
Clinical and epidemiological introduction
Sudden infant death syndrome (SIDS) is the leading 
cause of postneonatal infant death, and represents the 
third leading cause of infant mortality overall in the USA 
[1]. As defined by Willinger et al. in 1991 [2], SIDS is 
described as the sudden death of an infant under 1 year 
of age which remains unexplained after a thorough case 
investigation, including performance of a complete 
autopsy, examination of the death scene, and review of 

clinical history. SIDS pathogenesis has been understood 
through a ‘triple risk hypothesis’. �is argues that SIDS 
results from a convergence of three overlapping risk 
factors: (1) a vulnerable infant, (2) a critical development 
period, and (3) an exogenous stressor(s) [3]. An infant 
will only succumb to SIDS if and when all three over-
lapping factors exist and converge. �us, the inherent 
vulnerability of an infant will lie dormant until a crucial 
developmental period when the infant is then presented 
with the exogenous stressor.

Nearly two decades ago, the 1994 ‘Back to Sleep’ 
campaign from the National Institute of Child Health 
and Human Development in the USA targeted such 
exogenous stressors as prone sleep, and reduced SIDS 
rates by more than 50% from 1.2 per 1,000 live births in 
1992 to 0.55 per 1,000 live births in 2006, similar to 
reductions seen in Canada and many other countries 
[4,5]. However, despite these efforts, over 2,200 infants 
died of SIDS in 2004, and it appears that the recently 
witnessed reductions in deaths are diminishing [4]. 
Today, SIDS remains one of the leading causes of death 
for infants between 1 month and 1 year in developed 
countries [6], and current data suggest that approximately 
60% to 80% of deaths under the age of 1 year remain 
autopsy negative [7,8].

Among developed countries, SIDS rates vary widely 
[6], and ethnic-specific disparities in rates have been 
noted. For example, SIDS rates are approximately twice 
as high among infants born to African American or 
American Indian mothers as compared with Caucasian 
mothers in the USA [5], and increases in SIDS risk are 
also seen for the Maoris in New Zealand, Aboriginal 
Australians [6], and those of mixed ancestry in Cape 
Town, South Africa [9]. In part, these data suggest that 
there may be genetic determinants of the ‘vulnerable 
infant,’ and many studies have examined the genetic 
makeup of SIDS cases.

�e first such report of a ‘genetic autopsy’ was 
published by Weinberg and Purdy in Nature in 1970 [10]. 
�ey performed karyotype analysis on 17 SIDS cases, 
with 10 out of 11 available karyotypes declared abnormal 
compared with none in the living control group, suggesting 
a potential genetic link. Monumental technological 
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advances in genomic research, coupled with genetic/
mutational analyses of large SIDS cohorts, have increased 
substantially our knowledge of the genetic risks for SIDS. 
This review systematically focuses on the literature that 
has specifically evaluated genetic factors in SIDS victims.

Using PubMed as our search engine, with the key 
phrase ‘sudden infant death’, and ‘gene’, ‘polymorphism’, 
or ‘mutation’, we identified 94 investigations of genetic 
variation in population-based SIDS cohorts between 
1989 and 2010. We did not include case reports or other 
reviews as sources. We excluded three studies based on 
definitions of SIDS contrary to accepted current 
practices. Ninety-one studies remained, with an average 
cohort size of 125 SIDS cases (range 2 to 1,304). The vast 
majority of studies comprised 50 to 200 SIDS cases. In 
defining their cohorts, many used the standard 1991 
definition by Willinger et al., while others relied on more 
regional definitions that were more or less similar, such 
as the Nordic criteria [11] or the current San Diego 
definition [12]. Unfortunately, one-third of studies did 
not explicitly define their criteria, and this may affect the 
potential strength of reported associations with true 
SIDS cases. Eighty-nine percent of the cohort studies 
examined genes that can be divided into five potential 
SIDS-predisposing pathways: central nervous system 
pathways, cardiac channelopathies, immune 
dysfunction, metabolism/energy pathways, and nicotine 
response. A summary is shown in Table 1. This review 
will examine the genetic links associated with SIDS 
involving these particular pathways. In addition, we will 
explore the involvement of genomic copy number 
variations as a molecular basis for some SIDS, some new 
technologies that may assist in the advancement of our 
current molecular pathogenic knowledge of SIDS, and 
what the future holds for prenatal and postnatal risk 
assessment for SIDS.

