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Abstract

Background: Coordinated efforts to collect large-scale data sets provide a basis for systems level understanding of
complex diseases. In order to translate these fragmented and heterogeneous data sets into knowledge and
medical benefits, advanced computational methods for data analysis, integration and visualization are needed.

Methods: We introduce a novel data integration framework, Anduril, for translating fragmented large-scale data
into testable predictions. The Anduril framework allows rapid integration of heterogeneous data with state-of-the-
art computational methods and existing knowledge in bio-databases. Anduril automatically generates thorough
summary reports and a website that shows the most relevant features of each gene at a glance, allows sorting of
data based on different parameters, and provides direct links to more detailed data on genes, transcripts or
genomic regions. Anduril is open-source; all methods and documentation are freely available.

Results: We have integrated multidimensional molecular and clinical data from 338 subjects having glioblastoma
multiforme, one of the deadliest and most poorly understood cancers, using Anduril. The central objective of our
approach is to identify genetic loci and genes that have significant survival effect. Our results suggest several novel
genetic alterations linked to glioblastoma multiforme progression and, more specifically, reveal Moesin as a novel
glioblastoma multiforme-associated gene that has a strong survival effect and whose depletion in vitro significantly
inhibited cell proliferation. All analysis results are available as a comprehensive website.

Conclusions: Our results demonstrate that integrated analysis and visualization of multidimensional and
heterogeneous data by Anduril enables drawing conclusions on functional consequences of large-scale molecular
data. Many of the identified genetic loci and genes having significant survival effect have not been reported earlier
in the context of glioblastoma multiforme. Thus, in addition to generally applicable novel methodology, our results
provide several glioblastoma multiforme candidate genes for further studies.

Anduril is available at http://csbi.ltdk helsinkifi/anduril/

The glioblastoma multiforme analysis results are available at http://csbiltdk helsinkifi/anduril/tcga-gbm/
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Background

Comprehensive characterization of complex diseases
calls for coordinated efforts to collect and share gen-
ome-scale data from large patient cohorts. A prime
example of such a coordinated effort is The Cancer
Genome Atlas (TCGA), which currently provides more
than five billion data points on glioblastoma multiforme
(GBM) with the aim of improving diagnosis, treatment
and prevention of GBM [1].

Translating genome-scale data into knowledge and
further to effective diagnosis, treatment and prevention
strategies requires computational tools that are designed
for large-scale data analysis as well as for the integration
of multidimensional data with clinical parameters and
knowledge available in bio-databases. In addition, it is
evident that until data integration tools are developed to
the level that experimental scientists can independently
interpret the vast amounts of data generated by genome-
scale technologies, most of the potential of the generated
data will be severely underexploited. In order to address
these challenges, we have developed a data analysis and
integration framework, Anduril, which facilitates the
integration of various data formats, bio-databases and
analysis techniques. Anduril manages and automates ana-
lysis workflows from importing raw data to reporting and
visualizing the results. In order to facilitate interpretation
of the large-scale data analysis results, Anduril generates
a website that shows the most relevant features of each
gene at a glance, allows sorting of data based on different
parameters, and provides direct links to more detailed
views of genes, transcripts, genomic regions, protein-pro-
tein interactions and pathways.

We demonstrate the utility of the Anduril framework
by analyzing heterogeneous and multidimensional data
from 338 GBM patients [1]. GBM is an aggressive brain
cancer having a median survival of one year and is
remarkably resistant to all current anti-cancer therapeu-
tic regimens [2]. In order to understand the complex
molecular mechanisms behind GBM, earlier efforts have
analyzed data from one or two platforms, such as muta-
tions, copy number and gene expression profiles and
methylation patterns [3-7]. In contrast, we have analyzed
all TCGA provided GBM data sets and collected the
results into a comprehensive website that facilitates the
interpretation of the data and allows an advanced view
of genes and genomic regions crucial to GBM progres-
sion. Most importantly, Anduril can be applied to data
from any accessible source.

Materials and methods

Documentation for algorithms, their parameters and
usage in the analysis together with all results are avail-
able in Additional file 1.
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Glioblastoma multiforme data set

The glioblastoma data set was originally released in 2008
[1] and has been updated online since then. An updated
revision was used in the present work: comparative geno-
mic hybridization array (aCGH), single nucleotide poly-
morphism (SNP), exon, gene expression and microRNA
(miRNA) data were accessed May to August 2009, while
methylation and clinical data were accessed October to
November 2009. The data set consists of 338 primary
glioblastoma patients with clinical annotations. Data
were analyzed from the following microarray platforms:
Affymetrix HU133A (269 GBM samples, 10 control sam-
ples), Affymetrix Human Exon 1.0 (298 GBM samples,
10 control samples), Agilent 244 k aCGH (238 GBM
samples), Affymetrix SNP Array 6.0 (214 GBM blood
samples), Illumina GoldenGate methylation array (243
GBM samples) and Agilent miRNA array (251 GBM
samples, 10 control samples). Pre-normalized data (level
2) were used for gene, exon and miRNA expression and
methylation arrays. Raw data (level 1) were used for
aCGH and SNP platforms. Clinical annotations were
used to compute the duration of patient survival in
months from the initial diagnosis to death or to the last
follow-up. The publicly available results in the present
work do not reveal protected patient information.

