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Abstract

The European Union multi-disciplinary Personalised RNA interference to Enhance the Delivery of Individualised
Cytotoxic and Targeted therapeutics (PREDICT) consortium has recently initiated a framework to accelerate the
development of predictive biomarkers of individual patient response to anti-cancer agents. The consortium focuses
on the identification of reliable predictive biomarkers to approved agents with anti-angiogenic activity for which
no reliable predictive biomarkers exist: sunitinib, a multi-targeted tyrosine kinase inhibitor and everolimus, a mam-
malian target of rapamycin (mTOR) pathway inhibitor. Through the analysis of tumor tissue derived from pre-
operative renal cell carcinoma (RCC) clinical trials, the PREDICT consortium will use established and novel methods
to integrate comprehensive tumor-derived genomic data with personalized tumor-derived small hairpin RNA and
high-throughput small interfering RNA screens to identify and validate functionally important genomic or transcrip-
tomic predictive biomarkers of individual drug response in patients. PREDICT's approach to predictive biomarker
discovery differs from conventional associative learning approaches, which can be susceptible to the detection of
chance associations that lead to overestimation of true clinical accuracy. These methods will identify molecular
pathways important for survival and growth of RCC cells and particular targets suitable for therapeutic develop-
ment. Importantly, our results may enable individualized treatment of RCC, reducing ineffective therapy in drug-
resistant disease, leading to improved quality of life and higher cost efficiency, which in turn should broaden
patient access to beneficial therapeutics, thereby enhancing clinical outcome and cancer survival. The consortium
will also establish and consolidate a European network providing the technological and clinical platform for large-
scale functional genomic biomarker discovery. Here we review our current understanding of molecular mechan-
isms driving resistance to anti-angiogenesis agents, the current limitations of laboratory and clinical trial strategies
and how the PREDICT consortium will endeavor to identify a new generation of predictive biomarkers.

Background

Despite an improved understanding of molecular
mechanisms driving distinct cancer cell biological pro-
cesses, cost-utility analysis of certain targeted therapeu-
tics has raised concerns regarding the ability of health
economies to afford such developments [1]. European
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Health Technology Appraisal committees are struggling
to define cost thresholds above which novel agents are
no longer affordable, with 90% of cancer drugs approved
over the past 4 years costing >13,000 Euros for a 12-
week course. The model adopted in the United King-
dom by the National Institute for Health and Clinical
Excellence (NICE) is to offer treatment reimbursed by
the National Health Service if the cost of therapy is
below a threshold of approximately 30,000 to 40,000
Euros per quality adjusted life year (QALY). Drug
rationing based on cost/benefit analyses (for example,
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cost per QALY) has profound implications, particularly
for disease subtypes for which limited effective treat-
ments exist, where any gain in quality of life or progres-
sion-free survival attributable to a new therapy is
regarded as the new gold standard. Such rationing has
recently been proposed for anti-angiogenesis agents in
renal cell carcinoma (RCC) and other solid tumors
where the cost per QALY gained does not meet such
stringent thresholds. Such cost-benefit considerations
together with the economic climate have precipitated
imminent changes to clinical trial design in cancer med-
icine through the consideration of health economic
costs as well as clinical benefit rates [1], mandating the
requirement for parallel predictive biomarker discovery
approaches.

PREDICT consortium background

Health economic and clinical trial considerations in
renal carcinoma combined with contemporary develop-
ments in high-throughput functional genomics biology
have led to the unification of six leading European
research centers with two SMEs (small and medium
sized enterprises) and the Royal Marsden/Institut Gus-
tave Roussy renal cancer biomarker-driven clinical trials
network, into the Personalised RNA interference to
Enhance the Delivery of Individualised Cytotoxic and
Targeted therapeutics (PREDICT) consortium. PRE-
DICT unites world-class clinical trial centers with inter-
national leaders in tumor functional genomics and
genome-wide sequencing to identify the next generation
of individualized predictive biomarkers in cancer medi-
cine. Importantly, this consortium encompasses the lar-
gest combined renal cancer patient referral base in
Europe that has standardized operating procedures for
tissue collection and processing, adhering to common
European Good Clinical Practice trial guidelines and
ethical principles.

Inter- and intra-tumor molecular heterogeneity has
severely limited the ability to define key components of
drug response pathways in cancer medicine that might
enable the better prediction of patient benefit in advance
of treatment exposure. The PREDICT consortium
recognizes that the development of personalized treat-
ment approaches adapted to the molecular phenotype of
individual tumors will be required to direct therapeutics
appropriately and identify novel mechanisms of drug
resistance and combination strategies to prolong drug
sensitivity.