Central nervous system pathways
A number of recent reviews have summarized the 
current data implicating central nervous system dys­
function in SIDS, with a particular focus on the 

autonomic nervous system [13,14]. Such dysfunction can 
result in unresponsiveness to asphyxia, progressing to 
hypoxic coma and death [1]. It is therefore not surprising 
that a number of genomic factors in the autonomic 
nervous system, and particularly within serotonergic 
signaling pathways, have been linked with increased SIDS 
risk. Our examination of the literature revealed 20 studies 
examining the link between nervous system genetic 
variants and SIDS.

The 5-HT signaling pathway
Fourteen studies have focused on genetic variation within 
the 5-HT signaling pathway. The most highly studied 
correlation has involved the 5-HTT gene, which encodes 
the serotonin transporter. A common variation within 
the promoter region involves varying copies of a 20 to 
23  base pair repeat unit: a shorter allele of 14 copies, a 
long allele of 16 copies, or a rare extra-long allele of 18 to 
20 copies [14,15]. A longer allele is associated with a 
more effective promoter and therefore reduced 5-HT 
concentrations at nerve endings [4,16], and reductions in 
5-HT concentrations have been reported in SIDS cases of 
various ethnicities [17-20]. Narita et al. [15] first reported 
differences in both genotype distribution and allele 
frequency in a small study involving 27 Japanese SIDS 
cases and age-matched controls, with the long (L) and 
extra-long alleles occurring more frequently in SIDS than 
in controls. Six subsequent cohort studies have attempted 
to verify the association in various ethnicities, with three 
reporting positive associations in cohorts of 20 Italian, 28 
Italian, and 87 American-Caucasian and African-
American SIDS cases [21-23], while three studies 
reported no association in cohorts of 31 SIDS of various 
ethnicities, 145 Swiss SIDS cases, and 163 Norwegian 
SIDS cases [17,24,25].

In addition, two studies investigated the association of 
a polymorphic variable number tandem repeat (VNTR) 
in intron 2 of the 5-HTT gene containing 9, 10, or 
12  copies of a 16 to 17 base pair repeat sequence with 
SIDS, with 12 copies increasing expression [26]. Weese-
Mayer et al. [27] found in 90 SIDS cases an increase in 

Table 1. Summary of SIDS-associated gene studies and implicated genes

		  Studies with positive		   
	 Total number	 genotype association	 Mean cohort	 Genes independently verified 
Pathway	 of studies	 or mutations implicated	 size (range)	 [references]

Central nervous system	 20	 13	 85 (20 to 172)	 5-HTT [15,21-23]

Cardiac channelopathies	 16	 13	 141 (6 to 292)	 KCNQ1, KCNH2, SCN5A [50,52,101,102]

Immune dysfunction	 20	 10	 103 (16 to 250)	 IL6, IL10, C4A, C4B [70,71,73,75,77,82,83]

Metabolism/energy	 23	 5	 178 (2 to 1304)	 Mitochondrial D-loop, MCAD [85,86,90,91]

Nicotine response	 2	 1	 106, 159	 None

SIDS, sudden infant death syndrome.
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the L-12 promoter-intron variant haplotype in African-
American SIDS cases (P = 0.002) but not Caucasian 
(P  =  0.117) subgroups when compared with controls 
matched for ethnicity and gender. These findings high­
light potential ethnic differences in genetic variation 
within the 5-HTT gene, and may explain the failure of 
some cohort studies to replicate the promoter variant 
findings. Nonnis Marzano et al. [22] also reported the 
L‑12 haplotype as nearly twofold higher among 20 Italian 
SIDS cases (44.5%) compared with 150 Italian controls 
(23.4%). However, this was not statistically significant.