Gene expression analyses
The gene and exon expression platforms include ten con-
trol samples from brain tissue extracted from non-cancer
patients in addition to the glioblastoma samples. Tran-
script level expressions are calculated from the exon level
expression data by considering the problem of transform-
ing the exon-level data to transcripts as a least squares
problem. For ith gene having m exons and # transcripts in
Ensembl (v.58) we define a vector e; of length m that
denotes the measured exon expressions, and an m times #
matrix A;, where the values in each column denote if the
exon belongs to the transcript (1) or not (0). Transcript
expression values t; are solved from the equation Ajt; = e;
using the QR decomposition to ensure numerical stability.
The gene level expression values for the exon array plat-
form were computed by taking a median of the intensity
of all the exons linked with the gene in Ensembl.
Differential expression is determined by computing
fold changes and applying a t-test between glioblastoma
and control groups, followed by multiple hypotheses
correction [8]. Fold changes are computed by dividing
the mean of glioblastoma expression values by the mean
of control expression values.

Transcriptome survival analysis
Differentially expressed splice variants were selected as
the basis of expression survival analysis. There were
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8,887 splice variants (out of a total 75,083) that were
differentially expressed having absolute fold change >2
and a multiple hypothesis corrected P-value < 0.05. For
these splice variants we computed sample-specific fold
changes by dividing the sample expression value by the
mean of control expression values. These fold changes
(FC) were discretized into classes denoted by ‘-1’
(underexpression, FC < 0.5), ‘1’ (overexpression, FC >2)
and ‘0’ (stable expression), and the samples were divided
into three groups accordingly. This grouping was used
in Kaplan-Meier survival analysis and groups with <20
patients were excluded. A log-rank test was computed
for each differentially expressed splice variant.

SNP survival analysis

Affymetrix SNP 6.0 genotypes were called with the
CRLMM algorithm [9]. Samples with a signal-to-noise
ratio below five and markers with call probabilities
below 0.95 were discarded. We restricted our analysis to
a genetically homogeneous pool of samples by using
only ethnically similar samples. Markers with a relative
minor allele frequency below 0.1 were excluded from
the survival analysis. The study time in the survival ana-
lysis was 36 months. If the size of the patient group
with the rare homozygote genotype in a marker was less
than 15, or its frequency was less than 0.1, then the rare
homozygote group was combined with the heterozygote
group. The uncorrected P-value limit was set to 0.0001.

Copy number and expression integration
Normalized aCGH data from tumor samples were seg-
mented using circular binary segmentation [10]. A seg-
ment was called aberrated if its mean was over 0.632 or
below -0.632. These thresholds were estimated from the
64 blood versus blood controls as two standard devia-
tions from the mean of normalized probe intensities.
Based on gain and loss frequencies for each splice var-
iant, aCGH and splice variant expression data were inte-
grated with the statistical method originally applied to
breast cancer [11,12]. Briefly, the samples are first
divided into amplified and non-amplified groups. The
difference of the expression means in these groups is
divided by the sum of their standard deviation, resulting
in a weight value. Then statistical significance for the
weight value is computed by randomly permuting the
samples into amplified and non-amplified groups and
comparing the permuted weight value to the original.

miRNA expression analysis

Differentially expressed miRNA genes were determined
using the same procedure as for gene expression plat-
forms. Annotations for target sites of miRNAs were
obtained from the miRBase:: Targets database [13]. Only
target sites with a P-value < 10 were included.
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MiRBase:: Targets version 4 was used to match the anno-
tations used in constructing the Agilent human miRNA
array (G4470A).

DNA methylation arrays

Illumina DNA Methylation Cancer Panel I (808 gene
promoters) and a custom Illumina GoldenGate array
(1,498 gene promoters) were used in the methylation
analysis. Processed beta values were used as provided by
the TCGA. The beta value is defined as M/(M + U),
where M and U are signal levels of methylation and
unmethylation, respectively. The range of beta is 0 to 1,
with 0 indicating hypomethylation and 1 indicating
hypermethylation. Probes that target the same gene pro-
moter were combined by taking the median of beta
values so that each gene has a unique combined beta.