PREDICT’s approach to biomarker discovery differs
from conventional associative learning approaches,
which can be susceptible to chance associations that
lead to overestimation of true clinical accuracy [2,3].
PREDICT’s objectives depend on the identification of
cancer cell genomic regulators of drug response through
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the functional annotation of the cancer transcriptome
using high-throughput personalized RNA interference
(RNAI) techniques integrated with genomics analyses of
primary tumor tissue from single-drug clinical trials
before and after drug therapy. These methods present a
more tractable strategy that is less susceptible to chance
associations and may allow the identification of predic-
tive genomics markers of drug response and the identifi-
cation of consistent molecular pathways mediating
therapeutic resistance. This biomedical consortium
allows rapid and efficient patient recruitment combined
with meticulous tumor tissue processing necessary for
biomarker-driven functional genomics approaches to
provide more cost-effective personalized therapy with a
higher therapeutic index.

Renal cell carcinoma

PREDICT has identified RCC as a disease lacking pre-
dictive biomarkers for the most active therapeutic com-
pounds targeting the mammalian target of rapamycin
(mTOR) and vascular endothelial growth factor (VEGF)
pathways. About 90% of kidney tumors arise in the
renal parenchyma (RCCs) whilst 10% arise in the renal
pelvis or ureter (transitional cell carcinomas). RCC is a
relatively rare tumor with a rising incidence, accounting
for approximately 3% of malignancies in the European
Union (EU) with 63,600 cases reported in 2006 [4]; a
third to a half of those diagnosed with kidney cancer
will die as a consequence of the disease. Of the ten
countries in the EU with higher than average incidence
rates, seven are former Eastern Bloc countries; the rea-
son for this observation is unknown. RCC is also com-
moner in men than women for unknown reasons and
generally affects those over 60 years of age; as a conse-
quence, the incidence of the disease is anticipated to
increase in the future in the EU in the face of an aging
population. Individuals affected by RCC may present
with symptoms and signs of localized disease, such as
loin pain or hematuria but the diagnosis is increasingly
made incidentally as a result of imaging performed for
unrelated reasons. The mainstay of curative treatment is
nephrectomy, and palliative debulking nephrectomy has
been shown in randomized studies to result in a survival
benefit in fit patients with metastatic disease and is con-
sequently a mainstay of the treatment of RCC.

There are five histological subtypes of RCC: clear cell
(75 to 80%), papillary (10 to 15%), medullary, chromo-
phobe and collecting duct (under 5% each). Clear cell
histology is associated with dysfunction of the Von Hip-
pel Lindau tumor suppressor gene (VHL) in the majority
of cases [5]. The product of the VHL gene (pVHL) is a
component of a ubiquitin ligase complex that mediates
the cellular response to hypoxia. In normoxic conditions
pVHL binds hypoxia inducible factor (HIF)-1la and
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HIF2a, leading to ubiquitination and proteasomal degra-
dation. In hypoxic conditions or in the absence of
pVHL, HIFla and HIF2a accumulate and upregulate the
production of growth factors such as platelet-derived
growth factor (PDGF) and vascular endothelial growth
factor (VEGF) at the transcriptional level.

