Impact of the minimal cluster size on consensus sequence quality and error-profile. A Dependency of the dataset Q-score from the minimal 
cluster size. V14 HAC and V14 SUP dataset Q-score increases rapidly being close to Q40 already at cluster size 6 to 10. B Percentage of perfect reads 
depending on the minimal cluster size threshold. At Q40 dataset Q-score 62% of all consensus sequences are error-free and 98.5% of all cluster 
had no more than 2 errors for both V14 conditions. C Error type frequency for V14 HAC and SUP. C to A and G to T transversions were the most 
common errors. “:N” denotes insertions; D denotes deletions. D Dataset Q-score at different cluster thresholds after filtering for the sequencing 
chemistry-specific errors. The dataset Q-score of V14 consensus sequences reaches Q50 already at a cluster size of 6 to 10
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Importantly, UMI-ONT-Seq not only discriminated 
variants in the KIV-2 very efficiently, but also recapitu-
lated very closely the individual variant levels measured 
previously by deep NGS [24] (R2: 0.977 and 0.981 for V14 
HAC and SUP, Fig. 4D, Additional file 1: Fig. S10). With 
V14 conditions, no bias was observed across the whole 
variant level range (Fig. 4E; Additional file 1: Fig. S11 for 
R9). Conversely, both the R9 chemistry and especially 
the UMI-free conditions showed noticeable bias and less 
correlation, which was exacerbated by a high number of 
false-negatives in the UMI-free analysis (Additional file 1: 
Figs. S10 and S11).

UMI‑ONT‑Seq preserves the haplotype of each KIV‑2 repeat 
unit and allows precise KIV‑2 copy number quantification
We used 15 human DNA samples and the two unmixed 
plasmids of PCR5104 to develop an algorithm (for V14 
SUP) to estimate the KIV-2 copy number in human 
genomic DNA. The number of unique haplotypes 
showed a high correlation with the KIV-2 copy num-
ber measured by ddPCR (r = 0.84, R2 = 0.709, Additional 
file 1: Fig. S12A and B), but overestimated the number of 
repeats compared to ddPCR (mean ± SD, 9.1 ± 8.2, Addi-
tional file  1: Table  S23). Merging unlikely haplotypes 
(see “Methods”) reduced the deviation to only − 3.6 ± 3.9 

Fig. 4  Performance measures compared to ultra-deep NGS sequencing of 15 human DNA samples (SAPHIR) for the V14 chemistry (HAC and SUP 
basecalling). A Performance of UMI-ONT-Seq for the 15 human DNA samples. Black points are median values. Colored points are the single samples. 
We observed high agreement between the ultra-deep NGS sequencing and UMI-ONT-Seq for most samples, leading to median performance 
values above 95% and slightly higher performance values for SUP basecalling. B Performance values for duplex basecalling (SUPDUP). Black points 
and lines are median values and interquartile range. Gray points are the single samples. Despite increased raw read quality, there was a significant 
drop in sensitivity when using SUPDUP basecalling (see “Discussion” for explanation). C Performance values for ONT-Seq (without UMIs) for different 
chemistries (R9, V14) and basecalling algorithms (HAC, SUP, SUPDUP) (black points and lines are median values and interquartile ranges; colored 
points are the single samples). Sensitivity increased with increasing raw read quality up to median values of 95% for SUPDUP basecalling, 
but precision and F1 score were consistently low due to by high number of false positives. D Correlation of variant levels for each mutation of all 15 
DNA samples (black points) of UMI-ONT-Seq for V14 HAC and SUP basecalling compared to ultra-deep NGS sequencing. We observed nearly 100% 
correlation (r and R.2 > 0.977) for both conditions, with no bias across the variant level range (E)
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repeats (Additional file  1: Table  S23) and increased the 
correlation with ddPCR considerably (r = 0.96, R2 = 0.92, 
Additional file 1: Fig. S12C), but in turn led to an under-
estimation of the KIV-2 copy number, especially for the 
high KIV-2 numbers (Additional file 1: Fig. S12D).