Small interfering RNA assays

Cell lines A172 and U87MG were obtained from the
European Collection of Cell Cultures (ECACC, Salis-
bury, UK), LN405 from Deutsche Sammlung von Micro-
organismen und Zellkulturen GmbH (DSMZ,
Braunschweig, Germany) and SVGp12 from American
Type Culture Collection (ATCC, Manassas, VA, USA).
Cells were cultured in medium conditions recom-
mended by the providers.

The small interfering RNAs (siRNAs) were purchased
from Qiagen (Qiagen GmbH, Germany) and include
AllStars Hs Cell Death Control siRNA and AllStars
Negative Control siRNA; siRNA sequences for the other
11 genes are given in Additional file 2. Each siRNA was
assayed as three replicate wells, and for each gene four
siRNAs were used in reverse transfection. Briefly, the
siRNAs were printed robotically to 384-well white,
clear-bottom assay plates (Greiner Bio-One GmbH,
Frickenhausen, Germany). SilentFect transfection agent
(Bio-Rad Laboratories, Hercules, CA, USA) or Lipofecta-
mine RNAiMax (Invitrogen, Carlsbad, CA, USA) diluted
into OptiMEM (Gibco Invitrogen, Carlsbad, CA, USA)
was aliquoted into each 384-plate well using a Multi-
drop 384 Microplate Dispenser (Thermo Fisher Scienti-
fic Inc, Waltham, MA, USA), and the plates were
incubated for 1 h at room temperature. Subsequently,
35 ul of cell suspension (1,500 cells of A172, US7MG
and SVGp12 or 1,200 LN405 cells) was added on top of
the siRNA-lipid complexes (13 nM final siRNA concen-
tration) and the plates were incubated for 48 h or 72 h
at +37°C with 5% COs.

Proliferation assay and analysis of caspase-3 and -7
activities

Cell proliferation was assayed 72 h after transfection
with CellTiter-Glo Cell Viability assay (Promega, Madi-
son, WI, USA) and induction of caspase-3 and -7
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activities was detected 48 h after transfection either with
homogeneous Caspase-Glo 3/7 assay or Apo-ONE assay
(Promega). All assays were performed according to the
manufacturer’s instructions. The signals were quantified
by using an Envision Multilabel Plate Reader (Perkin-
Elmer, Massachusetts, MA, USA). Both assays were
repeated twice from independent transfections. Signals
from the proliferation and caspase-3/7 assays were cal-
culated and presented as relative signal to the mean of
negative control siRNA replicate wells that was given a
value of one. The values for each siRNA were then
transformed into robust z-scores using median of the
replicates and the median absolute deviation (MAD).
A t-test (two-tailed, unequal variances) was calculated
for each siRNA treatment and P-values < 0.05, < 0.01
and < 0.001 were taken as significant.

Data for CDKN2A and MSN are from an earlier
siRNA screen and the values have been normalized to
the background signal of each plate. The values were
normalized using a LOESS method similar to the one
implemented in the cellHTS2 R-package [14]. Briefly,
the statistical outliers were down-weighted when a poly-
nomial surface was fitted to the intensities within each
assay plate using local regression [15]. This ensured a
robust fit even if plates differ in hit-rate. The fit, repre-
senting a systematic background signal, was then sub-
tracted from the values. A span of 0.35 and a degree of
two for polynomial kernel were used. Robust z-scores
were then calculated from the corrected data.

Results

Anduril framework

Anduril is a flexible framework for processing large-
scale data sets and integrating knowledge from bio-data-
bases (Figure 1). Anduril architecture is based on the
concept of workflows. A workflow consists of a series of
interconnected processing steps, each of which executes
a well-defined part of an analysis, such as data import
or the generation of summary reports. Anduril can be
invoked from Eclipse [16], a multipurpose graphical user
interface, or from the command line. Anduril is avail-
able under an open source license and is actively main-
tained; new versions are released at least every three
months. Anduril source code, component repository,
extensive documentation, an installation guide and Vir-
tualBox image for convenient testing are downloadable
from the Anduril website [17]. Full technical details of
the framework together with worked examples are avail-
able in the Anduril User Guide [18].

Workflows are constructed using a custom workflow
language called AndurilScript that resembles traditional
programming languages and is designed to enable rapid
construction of complex workflows. The elementary
processing steps in a workflow are implemented by
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Anduril components, which are reusable software
packages written in various programming languages, for
instance, R, Java, MATLAB, Octave, Python and Perl.
Components are executable processes that communicate
with the workflow through files. The component model
is programming language independent since the only
requirement is the ability to read and write files. At the
AndurilScript level, components are accessed using their
external interfaces, which hides implementation details.
The components can use software libraries, such as Bio-
conductor [19] and Weka [20], to bring well-tested
libraries to the workflow environment. It is also possible
to invoke command-line programs from workflows.
Currently, the Anduril core repository consists of more
than a hundred components, and new components are
added regularly. For instance, we designed a computa-
tional platform to generate networks from a list of genes
by integrating pathway and protein-protein interaction
data in Anduril [21]. This represents a component bun-
dle that uses the Anduril framework but is distributed
independently from the Anduril core.