Recent developments in targeted therapeutics in
renal cell carcinoma
Prior to 2006, systemic treatment options for advanced
RCC were limited to cytokine-based therapies, such as
IL-2 and IFN-a, which are associated with low response
rates (typically <20%) and significant toxicity. Since
2006, there have been unprecedented advances in the
systemic treatment of advanced RCC and six new drugs
have been approved for this indication: the monoclonal
anti-VEGF antibody bevacizumab, the multi-targeted
tyrosine kinase inhibitors sorafenib, sunitinib and pazo-
panib, which inhibit VEGFRs, and the mTOR inhibitors
everolimus and temsirolimus. Each of these drugs has
shown efficacy in RCC in randomized studies in com-
parison with either placebo or IFN-a [6-10]. Further
studies have shown that several other multi-targeted
VEGER kinase inhibitors, such as pazopanib and axiti-
nib, are also active in this disease [11-13]. All of these
agents have a putative anti-angiogenic mechanism of
action whilst the mTOR inhibitors everolimus and tem-
sirolimus may have direct anti-tumor effects in RCC.
mTOR inhibition results in attenuation of VEGFR/phos-
phatidylinositol-3-kinase (PI3K)/AKT signaling and HIF
down-regulation, further supporting a role for these
small molecules in the inhibition of angiogenesis.
Despite the fact that clinical trials establishing the
activity of these agents in RCC represent landmark stu-
dies, between a third and two-thirds of patients (depend-
ing on prognostic factors and clinical setting) have
intrinsically resistant disease and do not benefit from
treatment with agents such as sunitinib or everolimus.
Furthermore, all patients develop acquired resistance to
therapy and the median progression-free survival in the
clinical trials of the most active agents in RCC ranges
from 4 to 11 months, indicating the need to identify pre-
dictive biomarkers of drug response and identify new tar-
gets suitable for therapeutic intervention to delay the
acquisition of resistance. The design of these trials in
RCC was dictated mainly by clinical considerations and,
in general, scientific questions were not addressed.
Tumor biopsies were not collected systematically as part
of these trials, and although in some cases efforts have
been made to obtain archival paraffin-embedded tumor
material from the time of nephrectomy, it is rare to
obtain material from sufficient numbers of study partici-
pants to allow meaningful molecular analysis.
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PREDICT will address anti-angiogenesis research
priority areas

Despite advances in the therapeutic management of
RCC, there are no established predictive biomarkers of
response to these agents in RCC or other solid tumor
types, and in excess of 30% of patients will not derive
benefit from treatment. PREDICT is focusing on four
recently identified research priority areas: first, identifi-
cation of predictive and surrogate biomarkers, which
will help select patients for particular therapies and pro-
vide early information on treatment efficacy; second,
determination of the mechanisms of acquired resistance
to VEGF-targeted therapy; third, determination of
mechanisms of response to current agents, with a parti-
cular emphasis on how this might lead to the develop-
ment of more effective agents and more rational
treatment sequencing; and fourth, identification of new
targets in RCC. Predictors of response to inhibitors of
the VEGFR-mTOR-HIF signaling axis are likely to be
relevant to other tumor types in which these agents are
active or in which mTOR/HIF signaling is critical [14].
Identification of such factors would allow therapy to be
directed to those patients most likely to benefit, promot-
ing clinical and health economic advantages.

Molecular mechanisms of sunitinib activity and
resistance in RCC

VEGF and PDGF are important pro-angiogenic factors
driving tumor angiogenesis and increasing tumor vessel
stability by activating the endothelial VEGFR [15] and
pericyte PDGF receptor (PDGEFR) tyrosine kinases,
respectively. The persistent upregulation of VEGF and
PDGEF in the majority of RCCs through inactivation of
VHL fosters angiogenesis and growth of these tumors.
The multitargeted tyrosine kinase inhibitor sunitinib tar-
gets the VEGFR, PDGER, cKIT, FLT3 (FMS-like tyrosine
kinase 3), RET and the CSF1 (colony stimulating factor
1) receptor and other tyrosine kinases [16]. Sunitinib has
consistently led to decreased intratumoral blood flow
based on functional imaging assessment in clinical trials
[17] and to anti-angiogenic effects in RCC xenograft
mouse models. In contrast, sunitinib has no direct effect
on RCC cell line growth in vitro [18]. Thus, clinical suni-
tinib activity in RCC is thought to be a consequence of
its anti-angiogenic activity. Several potential mechanisms
of resistance to anti-angiogenic drugs like sunitinib have
been proposed and two main types of resistance can be
distinguished: resistance of the tumor vasculature to the
inhibition of VEGF and PDGF signaling (vascular resis-
tance); and resistance of cancer cells to the hypoxic and
nutrient-depleted microenvironment induced by anti-
angiogenic effects (hypoxia resistance - resistance to the
effector mechanism of anti-angiogenic treatment).
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Vascular resistance

