
Introduction
Gene-expression profiling allows simultaneous, semi-
quantitative measurements of thousands of different 
mRNA species in a single experiment. It was considered 
logical to assume that different cancers will have distinct 
gene-expression patterns and that the expression of many 
genes will be associated with clinically relevant disease 
outcomes in particular cancer types. Consequently, it was 
assumed these associations might be exploited to develop 
a new generation of multi-gene diagnostic tests, in 
particular prognostic and treatment response predictors.

It has quickly become apparent that cancers of different 
organs have very different gene-expression patterns; 
indeed, this fact led to the development of a novel gene-
expression-based molecular diagnostic test to assign a 
histological origin to metastatic cancers that present as 
‘cancers of unknown primary’ [1]. Gene-expression 
profiling results also prompted re-evaluation of disease 
classification for certain tumors, most prominently breast 
cancer. Breast cancer used to be considered as a single 
disease with variable histological appearance and variable 
expression of estrogen receptor (ER) and other molecular 
markers. Gene-expression profiling studies revealed 
surprisingly large-scale molecular differences between 
ER-positive and ER-negative cancers that suggested that 
these two different types of breast cancers are distinct 
diseases [2-4]. A new molecular classification schema 
was proposed, but how many molecular classes there are 
and what method is best to assign these classes continues 
to be debated [5]. Currently, there is no standard, readily 
available, gene-expression-based test to determine the 
molecular class of breast cancer in the clinic.

Molecular classification emerged through unsupervised 
analysis of gene-expression data. �e goal of this analysis 
is to identify disease subsets that show similar gene-
expression patterns within a larger cohort of cases. 
During this analysis, the molecular subsets are defined 
without considering clinical outcome information. 
Consequently, the emerging molecular subsets may or may 
not differ in prognosis or response to various therapies. A 
parallel research effort has focused on developing 
supervised outcome predictors. �is approach relies on 
comparing cases with known outcome (such as 
recurrence versus no recurrence). �e goal of the analysis 
is to identify differentially expressed genes between 
outcome groups and use these genes to develop a multi-
gene outcome predictor. Evaluation of the predictive 
accuracy of the supervised model requires independent 
validation cases. Investigators who developed the first 
generation of supervised prognostic and treatment 
response predictors started with the then prevailing 
notion that breast cancer is a single disease, and all 
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subtypes of breast cancer were included in the analysis. 
This resulted in major limitations in the diagnostic 
products that emerged from this research [6,7].

The plethora of prognostic gene signatures for 
breast cancer
Unsupervised molecular classification identified three 
major and robust groups of breast cancers that differ in 
the expression of several hundred to a few thousand 
genes. These include basal-like breast cancers, which are 
negative for ER, progesterone receptor (PR) and human 
epidermal growth factor receptor 2 (HER2); low 
histological grade ER-positive breast cancers (also called 
luminal A); and high grade, highly proliferative ER-
positive cancers (luminal B). Several smaller and less 
stable molecular subsets (such as normal-like, HER-2-
positive and claudin-low) have also been proposed but 
are less consistently seen and are distinguished by sub
stantially smaller molecular differences [4,5]. Importantly, 
among the various molecular subsets, one group, the 
luminal A class that includes low grade ER-positive 
cancers, stands out with a very favorable prognosis with 
or without adjuvant endocrine therapy. The other groups 
have worse but rather similar prognosis [4,8].

If one understands these close associations between 
clinical phenotype, molecular class and prognosis, it is no 
longer surprising that comparing gene-expression 
profiles of breast cancers that recurred (mostly the ER-
negative and the high grade, ER-positive cancers) and 
those that did not (low grade, ER-positive cancers) in the 
absence of any systemic therapy (or after anti-estrogen 
therapy alone in the case of ER-positive cancers) yields a 
very large number of differentially expressed genes. The 
relative position of individual genes in a rank-ordered 
gene list varies greatly, but the consistency of the gene list 
membership is fairly high across various datasets [9]. 
Functional annotation indicates that the majority of these 
prognostic genes are proliferation-related genes and the 
remainder are mostly ER-associated and, to a lesser 
extent, immune-related genes [10-12]. Because these 
genes function together in a coordinated manner in the 
regulation and execution of complex biological processes, 
such as cell proliferation, or originate from a particular 
cell type, such as immune cell infiltrate, many of these 
prognostic genes are also highly co-expressed with one 
another. It is therefore expected that a large number of 
nominally different prognostic signatures can be 
constructed that all perform equally well.

For example, a particular gene may be highly 
significantly discriminating in two datasets but it is 
ranked 5th among the most discriminating genes in one 
dataset (based on P-value or fold difference) but only 
35th in another dataset (which is still very high 
considering the thousands of comparisons!). In 

multivariate prediction model building, the top few 
informative features are usually combined and genes are 
added incrementally to increase the predictive 
performance. However, because many of the genes are 
highly correlated with each other, adding genes lower on 
the list yields less and less improvement in the model as a 
result of lack of independence. Therefore, the gene in 
question will be included in a predictor developed from 
the first dataset (because it is ranked as 5th) and will 
work well on validation in the second dataset; but if a 
new predictor were to be developed from the second 
dataset, this gene may not be included in the predictor 
(because it is ranked 35th). These three features of the 
breast cancer prognostic gene space – the large number 
of individually prognostic features, the unstable rankings, 
and the highly correlated expression of informative genes 
– explain why it is easy to construct many different 
prognostic predictors that perform equally well even if 
they rely on nominally different genes in the model. 
However, this does not mean that all published 
prognostic gene signatures are equally ready for clinical 
use.