Anduril includes advanced features for working with
complex workflows. Large workflows can be divided
into nested subworkflows, so that each hierarchical level
is simple to maintain. When a workflow is executed sev-
eral times, Anduril caches results of components and
only executes the components whose configuration has
changed since the last run, which reduces execution
time significantly. Selected parts of workflows can be
enabled based on dynamic conditions, which increases
the flexibility of the workflows.

Compared to traditional programming environments,
for instance, R coupled with Bioconductor, the advan-
tages of Anduril are the use of workflows and the sup-
port for several programming languages. Workflows
have a higher level of abstraction than R code, which
increases productivity and enables visualization of analy-
sis configuration. Compared to workflow frameworks
GenePattern [22], Ergatis [23] and Taverna [24], Anduril
provides several novel features, such as efficient pro-
gramming-like workflow construction with an advanced
workflow engine, algorithms specifically designed for
large-scale data analysis and automated result website
construction, that enable efficient analysis and visualiza-
tion of large-scale data sets (see [18] for details).

Anduril-generated result report and website for GBM data
interpretation

We used Anduril to analyze high-throughput SNP, copy
number, transcriptomics, miRNA, methylation and clini-
cal data for 338 GBM patients (Table 1). Anduril reports
the analysis results in two formats. Firstly, Anduril pro-
vides a comprehensive PDF document consisting of ana-
lysis workflow configurations, method parameters, tables
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Figure 1 Schematic of the Anduril platform. Anduril is an extensible framework for analyzing large-scale data sets using workflows.
Elementary analysis and reporting methods, as well as connections to external databases, are implemented as reusable Anduril components.
Components can utilize libraries such as Bioconductor and Weka and are not limited to a particular programming language. Components are
then wired into custom workflows, which implement complete analyses that take complex high-throughput data as input and automatically
produce comprehensive final reports as result. Reports include generated web sites that show the most relevant features of genes at a glance,
and detailed figures and tables produced by analysis methods such as Kaplan-Meier analysis, Gene Ontology enrichment, and so on. Analysis
workflows and their parameters are also documented in reports.
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Table 1 Analyses performed and corresponding TCGA glioblastoma data sets

Primary analysis

TCGA dataset(s)

Differentially expressed genes

Differentially expressed transcripts (DETs)

Differentially expressed miRNAs

Survival affecting germline SNPs

Survival affecting DETs

Survival affecting differentially expressed miRNAs

Chromosomal aberrations (amplification and deletion)

Integration of differential expression and chromosomal aberrations
DNA methylation

Gene expression

Exon expression

mMiRNA expression

Blood SNP arrays, clinical data
Exon expression, clinical data
mMiRNA expression, clinical data
aCGH

aCGH, exon expression
Methylation arrays

and figures produced by individual components. This
report is intended primarily for bioinformaticians as it
contains all the necessary details to reproduce the
results. The report file for the GBM analyses conducted
herein is available in Additional file 1. Secondly, Anduril
automatically generates a website that contains the
results computed with the analysis pipelines without the
technical details. The website is designed primarily for
experimental scientists as it gives a comprehensive view
of the data at a glance. The website for GBM analyses
executed herein is available at [25].

An example of the Anduril generated web page is
given in Figure 2. The genes are sorted according to
survival effect in exon array data. Anduril provides
hyperlinks to several important databases, such as the
pathway database KEGG [26], the protein-protein inter-
action database PINA [27], the miRNA database miR-
BASE [13], and the gene annotation databases
GeneCards [28] and Ensembl [29]. These links enable
users to easily obtain more information on the function
and structure of interesting genes.

Integration of copy number and transcript expression
GBM data

We identified genes that are frequently amplified or
deleted in GBM samples and integrated these results
with expression data in order to identify genes whose
altered expression activity can potentially be explained
by chromosomal aberrations. Genomic regions with sig-
nificant amplifications include 7p11.2 (amplified in up
to 54% of patients, housing EGFR), 12q13-12q15 (14%)
and 4q12 (14%).

Integration of aCGH and exon expression data reveals
16 genes for which amplification is an explanatory factor
for overexpression (P < 0.01 and gain frequency >5%).
Of these, EGFR is amplified on the aCGH platform and
overexpressed on both gene expression platforms (fold
change 2.8 to 6.2; Additional file 3, panel A). EGFR is
also hypomethylated (beta = 0.03), which may be an
additional explanatory mechanism for its overexpression.