Vascular resistance to anti-angiogenic drugs has been
shown to occur, amongst others, through activation of
alternative pro-angiogenic pathways [19]. For example,
increased IL-8 secretion by RCC cells in mouse xeno-
graft models has been found to confer sunitinib resis-
tance in vivo and immunohistochemical measurement of
IL-8 in patient tumor samples also correlated with clini-
cal sunitinib resistance in a retrospective analysis of a
small number of patients [18]. Cancer treatment with
anti-angiogenic drugs induces a short period of vascular
normalization with improved tumor oxygenation, fol-
lowed by impaired tumor perfusion leading to increased
hypoxia and lack of nutrients [20,21]. Hypoxia is
thought to be the predominant effector mechanism of
anti-angiogenic drugs because oxygen has a shorter dif-
fusion limit (approximately 150 um) in tissues than criti-
cal nutrients like, for example, glucose [22]. Robust data
regarding the severity of hypoxia induced by anti-angio-
genic drug treatment are lacking; however, oxygen levels
below 0.5% can be found in untreated tumors and are
likely to be significantly aggravated by anti-angiogenic
treatment. Oxygen concentrations below 0.5% have anti-
proliferative effects on many cancer cell lines in vitro
and can cause apoptosis and necrosis.

Hypoxia resistance

Hypoxia resistance and inherent tolerability to hypovas-
cular environments have been observed in some cancer
types [19]. Furthermore, the selection of hypoxia-resis-
tant cancer cells with the ability to thrive in a therapy-
induced low oxygen environment has previously been
reported [23] and inactivating p53 mutations have been
identified to contribute to hypoxia resistance. A large
scale small interfering RNA (siRNA) screen of hypoxia
resistance genes in Caenorhabditis elegans highlighted
the complexity of this process, identifying almost 200
genes from a variety of functional gene groups, such as
signaling molecules, metabolic genes and genes control-
ling protein translation, that influence survival under
hypoxic conditions [24]. Knockdown of several of these
genes also led to hypoxia resistance in human cancer cell
lines. This indicates that hypoxia sensitivity is strongly
determined by the genetic background through distinct
and complex cellular pathways. Thus, hypoxia resistance
is likely to contribute to VEGF-targeted therapeutic resis-
tance [25-27]. Furthermore, hypoxia can induce genetic
instability in cancer cells [28], and the steady prolifera-
tion of hypoxia-resistant cancer cell clones could foster
the acquisition of additional mutations that may permit
the tumor to re-establish a resistant vasculature (for
example, through activation of alternative pro-angiogenic
pathways and factor secretion).
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Molecular mechanisms of everolimus activity and
resistance in RCC

The rapamycin-like (rapalog) drug everolimus inhibits
the serine/threonine protein kinase mTOR after forming
a complex with the intracellular protein FKBP12 (FK506
binding protein-12). mTOR is a component of two dis-
tinct cellular multiprotein complexes, mTOR complex
(mTORC)1 and mTORC2, and only mTORC1 is directly
inhibited by the rapalog-FKBP12 complex [29]. Activa-
tion of mTORCI increases protein translation and pro-
motes entry into the G1 phase of the cell cycle by
phosphorylation of downstream substrates, including
ribosomal S6 kinase 1 (S6K) and 4EIF binding protein 1
(4EBP1). Inhibition of mTORC1 by everolimus leads to
G1 cell cycle arrest, autophagy induction and cytostasis
of many RCC cell lines in vitro. An important role of
the mTOR pathway in clear cell RCC (CCRCC) is sup-
ported by the occurrence of these cancers in patients
with tuberous sclerosis, who have a constitutively acti-
vated mTOR pathway. Phosphorylation of the S6 pro-
tein, mediated by S6K activity, an mTOR target, was
significantly higher in CCRCC compared to other RCC
subtypes and is associated with poorer outcome [30].
The majority of CCRCCs are deficient for the tumor
suppressor gene VHL, which leads to the upregulation
of the transcription factor subunits HIFla and HIF2a.
mTORCI regulates HIF1la protein translation and thus
controls transcription of the downstream target VEGF.
Thus, mTORCI1 inhibition with rapalogs such as everoli-
mus reduces HIFla protein levels and decreases VEGF
transcription and neo-angiogenesis in xenograft mouse
models [31,32]. This effect may contribute to the activity
of mTOR inhibitors in patients with VHL-deficient
RCCs. mTORCTI is also a component of the downstream
signaling cascade of the VEGER in endothelial cells and
inhibition by everolimus impairs endothelial prolifera-
tion, which amplifies the anti-angiogenic effect. Thus,
everolimus is likely to have dual activity in RCCs
through direct inhibition of cancer cell proliferation and
through the inhibition of tumor angiogenesis.