We thus hypothesized that truly identical KIV-2 
repeats may occur more often than assumed and may 
bias the KIV-2 copy number estimation (Additional file 1: 
Fig. S13). Indeed, in line with this hypothesis, coverage 
correction of the occurrence of each haplotype finally 
led to nearly perfect correlation between the predicted 
and the expected KIV-2 copy number (r: 0.975, R2: 0.95) 
and reduced the mean deviation to only 0.4 ± 2.9 repeats 
(Fig. 5A, Additional file 1: Table S23). Both unmixed plas-
mids showed only one single haplotype and for 12 of 15 
samples the estimated KIV-2 copy numbers were even 
within the narrow confidence interval (CI) of ddPCR 
(Fig. 5B).

Finally, we applied UMI-ONT-Seq to three different 
trios from the available 1000G sample set [47] (2 YRI and 
1 CHS families; Additional file 1: Table S24 for an over-
view per sample). The number of KIV-2 repeats deter-
mined by UMI-ONT-Seq accurately reflected the KIV-2 
copy number determined by ddPCR (r: 0.974; R2: 0.948; 
6 of 9 samples within the CI of the ddPCR; Additional 
file 1: Fig. S14). Strikingly, all haplotypes that were found 
in the children were also found in the parents, without 
any haplotypes private to the children (Additional file 1: 
Fig. S14).

KIV‑2 repeat number quantification and haplotype 
diversity in 48 samples from 1000G
Despite the Lp(a) trait shows marked differences across 
ancestries, genetic Lp(a) research in the last decades was 
focused mainly on individuals of European ancestry. Lit-
tle is known about genetic variability in non-European 

Fig. 5  Correlation between the expected and UMI-ONT-Seq predicted number of KIV-2 repeat units. A Correlation of the coverage-corrected 
UMI-ONT-Seq haplotypes with the number of KIV-2 repeats expected from ddPCR. Coverage-corrected UMI-ONT-Seq haplotypes show high 
correlation with KIV-2 number determined by ddPCR. B The barplots report the predicted versus measured number of KIV-2 repeats per sample 
including the confidence interval of the ddPCR quantification. Seventy-five to 80% of the samples are within the 95% confidence interval 
of the ddPCR. EUR: European samples from Austria (SAPHIR study)
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samples, especially within the KIV-2 region. To provide 
a first impression of the diversity of the KIV-2 VNTR 
across ancestries, we performed KIV-2 UMI-ONT-Seq 
on 48 randomly selected, unrelated gDNA samples from 
four non-European 1000G populations (Yoruba [YRI], 
Dai Chinese [CDX], Japanese [JPT], Punjabi [PJL]; 12 
samples per group) [47].

In this sample set [47], the results reflect previously 
suggested differences between ancestries, such as the 
different frequencies of KIV-2B and KIV-2C units [24, 
30]. For example, KIV-2C repeats occurred in 50% of the 
analyzed East Asian samples (CDX and JPT) but were 
completely absent in the analyzed African samples (Addi-
tional file 1: Table S25).

For the 35 samples that contain KIV-2B and KIV-2C 
repeats, variant calls from UMI-ONT-Seq and NGS 
closely agreed (mean ± SD; sensitivity: 99.5 ± 0.7%, 
specificity: 100 ± 0.1%, precision: 98.3 ± 2.2%, F1 score: 
98.9 ± 1.3%; Fig. 6A; Additional file 1: Tables S26 and S27 
for per-sample values). Specificity and precision were 
equally high also for the 13 samples containing only KIV-
2A repeat units, but sensitivity was considerably lower in 
these samples (59.2 ± 4.7%, Fig. 6A and Additional file 1: 
Table S26). This is caused by known issues of NGS-based 
variant calling in this complex region [66]. The non-
repetitive KIV-3 apo(a) domain presents the same exonic 
sequence as KIV-2B units within the KIV-2 VNTR. 
When using WGS data from samples that do not contain 