Filonzi et al. [28] reported in 20 SIDS cases a highly 
significant interaction between the 5-HTT L allele and 
polymorphisms in the gene encoding the neurotrans­
mitter inactivator monamine oxidase A (MAOA), suggest­
ing the two genotypes act synergistically in modulating 
SIDS risk. Two cohort studies have also examined the 
serotonin receptor HTR1A and HTR2A genes, respec­
tively, but did not report any positive associations [29,30]. 
Lastly, Rand et al. [31] reported an association with an 
intronic variant in the mouse ortholog of the fifth Ewing 
variant gene (FEV), which is critical for 5-HT neuronal 
development, in a cohort of 96 SIDS cases compared 
with controls, and in the African-American SIDS subset 
versus Caucasian SIDS. However, this association failed 
to replicate in a slightly smaller cohort of 78 cases [32].

Early autonomic nervous system development genes
Weese-Mayer et al. [33] examined eight genes involved in 
early development of the autonomic nervous system: 
BMP2, MASH1, PHOX2a, RET, ECE1, EDN1, TLX3, and 
EN1. Interestingly, they reported 11 protein-changing 
rare mutations in 14 of 92 SIDS cases within the 
PHOX2a, RET, ECE1, TLX3, and EN1 genes [33]. Only 
the mutation in TLX3 was present in the 92 matched 
controls. Further, African-American infants accounted 
for ten of these mutations in SIDS cases and two control 
subjects; the authors claimed that this suggests an ethnic 
component [33]. Unfortunately, whether any of these 
mutations impart functional protein changes to impact 
neuronal development and contribute to autonomic 
nervous system instability remains unstudied, and these 
genes/mutations have not been independently validated 
in other cohorts.

Rand et al. [34] demonstrated a positive association in 
genotype distributions for a common SNP in intron 2 of 
the PHOX2b early autonomic function gene in 91 SIDS 
cases versus matched controls over the total data set 
(P = 0.0009) and specifically in the Caucasian SIDS cases 
versus controls (P = 0.005). In addition, eight polymor­
phisms (two amino acid altering) located in the third 
exon of the PHOX2B gene occurred more frequently 
among SIDS cases (34 occurrences observed in 27 out of 
91 cases) than controls (19 occurrences observed in 16 

out of 91 controls, P = 0.01). This frequency was pre­
served among both Caucasian and African-American 
subgroups [34]. Kijima et al. also examined the PHOX2B 
gene in 23 Japanese SIDS cases for mutations associated 
with the congenital central hypoventilation syndrome, 
also similarly characterized by autonomic dysfunction 
[35,36]. They reported three variants not reported by 
Rand et al. but did not clarify if these were found in cases 
or controls, nor did they report the frequency of the 
polymorphisms reported by Rand et al. [35].

Lastly, positive associations have been seen: (1) with 
the apolipoprotein E e4 allele (167 Scottish SIDS), which 
plays a role in neuronal repair and protection, and has 
been implicated previously in Alzheimer’s disease; (2) 
with an intronic variant in the tyrosine hydroxylase gene 
(172 German SIDS cases), which plays a role in 
neurotransmitter production; and (3) in a small cohort of 
17 African-American SIDS cases, with the gene encoding 
pituitary adenylate-cyclase-activating polypeptide, which 
plays a role in central respiration [37-39].

Cardiac channelopathies
The abundance of evidence for the link between SIDS 
and cardiac channelopathies has been well reviewed 
recently [40]. Briefly, heritable cardiac channelopathies 
arise from mutations within genes that encode crucial 
ion channels or ion channel regulators that when func­
tionally perturbed cause potentially lethal arrhythmo­
genic ‘sudden death’ disorders, such as long QT 
syndrome (LQTS), Brugada syndrome, and catecholami­
nergic polymorphic ventricular tachycardia, that leave no 
detectible clues at autopsy.

Over 30 years ago, both Schwartz [41] and Maron et al. 
[42] proposed a link between LQTS and SIDS, and this 
was the first such channelopathy to be implicated in this 
syndrome. LQTS affects approximately 1 in 2,500 indi­
viduals [43], often evidenced by its electrocardiographic 
hallmark of QT interval prolongation, and can present 
clinically with syncope, seizures, or sudden death due to 
its trademark arrhythmia torsades de pointes [44]. The 
1976 hypothesis was advanced in 1998 by the publication 
of a monumental 19-year prospective study of over 
34,000 infants, recording electrocardiograms on the third 
or fourth day of life [45]. Significantly, 12 of the 24 infants 
that went on to die of SIDS had a QTc exceeding 440 ms 
recorded during the first week of life, a QTc value 
reflecting the 97.5th percentile for the entire population 
of 3- and 4-day-old infants. Two years later, Schwartz et 
al. [46] extended the chain of evidence towards a primary 
channelopathic cause for some cases of SIDS with a 
resuscitated sudden death during the first year of life in 
an infant later diagnosed with LQTS.