However, not all genes located in the amplified region
7p11.2 show marked overexpression in the total patient
population (Additional file 3, panel A). For example,
LANCL2 (the closest annotated gene to EGFR in the
7p11.2 region) is amplified in 24% of patients but shows
underexpression in the exon platform and only slight
over-expression in the gene expression platform. Similar
differential expression is seen also between METTLI1
(overexpressed) and AGAP2 (underexpressed) in the
amplified chromosomal location 12q14.1 (Additional file
3, panel B).

Gene deletions are generally thought to result in
downregulation of the expression of genes coded by the
deleted genomic region. Interestingly, Anduril-based
analysis of the two most frequently deleted genes at
9p21.3, MTAP and CDKN2A, shows that even though
the gene deletion is an explanatory factor for lower
expression of these genes in patients with deletion, in
total GBM patient material the MTAP expression is not
inhibited and CDKN2A is overexpressed compared to
normal tissue (Additional file 4). The seemingly contra-
dictory correlation between gene deletion and overex-
pression suggests activation of MTAP and CDKN2
promoters, and thereby increased gene expression levels
in patients who have not yet lost one or two copies of
these genes. This hypothesis is supported by the obser-
vation that in patients with remaining MTAP and
CDKN?2 alleles, both MTAP and CDKN2A are hypo-
methylated. On the other hand, another gene at 9p21.3
(ELAVL2) shows classical behavior of a deleted gene; its
expression correlates with deletion, and it is also signifi-
cantly downregulated in both expression platforms.

These examples illustrate that Anduril allows
researchers to detect critical parameters affecting
expression levels of the gene of interest at a glance. Our
results demonstrate that integrated data analysis com-
bining amplification, expression, and methylation status
is integral in order to draw conclusions about functional
consequences of gene amplifications or deletions
detected by aCGH microarrays.
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Figure 2 Example of Anduril-generated result website and links to external sources. Anduril generates a browsable website based on
analysis results. (@) A screenshot of the gene level view of the data. The genes are sorted according to the survival P-value on the exon

results and data sources. For example, the field ‘GeneExpression” illustrates

fold changes between GBM and control samples using data from gene expression microarrays. Exon array values are computed at the gene
(‘MedianExonExpression’) and transcript levels (TranscriptExpression’). For the transcript data the minimum and maximum transcript expression
values show GBM-specific alternative splice variant candidates. The fields TranscriptExpression:Survival’ and ‘MedianExonExpression:Survival” show
survival analysis P-values for the best transcript and gene in the exon arrays, whereas ‘SNPSurvival' contains P-values for the survival associated
SNPs. The green color for ‘GeneExpression’, ‘FoldChange’, ‘Min’, ‘Max’, ‘Gain’, ‘Loss’ and ‘Methylation” denote downregulation and red denotes
upregulation. The red color for P-values for the fields ‘Survival, ‘SNPSurvival’ and ‘Exonintegration’ denotes low P-values. (b) A web page that
opens after clicking the gene MSN. This page contains detailed results and external links. (¢, d) Clicking ‘GeneName’ opens a website in
Genecards [28] (c), and ‘GenelD' connects to Ensembl [29] (d). (e) Clicking ‘Protein Interactions’ opens a page listing known protein-protein
interactions in PINA [27]. (f) Clicking an entry in 'KEGG pathway’ allows accessing pathways at the KEGG [26] website. (g) Each splice variant is
listed separately and if the survival P-value is < 0.01, the users can view the Kaplan-Meier curves. The groups ‘1', 1" and ‘0’ denote
overexpression, underexpression (not shown for MSN) and stable expression, respectively (-1" is not present in the figure). The dotted lines are

Survival analysis of GBM data
Probably the most important feature of the Anduril ana-
lysis of the GBM data is the integration of patient survi-
val information with both expression and SNP data,
thereby allowing the user to sort the genomic alterations
according to their clinical relevance.

In order to examine the relevance of gene expression
levels to patient survival in GBM, we first searched for
genes whose overexpression correlated significantly with

poor survival (P < 0.01). Among the 100 most upregu-
lated genes, only 15 genes showed significant correlation
with poor survival. On the other hand, out of the top
ten survival affecting genes, only one gene (MSN, encod-
ing Moesin) showed consistent overexpression in the
gene and exon expression platforms (Figure 2a). All the
other genes affecting survival in this group were under-
expressed. Three of the top ten genes affecting survival
(ADAM?22, SCRIB, WAC) had at least one transcript
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that was overexpressed when analyzed on the exon array
platform. However, survival effects of these genes are
related to underexpressed splice variants instead of the
overexpressed variants. Together these results show that
gene repression is a common mode for gene regulation
among the genes that have the most significant survival
effect in GBM. These results challenge the general
assumption that the level of gene overexpression is the
major determinant to separate between clinically rele-
vant and non-relevant genes.