Fig. 6  UMI-ONT-Seq analysis of 48 samples from four populations of the 1000 Genomes Project. A Performance of UMI-ONT-Seq compared to KIV-2 
specific variant calling of high-coverage whole-genome sequencing (WGS [66]) for the 48 1000G samples [66]. While sensitivity and specificity are 
close to perfect (mean ± SD: 0.993 ± 0.01, 0.996 ± 0.005), precision and respectively F1 score deviate from the WGS data. All mutations that were 
additionally found by the UMI-ONT-Seq were previously classified as KIV-2B specific, intronic variants, which are reported to be difficult to call 
in WGS data [24]. B Correlation of UMI-ONT-Seq variant levels versus WGS variant levels (n = 5968 variants). Found variant levels of both methods 
are highly correlated (r=0.992, R2 = 0.983). Deviations were observed only for KIV-2B specific variants. C Correlation of ddPCR measured 
versus UMI-ONT-Seq predicted number of KIV-2. We observed a high correlation between UMI-ONT-Seq quantified and the number of KIV-2 
repeats determined by ddPCR (r= 0.851, R2 = 0.724). D Comparison of UMI-ONT-Seq with ddPCR quantification. UMI-ONT-Seq accurately predicts 
the number of KIV-2 repeats. The mean (± SD) deviation between UMI-ONT-Seq and ddPCR was − 0.295 ± 4.26 repeats. For 32 of 48 samples even 
within 95% confidence interval of ddPCR



Page 13 of 20Amstler et al. Genome Medicine          (2024) 16:117 	

KIV-2B units, reads from the KIV-3 domain are mistak-
enly aligned to KIV-2, resembling KIV-2B-specific vari-
ants and thus causing false-positive variant calls [66]. The 
KIV-2 specific amplification in UMI-ONT-Seq alleviates 
the wrong alignments. Exclusion of KIV-2B specific vari-
ants increased sensitivity for all 48 samples to 98.7 ± 1.8% 
(Additional file  1: Table  S28). As for the SAPHIR vali-
dation dataset, NGS and UMI-ONT-Seq variant levels 
were highly correlated also in 1000G dataset (r = 0.992, 
R2 = 0.983, Fig.  6B). We found no systematic bias and 
only deviations in the aforementioned KIV-2B specific 
mutations. Remarkably, KIV-2B specific mutations were 
detected at the same variant level, as expected from one 
haplotype (Additional file 1: Fig. S15 and see Additional 
file 3 for variant calling results for all 48 1000G samples). 
When comparing the mutation density of the KIV-2 
VNTR with the other KIV units, we found a higher nor-
malized mutation density for the KIV-2 VNTR (median 
mutation density of the other KIV units = 0.0004–0.0015; 
KIV-2 VNTR = 0.004 [IQR: 0.0034–0.0047]; Additional 
file 1: Fig. S16A).

We observed a similar step-wise improvement for 
the KIV-2 repeat number estimations between the dif-
ferent quantification strategies as in the SAPHIR vali-
dation set (Additional file  1: Table  S29 and Fig. S17). 
Correlation with ddPCR data for the 48 1000G samples 
was R2 = 0.724, which raised to R2 = 0.903 after exclusion 
of two outliers (Fig. 6C). The mean difference was as low 
as 0.295 ± 4.259 repeats and 32 of 45 samples were even 
within the narrow CI of the ddPCR (Additional file  1: 
Table S29 and Fig. 6D).

In summary, UMI-ONT-Seq provides a new, very accu-
rate, ancestry-independent method for variant calling, 
haplotype extraction, and determination of KIV-2 repeat 
number for large as well as short alleles, which well 
exceeds the technical limit of the commonly used KIV-2 
VNTR qPCR method [67–70]. Albeit of limited sample 
size, this dataset may support generation of new hypoth-
eses addressing the Lp(a) differences across ancestries.

Exploration of the KIV‑2 intronic short tandem repeat
Leveraging the high accuracy of UMI-ONT-Seq, we 
explored the poorly described CA short tandem repeat 
(STR) in each KIV-2 intron. This STR shows pronounced 
variability between the KIV-2 units and thus resembles 
somatic STR variation, which is a further class of hard-
to-resolve genetic variation. The KIV-2 STR had been 
characterized before only once in just 2 individuals [71].