Since this proof of principle case report, 16 cohort 
studies from 2001 to 2010 have examined the spectrum 
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and prevalence of cardiac channelopathies in SIDS. 
Overall, 13 out of 16 studies positively associated 
channelopathies with SIDS cases, with 9 studies 
identifying novel SIDS-associated mutations in genes 
implicated in the cardiac channelopathies including long 
QT syndrome, as well as two other channelopathies, 
Brugada syndrome and catecholaminergic polymorphic 
ventricular tachycardia, which can also result in sudden 
cardiac death [47-49]. Of note, 10 out of 16 studies 
utilized electrophysiological function studies either in 
HEK cells or cardiac myocytes in the same or subsequent 
publications to validate the pathogenic nature of the 
putative SIDS-associated mutations that were identified.

Our research program performed the first systematic 
postmortem genetic testing of the SCN5A-encoded 
Nav1.5 cardiac sodium channel in a population-based 
cohort of SIDS. Two missense mutations, A997S and 
R1826H, were discovered in two of the 58 Caucasian 
SIDS cases and were absent in 800 reference alleles. Both 
mutations demonstrated delayed channel inactivation 
kinetics and a two- to threefold increase in late sodium 
current [50]. Since this first study, we have now identified 
putative LQTS-causing mutations in 3 of 58 (5.2%, 2 
SCN5A and 1 KCNH2) SIDS cases in white infants, and 1 
of 34 (2.9%, 1 KCNQ1) SIDS cases in black infants [51]. 
However, the biophysical effects of the latter two variants 
were not examined. Importantly, in these studies, only 
those variants that were deemed primary pathogenic 
mutations (not seen in controls) were reported rather 
than rare polymorphisms seen in both cases and controls 
that may or may not contribute towards a significant 
underlying risk for sudden death during infancy.

Arnestad et al. [52] replicated this association in a 
separate cohort of 201 Norwegian SIDS cases, 
examining seven LQTS-susceptibility genes and 
reporting a 9.5% (19 of 201) prevalence of functionally 
significant rare genetic variants. The vast majority of 
these mutations were identified in the three major 
LQTS-susceptibility genes: KCNQ1, KCNH2, and 
SCN5A. A subsequent study demonstrated that five of 
the eight variants within SCN5A had increased LQT3-
like late sodium current. The other three also displayed 
increased late current under various exogenous 
stressors [53]. Some of the potassium channel variants 
also displayed functional impairment [54].

Overall, these findings indicate that (1) approximately 
10% of SIDS may emanate from LQTS-causing muta­
tions, and (2) the cardiac sodium channel assumes a 
prominent position in channelopathic SIDS. While 
mutations in SCN5A account for only 5% to 10% of 
LQTS, SCN5A comprises half of the rare ‘channelopathic’ 
variants found in the Norwegian cases, and all of these 
had functional phenotypes [52,53]. It is interesting to 
note that, to date, 10 out of the 16 studies identified 

variants either within SCN5A or within genes encoding 
crucial regulators of the cardiac sodium channel macro­
molecular complex, including the genes encoding 
caveolin-3 (CAV3), GPD1-L (GPD1-L), α1-syntrophin 
(SNTA1), and the sodium channel beta subunits encoded 
by SCN1B, SCN2B, SCN3B and SCN4B [55-58]. Our own 
examination of 292 SIDS cases, including unpublished 
data, has identified 17 out of 292 SIDS cases with variants 
in the Nav1.5 macromolecular complex that had an in 
vitro channelopathic phenotype [55-58].