Everolimus resistance

Several molecular mechanisms that may be implicated
in resistance to rapalog mTOR inhibitors have been
documented in laboratory model systems. These include
a negative feedback loop from S6K to the insulin recep-
tor substrates (IRS) 1 and 2. Inhibition of mTORCI and
S6K activity by rapalogs can increase IRS1/2 activity,
which leads to enhanced Akt phosphorylation in cells
where this negative feedback loop is active [33]. The
ensuing Akt activation may promote cell survival and
proliferation and thus escape from the antitumor activity
of everolimus. Rapalog exposure can also indirectly
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inhibit the assembly of mTORC2, probably by promot-
ing the sequestration of mTOR into mTORCI1, which
effectively eliminates mTOR from mTORC2 [34,35].
This has been observed in 20% of tested cancer cell
lines, and it has been speculated that only tumors
responding to rapalogs with mTORC1 and mTORC2
inhibition may be clinically sensitive to this class of
agents. Concomitant activation of the Ras-mitogen-acti-
vated protein kinase (MAPK) pathway has been found
to override rapalog sensitivity in prostate epithelial cells
[36] and in melanoma cell lines [37]. Thus, cells with an
activated Ras-MAPK pathway may require the combined
inhibition of the Ras pathway and of mTOR to over-
come resistance to mTOR inhibitors alone. Despite the
discovery of these feedback and parallel pathways, their
potential role in clinical everolimus resistance and sensi-
tivity is unknown. Immunohistochemical studies of
mTOR pathway activity in pre-treatment RCC biopsies
from patients receiving the rapalog temsirolimus showed
a weak but statistically significant correlation of phos-
phorylated S6, the substrate of S6K, with clinical
response [38]. However, many tumors with highly phos-
phorylated S6 were refractory to the antiproliferative
activity of temsirolimus, indicating that other, hitherto
unknown factors play a role. Activation of PI3K-mTOR
signaling through PTEN (phosphatase and tensin homo-
logue) inactivation was thought to sensitize tumors to
mTOR inhibition, but no correlation of PTEN status
and temsirolimus response in RCC was found in the
same study [38]. Rapalog suppression of HIF1la-mediated
transcriptional activation of pro-angiogenic factors like
VEGF may contribute to the activity of rapalogs in
CCRCCs. This is supported by the discovery that VHL
loss and the resulting HIF1a upregulation confers heigh-
tened sensitivity to the rapalog temsirolimus in RCC
cells [31]. However, responses to temsirolimus can also
occur in VHL-positive RCCs, indicating that factors
determining overall mTOR inhibitor sensitivity or resis-
tance are poorly understood. It is unknown how much
direct anti-cancer cell effects and anti-angiogenic evero-
limus effects contribute to clinical sensitivity. If anti-
angiogenic activity predominates, anti-angiogenic resis-
tance mechanisms as outlined for sunitinib (vascular
resistance and hypoxia resistance) may play a major role.
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The lack of suitable tumor samples from well anno-
tated clinical trials and the resulting reliance on mouse
xenograft and in vitro cancer models has precluded the
identification of clinically relevant predictive biomarkers
for mTOR inhibitors and anti-angiogenic drugs in RCC
and other solid tumors [39]. Thus, novel and unbiased
approaches integrating functional genomics datasets
with molecular analyses of human tumor samples using
PREDICT consortium validated technologies [40] repre-
sent a rational step to identify predictive biomarkers to
these agents.

Pre-operative biomarker-driven RCC clinical trials
The necessity for new biomarker discovery approaches
and the need for predictive biomarkers for mTOR inhi-
bitors and VEGF targeted anti-angiogenic therapeutics
to improve clinical outcomes and the cost-effectiveness
of these drugs in cancer medicine have led the PRE-
DICT consortium to design renal cancer clinical trial
endpoints using these agents in parallel with robust
tumor genomics, functional genomics and other mole-
cular analyses to accelerate predictive biomarker
discovery.

In order to identify the next generation of predictive
biomarkers, we have designed clinical trials specifically
to include the collection of fresh tissue to synergize with
parallel high-throughput genomics analyses (Figure 1).
Two such clinical trials, E-PREDICT [41] and S-PRE-
DICT/PREINSUT [42], have been initiated and are cur-
rently recruiting patients. Fresh tissue will be collected
in a quality-controlled setting before and after drug
therapy for molecular analyses that can be correlated
with clinical efficacy. Each of these pre-nephrectomy
RCC clinical trials using the mTOR inhibitor everolimus
(E-PREDICT) and the VEGER targeted therapeutic suni-
tinib (S-PREDICT/PREINSUT) will recruit 60 patients
in discovery cohorts and 60 patients in validation
cohorts for predictive biomarker validation.