To explore the STR region in the KIV-2 intron, we 
extracted this region from each of the 62,679 consensus 
sequences generated by UMI-ONT sequencing across all 
63 genomic DNA samples (SAPHIR and 1000G) and the 
two unmixed plasmids. We found a median of 23 unique 

STRs per genomic DNA sample (IQR: 20–27). In close 
agreement with the prior work, we observed STR lengths 
between 8 and 22 repeats (12–18 in Rosby et  al. [71]; 
Additional file  1: Fig. S18 and Table  S30). We observed 
degeneration of the STR region at mainly positions 7 
and 15 from to either GA or AA in 5685 (≈9.1%) UMI 
consensus sequences (Additional file 1: Table S31). Both 
the degeneration patterns and the STR diversity showed 
potential population-specificity (Additional file 1: Tables 
S31 and S32). This provides a further example of the 
capabilities and broad applicability of UMI-ONT-Seq to 
analyze complex genetic variation. Studies with larger 
sample sets are warranted to provide a comprehensive 
picture of the population-specific differences.

Haplotype diversity in 63 multi‑ancestry samples
Finally, we performed an exploratory analysis to inves-
tigate whether the retrieved haplotypes reflect known 
KIV-2 clusters and subtypes. We extracted the haplo-
types based on variant calling of all 63 genomic DNA 
samples from 1000G and SAPHIR (see Additional file 2 
for a variant calling summary), to analyze the diver-
sity in the KIV-2 repeats. In 2348 KIV-2 repeat units 
(37.27 ± 7.97 per sample; based on ddPCR), we found 
1993 haplotypes (based on the noise-filtered haplotypes) 
of which 1916 were unique throughout the whole sample 
set. We were readily able to classify the KIV-2 haplotypes 
into the commonly known KIV-2A, B, and C subtypes 
(representative samples in Fig.  7; all samples in Addi-
tional file  1: Fig. S19). We observed two novel clusters 
within KIV-2A, which were defined by three positions 
(35, 3103, and 4358; Additional file 1: Fig. S20). These had 
been proposed previously as new haplotypes also in [24]. 
Interestingly, these positions were invariant in all KIV-2B 
and C repeats across all 63 samples. Analysis of the KIV-
2B and C repeats revealed 5 positions, which define the 
three clusters of KIV-2B and C (positions 50, 2409, 5037, 
5045, and 5052; Additional file 1: Fig. S21). Interestingly, 
KIV-2C repeats did not build a distinct cluster (Addi-
tional file 1: Fig. S22).

Given the unique per-repeat resolution of UMI-ONT-
Seq, we finally chose to characterize in detail the hap-
lotypes of two frequent, clinically relevant KIV-2 SNPs 
(4925G > A [25] and 4733G > A [26]) in the present 
sample set. Either one of the two SNPs was found in 7 
samples (6 EUR, 1 PJL). Both variants were exclusive to 
KIV-2A repeats. Remarkably, three otherwise unre-
lated samples showed exactly the same sequence for the 
complete 5.1 kb long repeat unit carrying the 4733G > A 
variant and two unrelated samples showed exactly the 
same sequence of the 4925G > A variant carrying repeat 
unit (Additional file  1: Fig. S23). The background hap-
lotypes of these variants were clearly located on one of 
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the two different KIV-2A clusters (Additional file 1: Fig. 
S23). This highlights the potential of UMI-ONT-Seq 
to preserve highly accurate, full-length, and per-repeat 
haplotype information of the KIV-2 VNTR and gaining 
profound insights in the per-unit haplotype structures 
within this complex VNTR.

Discussion
Large, highly similar VNTR repeat units are a major con-
stituent of the “dark genome” [2]. Nanopore sequencing 
has recently achieved well beyond 99% variant calling 
accuracy for germline mutations [72, 73], but identifica-
tion and direct phasing of differences in highly homolo-
gous regions (especially VNTRs) remains challenging. 
The medically highly relevant LPA KIV-2 VNTR [17] is 

among the most complex coding VNTRs in the human 
genome [15, 27] and still poses issues in VNTR variant 
calling [1, 11, 74], making it a challenging and interest-
ing model. We extensively evaluated the performance 
of amplicon-based UMI-ONT-Seq for SNP detection, 
direct SNP phasing, and determination of VNTR repeat 
numbers.