Interestingly, one study in 42 SIDS cases positively 
correlated SIDS with a SNP in the NOS1AP gene [59], 
which has also been correlated with variation in the QT 
interval [60,61]. In addition, another study examined a 
common polymorphism within the MT-ND1 gene within 
the mitochondrial genome. This polymorphism, T3394C, 
has been associated with prominent U waves on the 
electrocardiogram after exercise and episodes of syncopal 
attacks, and is considered a risk factor in LQTS patients 
for malignant arrhythmias [62]. Although that study did 
not identify any association, there was an association 
within SIDS cases found in the prone sleep position or 
co-sleeping with a parent; these are both known risk 
factors for SIDS [62]. The authors hypothesize that such 
environmental risk factors may have impacted the 
vulnerability associated with increased body temperature 
in these SIDS cases [62].

Lastly, two independent studies have associated the 
common African-American specific polymorphism 
S1103Y in SCN5A with increased risk for SIDS in the 
African-American population [63,64]. Overall, these 
relatively large cohort analyses (approximately 200 to 300 
cases) suggest that up to 10% of SIDS may stem from 
cardiac arrhythmias undiagnosed during the first year of 
life. The SCN5A-encoded cardiac sodium channel and its 
macromolecular complex play a prominent role in 
cardiac ‘channelopathic SIDS’. Why Nav1.5-mediated 
channelopathic sudden death is particularly central to 
channelopathic death may be due to sleep being a 
common trigger for arrhythmias in both Brugada 
syndrome and LQT3 [65-67]. However, the mechanisms 
whereby sleep is specifically a trigger in sodium-channel-
mediated arrhythmias remain poorly understood.

Immune dysfunction
There is also compelling evidence for perturbed immune 
responses and/or inflammatory changes in SIDS patho­
genesis [68,69]. We identified 20 studies examining 
various genes encoding proteins involved in modulating 
immune function that examined the link between 
immune deficiency and SIDS. These studies focused on 
either genotyping common polymorphisms or looking 
for gene deletions, and only ten of the studies reported 
positive associations. The two most highly studied are 
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polymorphisms within the IL-6 and IL-10 genes 
encoding IL-6 and IL-10, as well as early studies on 
deletions in the complement pathway C4 genes. The 
most commonly investigated IL-10 polymorphisms in 
SIDS are the promoter variants at positions -1082*A, 
-819*T, and -592*A.

In 2000, Summers et al. [70] reported in a small cohort 
of only 23 cases an increased association of the haplotype 
-1082*A, -819*T, and -592*A (ATA) with SIDS, most 
likely due to the A allele at the 592 location, which 
generated a SIDS odds ratio of 3.3 (P = 0.007). In 2003, 
Opdal et al. [71] were unable to replicate this association 
in a study involving 214 cases of SIDS in Norway. 
However, this may be due to the inclusion in the first 
group of infectious causes of death, as the authors did see 
an association between the ATA haplotype and infants 
that died of infectious causes. However, the same study 
did implicate the IL-10 gene in SIDS, describing the 
association with SIDS of a short tandem repeat locus, IL-
10G, positioned approximately 4.0 kb 5’ of the transcrip­
tion start site, and 13 IL-10G alleles spanning from 16 to 
28 CA repeats have been described. The SIDS cases had a 
higher percentage of G21/G22 than the controls 
(P = 0.017) [71]. Subsequently, however, Moscovis et al. 
[72] were also unable to replicate the haplotype asso­
ciation in 85 cases of SIDS. However, these investigators 
only genotyped the -1082 polymorphism, which was not 
the strongest link in the original study. Korachi et al. [73] 
found an association of the ATA haplotype in 38 British 
SIDS cases. In contrast, Perskvist et al. in 2008 [74] 
examined 23 cases examining the entire haplotype and 
did not find any association.

Thus, IL-10 has not been established definitively in 
SIDS pathogenesis, with failure to validate and replicate 
initial signals derived from small sample sized cohorts. 
The association between the short tandem repeat and 
SIDS has not been replicated, and it is clear that future 
research is necessary. Four studies have examined the 
association of polymorphisms in the IL-6 gene, with two 
positive (25 UK SIDS cases and 19 Caucasian Australian 
SIDS cases) and two failed associations (175 and 204 
Norwegian SIDS cases) [75-78]. Other positive associa­
tions with SIDS have been seen with VEGF (25 UK SIDS), 
and IL-1α and IL-1 receptor antagonist genes (204 
Norwegian SIDS cases and 49 Australian SIDS cases, 
respectively), and TNF-α promoter region (204 Norwe­
gian SIDS) [75,79-81]. Deletions of the complement C4A, 
C4B genes have been demonstrated in two separate 
studies between SIDS cases in Norway that had recent 
infections and complement gene deletions [82,83].