Study participants have metastatic RCC, and palliative
nephrectomy has been recommended as part of routine
clinical management. In the PREDICT trials, tumor
biopsies are taken and sunitinib or everolimus adminis-
tered in a ‘window of opportunity’ before nephrectomy.
The therapeutic agent is stopped 1 to 2 weeks before

Biopsy Nephrectomy

Pre-op drug treatment

: ; ¥

Pre- and post-treatment scans

Post-op drug treatment of metastatic sites

YV ¥ ), Time

Figure 1 Overview of the PREDICT neo-adjuvant clinical trial strategy.

Biopsy (optional)

3 monthly routine scans Progression
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nephrectomy for safety and scientific reasons and
restarted after nephrectomy until the eventual develop-
ment of progressive disease in metastatic lesions. The
scientific reason for stopping drug 1 to 2 weeks before
nephrectomy is so that the acute transcriptional effects
of drug exposure are limited. Response to treatment will
be assessed at primary and metastatic sites using the
Response Evaluation Criteria In Solid Tumors (RECIST)
by computed tomography (CT) imaging before treat-
ment initiation and after exposure to the therapeutic
agent before patients undergo nephrectomy. Further
imaging of metastatic sites will be performed after
nephrectomy at 3-monthly intervals; efficacy data will be
available for all patients based on evaluation of meta-
static sites.

PREDICT integrative genomics developments
guiding biomarker discovery in cancer medicine
Approaches used by PREDICT consortium members
have been designed to avoid or overcome the various pit-
falls of high-throughput associative studies of gene
expression datasets [3,43] in order to develop the next
generation of prognostic and predictive biomarkers. The
potential to rapidly identify predictive biomarkers of drug
response in tumor tissue to define sensitive and resistant
patient cohorts has recently been accelerated through
advances in functional genomics techniques that have
been intensively developed by the PREDICT consortium
using large scale RNAi screening approaches [44-47].
Through the use of this technology, the consortium
has identified genes regulating response and resistance
to common cytotoxic agents used in cancer medicine
[40,46,48-50]. Through the integrative genomics analysis
of these functional RNAIi datasets in breast and ovarian
cancer, we have identified regulators of mitotic arrest
and ceramide metabolism as mediators of taxane resis-
tance and confirmed their relevance in clinical trial
cohorts [40,46,48-50]. For example, silencing of the cer-
amide transporter CERT was shown to confer sensitivity
to paclitaxel across multiple cancer cell lines and follow-
up analysis revealed that CERT was overexpressed in
two separate paclitaxel-resistant cell lines. Analysis of
microarray expression data from the OV-01 clinical trial
revealed that over-expression of CERT occurred in ovar-
ian cancers from patients with paclitaxel resistant dis-
ease, suggesting a role for this gene product in the
regulation of response to paclitaxel in vivo [46].
Successful integration of RNAIi functional genomics
screening results with tumor gene expression data in
order to identify a predictor of neoadjuvant paclitaxel
response in breast cancer was dependent on the identifi-
cation of gene coexpression modules representative of
mitotic arrest and ceramide metabolic pathways relevant
to drug response. The combination of these modules
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into a ‘functional metagene’ shows promise as a pacli-
taxel-specific predictive biomarker [40] that is predictive
of pathological complete response to paclitaxel in breast
cancer with a high sensitivity and specificity (area under
the receiver operating characteristic curve (AUC) = 0.8)
[40], outperforming any other clinical or molecular pre-
dictor of paclitaxel sensitivity identified to date.

Further supporting integrative genomics approaches to
the identification of novel drug response mechanisms in
vivo, we have integrated complex cancer datasets (gene
expression and copy number data) to identify a particu-
lar chromosomal region that contributes to anthracy-
cline resistance when amplified in breast cancer. Two
causative genes, LAPTM4B and YWHAZ, were identified
from this region: one is a known anti-apoptosis gene,
and one is a novel gene affecting drug transport. These
genes are strongly predictive of anthracycline resistance,
and rigorous clinical evaluation is ongoing [51].