In all experiments, the UMI-ONT-Seq with V14 chem-
istry showed nearly perfect variant calling performance, 
extraordinary correlation with NGS data, and no system-
atic bias across the variant level range. The effects of raw 
read quality on variant calling were marginal between 
V14 HAC and V14 SUP and affected only a few positions 
in the PCR5104 amplicon (Additional file 1: Table S10). 
UMI-based variant calling clearly outperformed 

Fig. 7  KIV-2 subtype specific haplotype diversity of 12 representative human gDNA samples in the present study (1000G, SAPHIR). Splitting 
the samples by their containing KIV-2 subtypes revealed 2 major clusters containing either only KIV-2A (A–D, KIV-2A repeat haplotypes marked 
in blue) or the phylogenetically distant KIV-2B (E–H, KIV-2B repeat haplotypes marked in green) and C (I–L, KIV-2C repeat haplotypes marked in red) 
subtypes. While the KIV-2B and C cluster contain very similar sequences, with low diversity, the KIV-2A cluster has large internal differentiation (see 
Additional file 1: Fig. S19 for all samples)
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UMI-free KIV-2 variant calling, which suffered from low 
precision and low sensitivity, depending on the variant 
caller used.

The low performance of using duplex called UMI reads 
despite nearly Q30 raw read quality may appear coun-
terintuitive but is intrinsic to the duplex calling process. 
Duplex basecalling performs consensus basecalling on all 
strands that enter the same pore within 20 s, show simi-
lar length, and have ≥ 60% homology between the last, 
respectively first 250 bp. With amplicons showing > 90% 
similarity like the KIV-2 amplicons [24], this leads to 
extensive false strand pairings.

Using the V14 chemistry, dataset-quality achieved 
≈Q40 already with 6–8 reads per UMI cluster, provid-
ing highly accurate sequences of each KIV-2 repeat unit. 
We identified a V14-specific error profile, which was sys-
tematic and limited the consensus quality. Indeed when 
disregarding these errors, 95.5% of all UMI-ONT-Seq 
consensus sequences were error-free at cluster size 6 to 8. 
These characteristic transversion errors might represent 
a current limitation of UMI-ONT-Seq, especially for very 
low-level (≤ 0.5%) mutation detection. However, even 
without error profile correction, one third of the consen-
sus sequences were error-free and 99.7% of the sequences 
had no more than three errors. The observation that the 
residual errors are systematic makes them well address-
able bioinformatically and/or by modified Medaka train-
ing sets.

Overall, the performance of V14 was significantly bet-
ter than previous reports using R9 chemistry across all 
experiments. Karst et al. reported that 15 to 25 reads per 
UMI cluster were required to achieve Q40 dataset error 
rates with R9 chemistry [34], which is in agreement with 
our observations (Additional file 1: Fig. S6). Conversely, 
the low minimal cluster size required by V14 for Q40 
quality now puts UMI-ONT-Seq close to the perfor-
mance of UMI-tagged Pacific Bioscience circular consen-
sus sequencing (PacBio CCS), which requires three reads 
per UMI cluster for Q40 [34] but comes with 100 times 
higher equipment investments compared to ONT Min-
ION systems. Of note, PacBio CCS data without UMIs 
showed chimeras up to 3% variant level, thus requir-
ing UMIs for VNTR sequencing also with PacBio data 
despite the higher intrinsic quality of PacBio CCS. UMI-
ONT-Seq allows multiplexing ≈50 gDNA samples per 
MinION flow cell at roughly 25 € per sample, while a sin-
gle PromethION flow cell has sufficient capacity to ana-
lyze > 96 samples at < 10 € per sample. This corresponds 
to ≈0.06/0.025 cents per consensus sequence (assuming 
roughly 40,000 consensus sequences on average in our 
setup). This allows sequencing 192 samples on a compact 
PromethION P2 system every 72 h. UMI-ONT-Seq thus 
enables decentralized sequencing of the KIV-2 region at 

scale across ancestries with moderate equipment invest-
ment. This may open new avenues to refine variabil-
ity maps in this complex region and improve reference 
datasets.