Metabolism/energy pathways
Inborn errors of metabolism account for approximately 
1% to 2% of sudden death during the first year of life [8], 

and the evidence linking energy dysregulation to SIDS 
has been described [14]. Genes encoding proteins 
involved in metabolic pathways and energy production 
have been examined frequently in SIDS and, to date, 23 
studies have examined genes that encode for crucial 
proteins involved in these processes. Thus far, 12 studies 
have examined the role of medium-chain acyl-CoA 
dehydrogenase (MCAD) deficiency, an inborn error in 
metabolism, in SIDS. Phenotypic presentation varies, but 
20% to 25% of patients homozygous for mutations in the 
MCAD gene can present with sudden death [84]. Eleven 
out of twelve genetic studies examined their cohort for 
the frequency of the most common mutation G985A, but 
only Lundemose et al. [85] and Yang et al. [86] each 
reported one homozygous case in cohorts of 61 and 220 
SIDS cases, respectively. Therefore, although MCAD 
deficiency can result in a sudden death during the first 
year of life, it is unlikely that such a death will be given a 
diagnosis of SIDS rather than MCAD deficiency-
associated death.

Cohort examinations of mutations and polymorphisms 
in the aldolase B, glucokinase, and glucose-6-phosphatase 
genes did not report any association with SIDS [87,88]. A 
subsequent study by Forsyth et al. [89] did report an 
association with variation in the promoter of the 
endoplasmic reticulum glucose-6-phosphate transporter 
G6PT1, which is required for hepatic glucose-6-
phosphatase activity in vivo. In a cohort of 170 Northern 
European SIDS cases, the allele frequency of a C→T at 
position -259 was significantly higher in term SIDS than 
in preterm SIDS or controls. Luciferase assays demon­
strated that the -259*T activity was 3.2-fold lower 
(P  <  0.005) than that of the wild-type construct. In 
addition, they correlated these findings to increased 
latency (decreased G6PT1 activity) of liver glucose-6-
phosphatase activity from SIDS heterozygous and 
homozygous for the -259T substitution compared with 
patients homozygous for -259C (P < 0.0001) [89].

Lastly, five studies have examined various parts of the 
mitochondrial genome for variation in SIDS cohorts. 
Two separate studies, one including only nine German 
SIDS cases, and one including a much larger cohort of 
158 Norwegian SIDS cases, identified variation within 
the most polymorphic region of the mitochondrial 
genome, the so-called displacement loop [90]. The German 
study correlated SIDS cases with a specific haplotype 
within the displacement loop [90], whereas the 
Norwegian study identified four mutations of unknown 
significance, while no controls were mutated [91].

Nicotine response
While the associations between exogenous exposure to 
nicotine and SIDS are clear and have been reviewed 
extensively [14,92], we have identified only two studies 
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that have examined the potential association between 
SIDS infants and defects in nicotine metabolizing 
enzymes. Rand et al. [93] explored associations between 
SIDS and the nicotine metabolizing enzyme genes 
GSTT1 and CYP1A1 in 106 Norwegian SIDS, but did not 
report any associations. Poetsch et al. [94] investigated 
polymorphisms in the nicotine metabolizing enzyme 
gene FMO3, which encodes flavin-monooxygenase 3, 
where genetic variants have been shown to impair nico­
tine metabolism. The common polymorphism 472G>A 
results in the amino acid change E158K. The homozygous 
AA genotype was over-represented in 159 German SIDS 
cases compared with controls, and interestingly was also 
over-represented in SIDS cases whose mothers reported 
heavy smoking (10 cigarettes or more per day during 
pregnancy) compared with SIDS victims whose mothers 
did not smoke [94]. This study highlights the potential 
interaction between genetic vulnerability (polymorphism 
that may impair nicotine metabolism) and an environ­
mental insult (cigarette exposure) in SIDS pathogenesis.