We have also demonstrated that molecular hypotheses
can be utilized to predict drug response in vivo. We
formed a rational hypothesis about drug mechanism to
suggest a predictor of response to cisplatin. Briefly, we
noticed links between BRCA I mutations, cisplatin sensitiv-
ity, and DNA repair pathway competence. We developed a
SNP array-based surrogate marker of DNA repair pathway
competence and found that it strongly predicted for
neoadjuvant cisplatin pathological complete response in a
small cohort of estrogen receptor-negative/progesterone
receptor-negative/ERBB2-negative breast cancer patients
[52]. We have derived a robust gene expression signature
of chromosomal instability, which is prognostic in several
types of solid tumor [53] and predictive of paclitaxel resis-
tance in ovarian cancer [50]. We have also identified a
blood-based gene expression biomarker of early-stage Par-
kinson’s disease [54], which is currently being validated in
a larger study, and have integrated diverse genomic data
sets to generate an atlas of disease-associated protein com-
plexes, several of which were novel [55].

These studies highlight the power of comprehensive
functional genomics datasets combined with monother-
apy clinical trial tumor genomics datasets to illuminate
the clinical relevance of specific genes to individual
patient drug sensitivity. Furthermore, the studies provide
robust and efficient methodological tools to accelerate
predictive biomarker development and identify mechan-
isms of drug resistance that will be applied to biomarker
discovery in RCC in this proposal.

PREDICT technologies for biomarker discovery in
RCC

PREDICT RNA interference screens

Based on the clinical and molecular evidence reviewed
above, we hypothesize that resistance of RCCs to suniti-
nib and everolimus might occur through one or a
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combination of the mechanisms (Table 1). PREDICT
consortium’s functional genomics RNAi approaches will
be applied to identify genes contributing to these resis-
tance mechanisms.

The PREDICT consortium will use novel small hairpin
RNA (shRNA) and siRNA screening approaches to iden-
tify genes consistently regulating response to hypoxia
and everolimus exposure in multiple renal cancer cell
lines propagated from tumors ex vivo. Consistent with
PREDICT’s recently published predictive biomarker in
breast cancer based on this strategy, genes identified
across multiple cell lines or in multiple screens that pro-
mote sensitivity or resistance to hypoxia or everolimus
exposure may be implicated in everolimus and sunitinib
sensitivity in patients. Central to this proposal will be
the derivation of up to 30 ex vivo cultured patient-
derived RCC cell bulks from which personalized RNAi
(personalized shRNA) libraries will be generated to iden-
tify tumor-individualized autologous mechanisms of
drug response. These will be used to yield vital informa-
tion, complementary to the unbiased siRNA and shRNA
screening approaches about the functional role of each
gene expressed in tumor samples that may determine
resistance or sensitivity to sunitinib or everolimus.

PREDICT tumor genomics analysis

PREDICT has focused on standardizing tissue collection
procedures across clinical sites involved in the S-PRE-
DICT/PREINSUT and E-PREDICT clinical trials. RNA
and DNA extracted from microdissected cancer cells
from pre- and post-treatment specimens will be hybri-
dized to gene expression and DNA SNP/comparative
genomic hybridization arrays, respectively. A kinome
activity assay will evaluate the activity of 267 kinases
(160 serine threonine kinases and 107 tyrosine kinases)
on tumor samples following treatment in order to iden-
tify molecular pathways regulated following everolimus
and sunitinib exposure in resistant and sensitive disease.

Table 1 Mechanisms of resistance to sunitinib and
everolimus

Potential mechanisms of sunitinib resistance

Hypoxia resistance of RCC cells
Vascular resistance to VEGFR and PDGFR inhibition by sunitinib

Potential mechanisms of everolimus resistance
Resistance of RCC cells to direct anti-proliferative everolimus effects

Resistance of HIF1aw target gene expression to repression by
everolimus

Hypoxia resistance of RCC cells
Vascular resistance to VEGF pathway inhibition

PDGFR, platelet derived growth factor receptor; RCC, renal cell carcinoma;
VEGF, vascular endothelial growth factor; VEGFR, VEGF receptor.
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PREDICT tumor exome-sequencing analysis

Nephrectomy samples (and corresponding matched pre-
treatment tumors and germline DNA) from patients
with progressive/resistant disease will be available for
whole-genome exon sequencing to identify candidate
genes associated with everolimus or sunitinib resistance
in vivo. Tumors from patients with imaging-defined
drug-resistant disease within these clinical trials will be
subject to exon-capture sequencing before and after
drug exposure to characterize the somatic mutational
spectrum in resistant tumors [56]. Directed sequencing
methods will be used to confirm the specificity of these
somatic mutations to drug-resistant compared to drug-
sensitive tumors.