In order to test the association between genetic altera-
tions in GBM and their relevance to patient survival, we
linked gene amplifications, expression profiles and survi-
val data. Among the 300 most amplified genes, only fila-
min C gamma (FLNC; 7q32.1) is amplified (9% of the
patients) with consistent overexpression in the gene and
exon arrays and significant survival effect (P < 0.01).
Together these results indicate that there is unexpect-
edly poor concordance between gene amplification,
overexpression of the genes from the amplicons, and
patient survival in GBM.

In general, individual miRNA survival effects in GBM
were much smaller than expression survival effects,
which may be explained by their indirect mechanism of
action. The highest expressed miRNA in the GBM data
was hsa-miR-21 (fold change 15.5), which has been
shown to increase apoptotic activity and reduce tumor
size in vivo [30-32]. Some of the most downregulated
miRNAs according to our analysis were hsa-miR-124a,
hsa-miR-137, hsa-miR-7, hsa-miR-128a and hsa-miR-
128b. All of these have been connected functionally to
glioblastoma, either via neuronal differentiation or
growth regulation [33].

Finally, we correlated 550,000 SNPs on the SNP arrays
to survival using Kaplan-Meier and log-rank methods.
This analysis identified 50 genes that contain survival-
associated SNPs. Of these genes, KIAA0040 is also over-
expressed (fold change 1.7 to 2.6) and associated with
poor survival in exon array data (P < 8.7 x 10™*). The
role of KIAA0040 in cancer progression is also sup-
ported by a recent study where KIAA0040 overexpres-
sion was shown to correlate with poor prognosis in
breast cancer [34]. Another example of a gene showing
a significant survival-affecting SNP is rs17258085 of
ODZ3. In contrast to KIAA0040, this gene is signifi-
cantly underexpressed in the GBM samples.

Functional analysis of survival-affecting genes in vitro

We chose 11 genes having overexpression and a survival
effect on the GBM for functional analysis with three
glioma cell lines (A172, LN405, U87MG) and one con-
trol cell line (SVG p12; SV40 transformed fetal astro-
cyte). Each gene was targeted with four siRNA
constructs. The phenotypes were cell proliferation and
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induction of apoptosis via caspase-3 and -7 activities
assayed 48 to 72 h after transfection in a 384-well for-
mat. Positive control siRNAs against KIF11 and PLKI as
well as AllStars Hs Cell Death Control siRNA gave clear
anti-proliferative effects in all four cell lines (Additional
file 5). Cell Death Control and KIFI11 siRNAs also
showed a clear induction of apoptosis in all four cell
lines (Additional file 6). The results for the A172 cell
line are presented in Table 2, and all functional analysis
results are given in Additional file 2.

Of the tested genes, only the silencing of MSN caused
consistent inhibition of cell proliferation in all four cell
lines. In addition, it caused an increase in caspase-3/7
activity in LN405 (Figure 3). The silencing of CDKN2A
caused inhibition of cell proliferation with two siRNAs
and an increase in caspase-3/7 activity in the LN405
and SVGp12 cell lines that do not have the CDKN2A
deletion (Additional file 7). The silencing of the other
genes did not result in consistent effects on cell prolif-
eration or induction of apoptosis in the tested glioblas-
toma cell lines.

Discussion

Large-scale data gathering efforts require software and
computational tools to facilitate interpretation of the
data. We have developed Anduril, an efficient and sys-
tematic data integration framework, to conduct large-
scale data analysis that necessarily requires a number of
processing steps before the data can be interpreted. In
the GBM analysis here, the workflow contained approxi-
mately 350 processing steps, demonstrating the effi-
ciency of workflows - more code would be needed when
working with traditional programming languages - as
well as highlighting the need for complexity manage-
ment in workflow software. The structure of the analysis
is automatically documented together with all execution
parameters of the participating components, which
enables reproduction of the results. Anduril supports
modular and programming-like workflow construction,
which together with automated component testing and
a version control system allows a team of bioinformati-
cians to work on the project simultaneously and to
seamlessly integrate the analysis results.

We have demonstrated the utility of the Anduril fra-
mework with the GBM data from TCGA, one of the lar-
gest multidimensional cancer data sets currently
available. We focused on the integration of mRNA
expression, SNPs and copy number data to clinical para-
meters as these results can provide evidence of potential
molecular markers with impact on GBM progression.
This also facilitates the sorting of the genomic altera-
tions according to their clinical relevance and further
helps to focus future mechanistic studies on genetic
alterations that have evidence of clinical relevance.
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Table 2 Functional siRNA screening data for 11 GBM survival-associated genes in the A172 glioblastoma cell line