Copy number variation, new technology and SIDS
The notion that cytogenetic abnormalities such as large 
copy number variations (CNVs) may play a role in SIDS 
has existed since the 1970s. Beyond the Nature paper by 
Weinberg and Purdy, Sutherland et al. [95] performed 
pediatric postmortems on Australian children via 
chromosome banding during a 6-year period. However, 
only two of the 135 SIDS cases examined in that study 
had abnormal karyotypes, which did not differ from rates 
in unselected live children. In contrast, Toruner et al. [96] 
recently reported the first systematic examination of a 
group of 27 SIDS/unclassified sudden infant death cases 
and their families for large CNVs. The authors used 
array-based comparative genomic hybridization to detect 
four large duplications in three SIDS cases. One victim 
had a duplication of approximately 3 Mb on chromosome 
8q and a 4.4 Mb deletion on chromosome 22q13.3. Another 
SIDS case had a 240 kb deletion in chromosome 6, and a 
third had a 1.9 Mb deletion, also in chromosome 6.

The study highlighted the recently appreciated role that 
CNVs can play in complex disease processes. CNVs are a 
collection of structural variations within the genome that 
range from kilobases to megabases and are not detectable 
by conventional chromosomal banding [97]. Recent 
studies have identified 11,700 CNVs in over 1,000 genes 
that account for 13% of the genome [97]. Although they 
can certainly be inherited, it is thought that large de novo 
CNVs are more likely to cause disease. CNVs have been 
implicated in a myriad of diseases, including autism and 
schizophrenia, where CNV identifications have pointed 
to new gene loci of disease [97]. However, the extent to 
which CNVs are involved in SIDS is far from clear, given 
the small sample size of the current study. In addition to 

providing the causative genetic vulnerability, CNVs may 
also unmask genetic vulnerability caused by a mutation 
or polymorphism in a specific gene whose effect may be 
autosomal recessive in nature but manifests due to the 
deletion of the normal allele.

New developments in technology for genome explora­
tion have improved our ability to probe deeper into the 
‘SIDS genome’. Methods thus far used in genetic analyses 
of SIDS have included a combination of denaturing high-
performance liquid chromatography, ‘first-generation’ 
direct Sanger sequencing, and genotyping for known 
SNPs using allele-specific probes. Such approaches will 
continue to identify novel SNP associations or mutations 
within known genes using a candidate gene approach. 
However, a limitation of this approach is the inability to 
identify new genes in novel pathways that potentially play 
a role in this complex disease. Ideally, combining this 
approach with the more global approach allowed by 
novel technology will most quickly help us to develop 
clearer genomic profile(s) of the genetically ‘vulnerable’ 
infant. Such approaches include the aforementioned 
array-comparative genomic hybridization technique, 
newer generations of SNP arrays, and multiplex ligation-
dependent probe amplification, which are all optimally 
suited to detect multiple SNPs as well as CNVs. In 
addition, next-generation sequencing technologies now 
provide a means of deep sequencing as sequencing costs 
continue to decrease with increased sequencing capa­
bilities, and soon genome assembly comparisons will 
potentially allow a richer comparison between SIDS 
cases and controls, circumventing the problem of small 
cohort size that has plagued SIDS research during the 
genome-wide association study or ‘GWAS’ era. Lastly, 
with the completion of the 1,000 Genomes/Exomes 
Project, scientists will be able to examine the areas 
around SIDS-associated SNPs and potentially identify 
novel or rare functional variants in linkage disequilibrium 
with those SNPs, thereby allowing scientists to eventually 
identify novel SIDS-causative variants and genes [98].