Before adoption in the clinic, a molecular diagnostic 
assay has to be standardized, the reproducibility within 
and between laboratories and stability of results over 
time have to be demonstrated, and its predictive accuracy 
has to be validated in the right clinical context, preferably 
in multiple independent cohorts of patients. Most 
importantly, clinical utility implies that the assay 
improves clinical decision making and complements or 
replaces older standard methods, which in turn leads to 
better patient outcomes. Few published prognostic 
predictors have met these criteria [13,14].

Why signatures work less well than expected
The predictive performance of a multivariate model 
largely depends on the number of independent 
informative genes included in the model, the magnitude 
of differential expression of the informative genes and the 
complexity of the background. Different clinical 
prediction problems show different degrees of difficulty. 
From the discussion above it should be apparent that 
prediction of ER status, histological grade of breast 
cancer, or better or worse prognosis associated with these 
clinical phenotypes should be relatively easy when 
considering all breast cancers together, and that such 
predictions can therefore yield predictors with good 
overall accuracy. Indeed, prognostic gene signatures 
developed for breast cancer in general or for ER-positive 
cancers tend to have good performance characteristics 
[12,15-17].

However, the first-generation prognostic signatures 
share some limitations. Because these were invariably 
developed by analyzing all subtypes of breast cancers 
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together, they tend to assign high risk category to almost 
all ER-negative cancers (which are almost always high 
grade), even though a substantial majority of these 
cancers have good prognosis [18,19]. Similarly, the good- 
and poor-prognosis ER-positive cancers, as assigned by 
gene profiling, tend to correspond to the clinically low 
grade/low proliferation versus high grade/high 
proliferation subsets, respectively. This strong 
correlation between prognostic risk as predicted by 
gene signatures and routine clinical variables, such as 
histological grade, proliferation rate and ER status, 
limits the practical value of these tests. Efforts are under 
way to develop simple multivariate prognostic models 
that use routine pathological variables (such as ER, 
histologic grade and HER2 status), and these could 
eventually rival the performance of the first-generation 
prognostic gene signatures [20,21]. However, 
standardization of the pathological assessment of breast 
cancer and reducing the inter-observer variability 
remains an important challenge.

Predicting clinical outcome, such as prognosis or 
response to chemotherapy, within clinically and 
molecularly more homogeneous subsets (such as triple-
negative breast cancers or high grade, ER-positive 
cancers) would be highly desirable. Unfortunately, these 
prediction problems seem to be more difficult [22,23]. It 
seems that fewer genes are associated with outcome in 
homogeneous disease subsets and the magnitude of 
association is modest when currently available datasets 
are analyzed. This leads to predictors that are specific for 
a particular dataset from which they were developed. 
These prediction models are fitted to the dataset and rely 
on features that have no or limited generalizability. This 
means that they fail to validate when applied to 
independent data or may demonstrate only nominally 
significant predictive value (that is, they may predict 
outcome slightly better than chance). Also, the discrimi
nating value may not be substantial enough to be 
clinically useful [24,25]. For example, if the good-
prognosis group has a recurrence rate of 30% 
compared with 50% in the poor-risk group, these may 
be significantly different but the risk of recurrence in 
the good-risk group is still too high to safely forego 
adjuvant chemotherapy.

Can we improve prediction through new 
technology platforms and improved bioinformatics 
tools?
It seems that for certain clinical prediction problems, the 
currently available breast cancer gene-expression 
datasets may not contain enough information to be able 
to develop highly accurate predictors [22,23]. This may 
reflect limitations of the sample sizes for the subsets of 
interest and, as more data become available, the 

empirically developed models may improve. However, it 
is also possible that major advances will need to take 
place in our understanding of how the 10,000 to 12,000 
genes expressed in breast cancer interact before we can 
construct more accurate prediction models. Current 
statistical methods cannot readily adjust for different 
levels of gene-expression change that may be required for 
a functional effect. The level of expression change that 
results in a functional change may be different from gene 
to gene: for some genes a 15 to 20% increase in mRNA 
expression level may lead to functional consequences, 
whereas for others a 100 to 150% change may be needed.

New bioinformatics approaches, such as examining the 
information content of the correlation matrix of gene-
expression values or applying network analysis tools to the 
data, may also reveal additional prognostic information 
that is not readily revealed by studying gene-expression 
levels alone. New analytical platforms, such as next 
generation sequencing, will generate more comprehensive 
expression data than the current array-based methods 
and will also yield extensive nucleotide sequence infor
mation. The information content of these currently 
nascent datasets may be highly relevant to prognosis or 
treatment response of cancers and certainly warrants 
further exploration.

Conclusions
The predictive performance of multi-gene signatures 
depends on the number and robustness of informative 
genes that are associated with the outcome to be 
predicted. Some clinically important prediction problems 
are easier to solve than others. For example, it is possible 
to predict the prognosis of ER-positive breast cancers 
relatively accurately because prognosis is closely related 
to the proliferative status of these cancers and 
proliferation affects the expression of several hundreds of 
genes that regulate and execute cell division. Not 
surprisingly, several different models that use different 
genes and different algorithms can be built with each 
performing similarly. On the other hand, predicting 
response to individual drugs based on gene-expression 
signatures has proved substantially more difficult. Fewer 
genes are significantly associated with these outcomes, 
measured on current analytical platforms (gene-
expression arrays), and therefore prediction models 
invariably contain substantial amounts of ‘noise’ 
(predictive features that are specific to the dataset, not 
the actual outcome) and have poorer predictive 
performance on independent datasets. Larger datasets 
and new analytical platforms (such as next generation 
sequencing) that broaden the portfolio of variables that 
can be used for model building are expected to lead to 
improved predictors for these currently difficult 
classification problems.
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