All observations confidently supported that UMI-
ONT-Seq provides nearly error-free consensus sequences 
that allow direct experimental haplotyping of KIV-2 units 
down to ≤ 1% fractional representation. For some dif-
ficult variants with ambiguous results, UMI-ONT-Seq 
might be even more reliable than NGS. For example, we 
have previously shown an underrepresentation of KIV-
2B variants in ultra-deep NGS [24]. These variants now 
show considerably higher variant levels in UMI-ONT-
Seq (Additional files 2 and 3). In addition to the KIV-2B 
specific variants, a so far not completely defined subset 
of variants most likely characterizes several subtypes of 
KIV-2 repeats and increases the mutation density of the 
KIV-2 VNTR compared to the other KIV units within 
our 1000G exploration sample set (Additional file  1: 
Fig. S16B and C). In larger studies, the UMI-ONT-Seq 
derived haplotypes per KIV-2 repeat could provide an 
instrument to define these KIV-2 subtypes. The high con-
sensus sequence quality allowed direct extraction of the 
repeat structure of an STR located in the intron of the 
KIV-2 VNTR, which is a challenging task as it resembles 
somatic STR mosaicism. Given the growing interest in 
somatic STR mosaicism [75], UMI-ONT-Seq may pro-
vide a new efficient way to generate high-quality refer-
ence data.

We also employed UMI-ONT-Seq in a limited sample 
set from the 1000G study to provide first insights into the 
phylogenetic subclusters and the haplotype context of 
two frequent disease-relevant SNPs hidden in the KIV-2 
VNTR (KIV-2 4925G > A and 4733G > A). We could read-
ily define subcluster-specific mutations and observed 
high sequence homology (up to 100%) of 4925G > A and 
4733G > A carrying repeats (possibly indicating either 
rather recent mutation events or a conservation of these 
Lp(a)-reducing haplotypes). UMI-ONT-Seq was readily 
able to resolve the full-length haplotype of these variants, 
revealing, in this limited sample set, location on differ-
ent KIV-2A subclusters. More samples will be needed 
to investigate these patterns at scale. Given the huge 
human diversity, our sample set has to be regarded as a 
hypothesis-generating example of the potential of this 
technology for analysis of the LPA KIV-2 (and possibly 
similarly complex regions). Larger studies are required 
to appreciate these complex patterns across ancestries 
comprehensively.

Given the high per-repeat resolution of UMI-ONT-Seq, 
we hypothesized that the genomic VNTR repeat number 
could be accurately determined by coverage-corrected 
quantification of the unique haplotypes, because truly 
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identical KIV-2 repeats that would arise from, e.g., recent 
expansions would be detectable by higher normalized 
coverage. We show in 63 samples from European, Afri-
can, East Asian, and South Asian populations that UMI-
ONT-Seq indeed well exceeds the technical limit of the 
largely used [76] KIV-2 qPCR assays. It provides repeat 
number estimates that are comparable to high resolu-
tion ddPCR, which is among the most precise technolo-
gies for copy number quantification and is able resolve 
≈1.1–1.2-fold differences (compared to about twofold in 
qPCR) [77, 78]. We note that our validation sample set 
did not include a Hispanic population (admixed Ameri-
cans, AMR), which are a heterogeneous population [38] 
with complex genetics. Despite requiring experimental 
validation, we are confident that UMI-ONT-Seq per-
forms equally well in AMR populations, as it relies solely 
on the coverage-corrected number of haplotypes, which 
should not be affected by the ancestry (in contrast to 
using occurrence of specific “marker” SNPs or haplotypes 
for copy number estimation).