Impact on pre- and postnatal risk assessment
Finally, what does the future hold for pre- and postnatal 
risk assessment using this newfound genetic information? 
Given the myriad of pathways implicated by genomic 
studies, the best way forward is difficult to navigate. For 
example, although it is clear from the literature that 
seronergic, channelopathic, immunologic, metabolic, and 
nicotinic mechanisms play a potential role in modulating 
SIDS risk to varying degrees, it is still unclear which 
combination of variants creates the milieu that 
reasonably predicts SIDS risk. Is a predisposing SNP in 
IL-10 enough of a genetic vulnerability to suggest 
preventative measures? How does the risk change with 
the addition of the S1103Y-SCN5A polymorphism and 
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the L allele in the 5-HTT serotonin transporter gene? To 
date, all studies have focused exclusively on a particular 
pathway, with over two-thirds of the studies focusing 
exclusively on one gene. Thus, it is unknown to what 
extent ‘immunologic’ SIDS and ‘channelopathic’ SIDS 
overlaps with ‘serotonergic’ SIDS. In addition, one-
quarter of the cohorts numbered under 50 cases, and the 
cases also varied significantly ethnically, so to what extent 
such studies will ‘generalize’ to the global population of 
‘at risk’ infants remains to be seen. In fact, only approxi­
mately 7% of the studies examined here included some of 
the more ‘at risk’ ethnicities, such as African American.

Also, how would one approach the potential of a 
genetic test to identify at-risk infants? Using as an 
example the cardiac channelopathies, several difficulties 
with universal screening immediately surface. For 
example, the observation that 2% of otherwise healthy 
Caucasian adult volunteers nevertheless host a rare 
variant in SCN5A, the gene most often implicated in 
channelopathic SIDS, is quite problematic for 
interpreting the significance of a universal genetic test 
result [99,100]. Though current data are beginning to 
elucidate which mutations are functionally relevant and 
indeed pathogenic, this complex issue of distinguishing 
true mutations from so-called background genetic noise 
must be deciphered before such a genetic test could be 
implemented effectively and universally among infants. It 
is reasonable to suggest that similar issues arise for the 
other pathways described herein. For many of the cohort 
studies examined, especially those outside the channelo­
pathies where the functional readouts are much less 
defined, it is unclear what the physiologic effects of 
implicated SNPs and variants are, and more studies are 
needed to explore in vivo effects of variation within these 
pathways. To be sure, there is NO role or justification for 
universal infant genetic testing for identifying the ‘at-risk’ 
infant at this time.

Meanwhile, perhaps the most immediate way forward 
is the implementation of new ‘standards of care’ for the 
cases and families of SIDS. It is clear from our review of 
the literature that it is reasonable to explore and pursue 
postmortem genetic testing/genotyping of a SIDS victim 
as part of the infant’s comprehensive autopsy. However, it 
is critical to bear in mind that the yield of a cardiac 
channel-centric molecular autopsy of a SIDS case is going 
to be around 10% to 15% and the potential ‘background’ 
genetic noise rate for the genes surveyed could be as high 
as 5% in Caucasians and even higher in non-Caucasians. 
Therefore, a ‘positive’ genetic test result must be scruti­
nized carefully before concluding that the infant’s 
pathogenic substrate for his/her death has been estab­
lished beyond a reasonable doubt. For channelopathic 
SIDS, the anonymized study design of several SIDS 
investigations precludes the knowledge of the relative 

percentage of familial channel mutations versus sporadic 
mutations. However, taking these findings together, it 
seems quite reasonable to recommend a 12-lead electro­
cardiogram for first-degree relatives of a SIDS case to 
further investigate the possibility of familial LQTS. In 
total, the future is bright for SIDS genomic research, and 
with the pathways now well-established, more research 
into the mechanisms by which genetic variation 
predisposes to sudden death is necessary to fully bring 
these bench-side discoveries back to the crib to prevent 
such tragic deaths.

Conclusions
Many cohort studies with a wide range of sizes and 
ethnicities have examined the genetic factors that may 
predispose an infant to SIDS. Given the magnitude of 
data on various genes, this review has examined system­
atically the evidence for various gene-encoded proteins 
and their signaling pathways and their contribution to 
SIDS risk. While genetic risk factors are clearly present, 
more work is needed to examine the mechanisms for 
how individual genetic factors truly create ‘infant 
vulnerability’. In addition, work is needed to explore how 
these factors can combine to create the ‘genomic 
fingerprint’ of SIDS predisposition. It is our hope that 
new technologies will allow such knowledge to be quickly 
ascertained in the quest to eradicate these tragic deaths.
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