PREDICT ex vivo renal cancer cell line culture

Renal cancer xenograft and cell culture models are being
established from surgical specimens to support the per-
sonalized identification of novel biomarkers in RCC.
Surgically resected tumor specimens are transplanted
subcutaneously into immunodeficient NOD/SCID mice,
and following successful engraftment (>30% success rate
expected), parts of the tumor material will be used for
further passage, cryopreservation (tumor bank) and to
establish ex vivo propagation of cancer cell lines for use
in the functional genomics personalized shRNA screens.

PREDICT integrative genomics analysis

Data from the unbiased and personalized RNAi screens
will be integrated with genomics and proteomics data-
sets from patient tumors from the discovery phase of
the two clinical trial cohorts and genes that are identi-
fied through multiple approaches (for example, modify-
ing resistance in functional genomic screens and altered
expression/copy number/sequence in resistant versus
sensitive tumors; Figure 2) will be prioritized for devel-
opment of predictive signatures of sunitinib and everoli-
mus response for assessment in the validation phases of
the two clinical trials.

Priority In vitro RNAI
High sensitizers/ screens:
antagonists « drug
* hypoxia

Low

Tumor profiles:

post-drug sensitive | | * RNA expression
VS. vs. * DNA copy no.
pre-drug resistant * DNA mutation

¢ Kinase activity

Figure 2 Prioritization of predictive biomarkers for validation.
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Genomic, proteomic and functional RNAi datasets will
be integrated together with clinical response data into a
meta-dataset containing expression, mutation, copy
number and functional data in a genome-wide manner.
Bioinformatics analysis of the meta-dataset for genes
altered in resistant versus sensitive samples that func-
tionally influence resistance in laboratory model systems
of RCC will lead to the prioritization of predictive bio-
markers for sunitinib and everolimus in the validation
cohorts of the E-PREDICT and S-PREDICT/PREINSUT
clinical trials (Figure 2). Through this approach, the
consortium will meet its overall objectives of identifying
robust predictors of response to anti-angiogenic thera-
pies. More importantly, the clinical trial and functional
genomics framework will be established to enable the
rapid development of the next generation of predictive
biomarkers across a wide range of solid tumor types.

Integration of personalized functional genomics
into the clinical setting

The generation of personalized RNAi screening
approaches, representing the complete transcriptome of
distinct tumors from individual patients, allows the
identification of genes that are differentially expressed in
tumors that impact upon drug response. Importantly,
such an approach, if validated in RCC, would be directly
applicable to other tumor types for which tumor biop-
sies could be acquired prior to treatment exposure
within defined single-drug clinical trials. This approach
may allow an unprecedented opportunity to identify
patient-specific drug sensitivity pathways in cancer med-
icine and may precipitate improvements to clinical trial
design and the stratification of patients according to
defined personalized biomarkers of drug response.
Importantly, this cost-effective technique is aimed at
reducing health economic costs and improving patient
quality of life due to the specific application of novel
therapeutics specifically to patients with drug-sensitive
disease.

Conclusions

The health economics of targeted therapeutic strategies
with benefit confined to distinct but unknown patient
subpopulations has major implications for future drug
development, for the provision of affordable healthcare
to all individuals within the EU, and for patient access
to therapies that will genuinely offer therapeutic benefit
to a minority of patients. Indeed, in a recent analysis of
patient survival for all cancers across Europe, it was
recognized that in the future as oncology costs continue
to escalate, the best treatments will only be available to
the wealthiest, as member states conclude that resources
cannot be allocated to provide optimal cancer care for
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all patients. In this publication, the urgent need for a
radical evaluation of cost considerations in cancer
research and the requirement for investment in new
technology was recognized [57]. A solution to these pro-
blems is to rapidly identify predictive molecular biomar-
kers of drug response, to limit patient exposure to costly
and ineffective therapies whilst targeting sensitive
patient cohorts, using integrative genomics methods and
standardized clinical trial infrastructure. These methods
will be applicable to biomarker discovery efforts across
all cancer types and therapeutic modalities for which no
predictive assays exist.

Through the identification of genes functionally
required for everolimus and sunitinib response inte-
grated with parallel whole-genome analysis of clinical
trial tissue, we will identify robust and validated geno-
mics markers to predict therapeutic outcome. Through
these approaches we hope to ultimately reduce the cost
per QALY associated with drug treatment, allowing
wider access to active agents in sensitive patient cohorts.
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