Symbol Description siRNA name CcTG Caspase Survival Expression
AllStars Cell Death Vontrol siRNA (Cell death ctrl) -13.80 19.62 NA NA
AliStars Negative Control siRNA (siNEG) 0.00 0.00 NA NA
KIF11 Kinesin family member 11 KIF11_7 -9.56 7.39 NA NA
PLKT Polo-like kinase 1 PLK1_7 -5.92 0.31 NA NA
FLNC Filamin C, gamma FLNC_2 2.56 -0.89 0.000189 2.51
FLNC_5 -0.37 0.29
FLNC_6 -0.57 -0.94
FLNC_7 -5.39 049
H19 H19, imprinted H19_1 038 -0.14 0.000588 3.54
maternally expressed H19_2 -5.08 117
transcript (non-protein H19_3 5.20 -2.71
coding) H19_4 -2.97 2.71
HISTTHA4L Histone cluster 1, H4l HISTTH4L_1 163 -0.60 0.001560 5.01
HISTTH4L_2 2.61 -2.00
HIST1H4L_5 -0.36 -1.19
HIST1H4L_7 -5.93 -0.97
KIAA0040 KIAA0040 KIAA0040_11 -2.94 -0.64 0.000867 263
KIAAO040_12 0.63 -0.83
LOC100129443_3 0.69 -0.71
LOC100129443_4 -0.31 -0.30
LTF Lactotransferrin LTF_1 -1.74 0.22 0.001570 3.95
LTF_2 -0.03 0.07
LTF_5 -1.04 044
LTF_6 -1.18 -0.79
NNMT Nicotinamide N- NNMT_5 -091 -1.29 0.000074 741
methyltransferase NNMT_6 -048 -1.87
NNMT_7 -1.26 -0.32
NNMT_8 -0.30 -0.10
POSTN Periostin, osteoblast POSTN_1 024 -1.16 0.001950 149
specific factor POSTN_2 0.28 -2.11
POSTN_6 -2.17 0.56
POSTN_7 052 0.12
TAGLN2 Transgelin 2 TAGLN2_10 4.53 -1.74 0.001010 421
TAGLN2_11 -3.78 048
TAGLN2_8 -043 045
TAGLN2_9 4.67 -1.94
TIMPT TIMP metallopeptidase TIMP1_2 -0.09 -0.96 0.000109 321
inhibitor 1 TIMP1_4 1.07 0.88
TIMP1_5 0.56 -1.87
TIMP1_6 -0.08 041
MSN Moesin MSN_8 -1.68 1.61 0.000028 342
MSN_9 -4.49 -1.05
MSN_5 -0.36 -157
MSN_1 -2.57 0.80
CDKN2A Cyclin-dependent kinase inhibitor 2A NA (gene deleted in A172)

Cell proliferation (CTG) and induction of caspase-3 and -7 activities (Caspase) were assayed after transfection of A172 cells with four siRNAs against each gene. Z-
scores from the proliferation and caspase-3/7 assays are presented, centered on the scramble siRNA. Values in bold diverge by more than two standard deviation
units from the median of scramble negative control siRNA and are considered significant. For each gene, the best survival P-value (Survival) and the
corresponding fold change in the exon array (Expression) are given.
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Figure 3 Functional effects of knocking out MSN in three glioblastoma and one control cell line. Four MSN targeting siRNAs at a final
concentration of 13 nM were transfected with Silenfect (BioRad) transfection reagent to A172, LN405 and U87MG glioma cell lines and the
SVGp12 control cell line. (a) Cell proliferation was assayed 72 h after transfection using CellTiter-Glo Cell Viability assay. (b) Induction of caspase-3
and -7 activities was detected 48 h after transfection with homogeneous Apo-ONE assay (Promega). Loess normalized signals from the
proliferation and caspase-3/7 assays are presented as relative scores to the mean of lipid-containing wells. Significant P-values < 0.05%, < 0.01**
and < 0.001*** calculated by t-test are shown. Error bars indicate standard error of the mean (SEM).
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While TCGA GBM data sources, such as The Cancer
Genome Atlas Portal and the Cancer Molecular Analysis
Portal, provide box-plots for single genes and genome-
wide heatmaps, Anduril offers a significant step forward.
It enables a comprehensive view of the most critical
parameters influencing expression, miRNA, SNP and
copy number levels, as well as correlation of these data
to survival at a glance. In addition, Anduril provides a
number of direct links to external databases, and is thus
an easy access point for interpreting the vast amounts of
heterogeneous data from multiple sources. These char-
acteristics of Anduril facilitate scientists without bioin-
formatics training to interpret complex data sets, such
as TCGA.