Of note, a recent preprint by Behera et  al. reports an 
algorithm to determine the KIV-2 copy number using 
NGS data, which has been implemented in the Illumina 
DRAGEN analysis suite [11]. The authors determined 
the KIV-2 copy number of all 1000G samples and were 
able to phase the copy number to the two LPA alleles 
in 47% of the samples, providing the allelic KIV-2 copy 
number. The KIV-2 copy number reported by Behera 
et  al. matches accurately our ddPCR data and, more 
importantly, the KIV-2 copy number derived by UMI-
ONT-Seq matches accurately the data of Behera et al. in 
46 of 48 samples (R2 = 0.965 for these 46 samples, Addi-
tional file 1: Table S33). Conversely, current NGS-based 
approaches do not provide full-length sequences and 
haplotypes of each KIV-2 unit. Another complementary 
method is ultra-long nanopore sequencing with high-
molecular weight (HMW) DNA, which can achieve 
reads > 100  kb [14, 79]. However, generation of HMW 
DNA requires laborious procedures [80], while com-
monly available biobanks used conventional DNA extrac-
tion methods. Moreover, an HMW sequencing approach 
requires WGS, which is very costly at scale and may not 
provide the coverage level needed to accurately resolve 
differences between highly similar KIV-2 units. Con-
versely, ultra-long nanopore reads are an exceedingly 
valuable tool, when it comes to the generation of deeply 
characterized reference samples and to resolve complex 
structural variation [7, 81, 82]. These approaches thus 
complement each other to investigate the KIV-2 genetics 
at scale.

In general, we observed a considerable improvement 
of copy number prediction after correcting for haplotype 

coverage. This was most pronounced in the larger alleles, 
which may suggest that especially some larger KIV-2 
alleles consist of multiple identical units. These may have 
originated from relatively recent repeat expansion and 
only slow divergence of the KIV-2 VNTR. Very little is 
known about the frequency and mechanisms of KIV-2 
expansions [23]. Boerwinkle et  al. report generation of 
one new allele in 376 meioses [83], but no other reports 
are available. UMI-ONT-Seq allows for the first time to 
study the mutational and evolutionary mechanisms of 
this complex VNTR with single nucleotide, respectively 
single haplotype resolution at scale.

Given its direct portability to other VNTRs with simi-
lar structure, UMI-ONT-Seq provides a novel instrument 
with general applicability beyond LPA. It complements 
and expands similar approaches like circularization-
based concatemeric consensus sequencing (R2C2) [84] 
or linked-read sequencing. R2C2 with UMIs recently 
reported up to Q50 quality for 550 and 1200  bp long 
amplicons using cluster sizes 12–17 [85], but might be 
limited to smaller amplicons, as the coverage on con-
catemerized targets is also a function of the target length. 
Conversely, linked-reads can present technical difficulties 
when analyzing highly similar amplicons [33]. Further 
use cases for UMI-ONT-Seq may include mapping of epi-
static protein mutations in in vitro evolution experiments 
and deep mutational scans, monitoring of intra-host dis-
ease evolution, immune repertoire mapping, mapping 
of large inserts for massive parallel reporter assays, gen-
eration of reference sequences for complex regions, and 
any other applications requiring precise long consensus 
sequences and/or SNP phasing at clonal resolution down 
to 1% [33, 74, 86, 87].

Conclusions
Using the LPA KIV-2 VNTR as a model of a highly com-
plex, challenging, and medically relevant VNTR, we 
demonstrate the capability of amplicon-based UMI-
ONT-Seq to accurately detect mutations, determine the 
full-length SNP haplotype of each VNTR unit, and deter-
mine the VNTR copy number using coverage-corrected 
haplotypes in recombinant standards, human validation 
samples and multi-ancestry samples from 1000G. This 
provides a new, straightforward approach to map varia-
tion in such challenging regions. The use of an amplicon-
based approach circumvents costly and laborious high 
molecular weight DNA WGS and provides an efficient 
method to generate reference data for complex regions 
with clonal resolution at scale. This will enable researcher 
to move from limited insights from small multi-ancestry 
datasets to a much-needed comprehensive picture at 
scale of the variability in the LPA KIV-2 and other simi-
larly complex regions.
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