Analysis of the GBM data demonstrates the utility of
Anduril in translating fragmented data to testable pre-
dictions. For example, detection of amplified genomic
regions has traditionally been used to identify genes
with potential causal roles in oncogenesis [35]. However,
whether genomic amplification generally results in clini-
cally relevant changes in gene expression from the
amplicon has been difficult to assess because of the lack
of Anduril-type websites combining gene expression,
patient survival and aCGH amplification data. Our
results show surprisingly poor concordance between
gene amplification, overexpression of the genes in the
amplicons, and patient survival. For example, even
though EGFR is the most often amplified gene in GBM
(54% of patients), and this amplification has been con-
sidered as a hallmark of the disease, EGFR overexpres-
sion does not correlate well with overall patient survival
(P < 0.122). This result is supported by a recent study
demonstrating that EGFR amplification does not deter-
mine patient survival in primary GBM [36]. Instead, our
results demonstrate that gene repression, rather than

activation, is a common mode for gene regulation
among the genes that have the most significant effect on
survival in GBM.

Interestingly, many of the most survival-affecting
genes have not been previously implicated in GBM
pathogenesis. An example of such a gene is ZRANBI
(encoding ubiquitin thioesterase), which is downregu-
lated in exon arrays and has a strong survival effect (P <
3.2 x 107°). It has been shown in Drosophila and in
human cancer cell lines to function as a positive regula-
tor of Wnt-signaling [37]. Another interesting survival-
affecting gene revealed by our analysis is MSN (encod-
ing Moesin). We have functionally demonstrated that
Moesin depletion by siRNA significantly inhibited cell
proliferation and induced apoptosis. Moesin is function-
ally involved in regulation of actin cytoskeleton and cell
migration, which indicates that in GBM it may promote,
in addition to proliferation, the highly invasive behavior
of GBM cells.

Conclusions

The different analysis approaches described herein
demonstrate the ability of Anduril to integrate several
types of genomic information and above all its capacity
to determine which of the observed genetic alterations
have an impact on patient survival. In this regard,
Anduril clearly facilitates scientists to focus future func-
tional analysis on those cancer-related genes that have
already been verified to have clinical significance. Inter-
estingly, each of the survival analyses described above
(SNP, expression level, copy number changes) identified
clinically relevant genomic alterations in genes for
which cancer relevance is not presently established. It is
anticipated that further studies of genes (for example,
MSN and ZRANBI) and clinically relevant SNPs (for
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example, rs2285218 in KIAA0040) will produce interest-
ing novel mechanistic insights into GBM progression
and oncogenesis.

Additional material

Additional file 1: Automatically generated result file. The report
contains analysis configurations, parameter settings, result lists, tables and
figures. The document also includes some analyses not reported in the
manuscript, such as Gene Ontology analysis.

Additional file 2: Information and data for siRNA screens. The
information includes identifiers, siRNA target sequences, normalized
mean intensities, standard errors of the mean and P-values for four cell
lines used.

Additional file 3: Screenshot from the Anduril-generated web site.
Genes are sorted in decreasing order according to the fraction of
amplification (Gain’) in the GBM samples. The strongest amplified region
in the GBM samples is 7p11.2. Interestingly, the expression values of the
genes in the same genomic region vary significantly. For example, EGFR
is amplified and has high fold change whereas LANCL2 is amplified and
downregulated (panel A). The same phenomenon is seen in another
amplified region 12g14.1 (panel B).

Additional file 4: Screenshot from the Anduril-generated web site.
Genes are sorted in decreasing order according to the fraction of
deletion (Loss’) in the GBM samples. The strongest deleted region in the
GBM samples is 9p21.3. The fraction of deletion varies from 35% to 69%.

Additional file 5: The effect of gene silencing on cell proliferation.
Control siRNAs (13 nM final concentration) were transfected with
Silenfect (BioRad) transfection reagent to A172, LN405 and U87MG
glioma cell lines and the SVGp12 control cell line. Cell proliferation was
assayed 72 h after transfection using CellTiter-Glo Cell Viability assay. The
proliferation data are presented as relative score to the mean of
scramble siRNA-containing wells. Error bars indicate median absolute
deviation.

Additional file 6: The effect of gene silencing on caspase-3 and -7
activities. Control siRNAs (13 nM final concentration) were transfected
with Silenfect (BioRad) transfection reagent to A172, LN405 and U87MG
glioma cell lines and the SVGp12 control cell line. Induction of caspase-3
and -7 activities was detected 48 h after transfection with homogeneous
Caspase-Glo 3/7 assay (Promega). The caspase activity is presented as
relative median score to the mean of scramble siRNA containing wells.
Error bars indicate median absolute deviation.

Additional file 7: The effects of silencing CDKN2A in LN405 and
SVGp12 cell lines on cell proliferation and apoptosis.
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aCGH: comparative genomic hybridization array; GBM: glioblastoma
multiforme; miRNA: microRNA; siRNA: small interfering RNA; SNP: single
nucleotide polymorphism; TCGA: The Cancer Genome Atlas.
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