
Hepatitis C: the disease, the virus and the therapy
Up to 170 million people worldwide are chronically 
infected with hepatitis C virus (HCV) [1]. Chronic HCV 
infection is asymptomatic or associated with relatively 
mild hepatitis in most individuals. However, about 20% 
of patients have progressive hepatitis, where disease 
proceeds from hepatitis of gradually worsening severity, 
through increasing hepatic fibrosis and cirrhosis, and 
eventually terminating in fatal liver failure or hepato-
cellular carcinoma [2]. �e rate of progression along this 
path varies from a few years in exceptionally rapid 
progressors to many decades in slow progressors, with 
relatively slow progression being the norm.

HCV is a hepatotropic flavivirus in the Hepacivirus 
genus. �e enveloped virion contains a positive-polarity 

RNA genome that is about 9,600 nucleotides long and 
encodes a polyprotein of roughly 3,000 amino acids. 
Cleavage of the polyprotein produces three structural 
proteins (core, E1 and E2) and seven non-structural 
proteins (P7, NS2, NS3, NS4A, NS4B, NS5A and NS5B). 
�e HCV genome is genetically very variable, with six 
genotypes that are less than 72% genetically identical, and 
over 100 subtypes with identities of 75% to 86% [3]. 
Genotype 1 accounts for about 75% of the HCV isolates 
in the USA; almost all are subtype 1a or 1b. Independent 
HCV isolates of a given subtype typically differ by 6% to 
10%, and genetic variation between viral genomes within 
an individual is usually 1% to 3% because of the replica-
tion of HCV as a quasispecies (that is, a collection of 
genetic variants that clusters around a master sequence 
and that evolves as a unit [4]).

HCV infection is currently treated with a combination 
of pegylated IFNα and ribavirin. Treatment eliminates 
the virus (sustained viral response, SVR) in 50% to 60% of 
genotype 1 patients [5]. Treatment typically lasts for 
48  weeks, but it is discontinued if viremia is present at 
24  weeks because the chances of achieving SVR are 
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negligible if the virus is detectable at this time. There are 
two major drawbacks to this therapy beyond its limited 
efficacy. First, IFNα causes severe side-effects, including 
flu-like illness, depression, anorexia, anemia and lympho­
penia, and these problems are exacerbated by ribavirin 
[6,7]. The risk of these complications is high enough that 
many patients are ineligible for treatment. Treatment 
therefore requires supervision by a skilled medical team, 
and even then a third of patients can be incapable of 
taking the full regimen without dose reductions. Second, 
therapy can cost over US$40,000 per patient [8], and 
hence it is unaffordable for many patients.

Numerous direct-acting inhibitors of the enzymes of 
HCV are under development [9-11], and two NS3 protease 
inhibitors are likely to be approved in 2011. However, all 
direct-acting inhibitors of HCV are plagued by very rapid 
development of resistance due to the high genetic 
diversity and rapid evolution of HCV, and hence the new 
drugs will be used in combination with IFNα and 
ribavirin for the foreseeable future [12].

Here, we review recent advances in our knowledge 
concerning the host and viral genetic variables that affect 
outcome of therapy.

Roles of IFNα and ribavirin during therapy
IFNα provides the primary antiviral effect and can clear 
HCV when used alone, whereas ribavirin is ineffective by 
itself but roughly doubles the viral clearance rate when 
taken with IFN [5,13]. The mechanisms by which IFNα 
and ribavirin suppress HCV are incompletely understood, 
but each drug clearly acts through multiple mechanisms. 
IFNα triggers the type 1 IFN response and stimulates 
adaptive immune responses to the virus, but the details of 
how these cellular responses control HCV are largely 
unknown. Ribavirin may act by skewing host immunity 
towards a Th1-type response, amplifying the type 1 IFN 
response, suppressing cellular guanosine triphosphate 
pools, and/or interfering with the fidelity of HCV 
replication. Importantly, all of these antiviral pressures are 
mediated by cellular effectors, with the exception of the 
potential impact of ribavirin on the viral RNA polymerase.

Host and viral genetic variation both affect 
outcome of therapy
The outcome of IFN-based therapy for HCV is dependent 
on the genetic systems of both the human host and the 
virus. Host genetic factors that influence the outcome of 
therapy include gender, race and variation in genes of the 
immune system. The primary viral genetic factor is the 
HCV genotype because some genotypes are more sensi­
tive to IFN than others, but other aspects of viral 
variability are also important. The major host and viral 
genetic factors affecting outcome of therapy are summar­
ized in Figure 1.

The human immune responses to HCV and the 
countermeasures of the virus are directly relevant to 
antiviral therapy because the dominant drug in therapy is 
IFNα, which is a key cytokine in the type 1 IFN response. 
The replication of HCV replication triggers innate 
immune pressures, and then the virus counters these 
immune responses with an array of immunosuppressive 
strategies to promote its persistence [14,15]. The best 
understood immunosuppressive strategies include inhi­
bition of protein kinase R (PKR) by the viral NS5A and 
E2 proteins, cleavage of cellular signal transduction 
molecules downstream of the pathogen RNA sensors 
RIG-I and TLR3 by the NS3/4A protein, and altering 
IL12 production through secretion of the core protein; 
other less thoroughly characterized suppressive activities 
also exist.

Accurate prediction of the outcome of therapy would 
reduce complications associated with futile treatment 
while simultaneously increasing the number of potential 
responders who receive therapy. The pleiotropic 
pressures applied against HCV by IFN-based therapy 
have two key implications on pharmacogenetic personali­
zation of treatment for HCV. First, the role of the 
immune system in pharmacological control of HCV indi­
cates that human genetic polymorphisms affecting these 
pathways could modulate efficacy of therapy. Second, 
viral resistance to IFN-based therapies will be propor­
tional to the net effect of the multiple immunosuppressive 
activities of HCV. Therefore, predicting the outcome of 
therapy will require integrating the efficacies of the 
immunosuppressive mechanisms of a given HCV isolate, 
and then interpreting the viral resistance potential in 
context of the genetic profile of the patient at loci 
associated with outcome of treatment.

Host genetic associations with outcome of therapy
The dominant role of the immunomodulator IFNα in 
treating HCV infection has driven an extensive search for 
genetic associations between components of the immune 
system and outcome of therapy [16-18] (Table 1). Many 
studies have focused on the human leukocyte antigen class 
I and II genes, and most, but not all, studies have found 
associations between particular alleles and outcome of 
IFN-based therapy. However, there is little overlap in the 
alleles identified by the various groups. Genetic asso­
ciations with outcome of therapy have also been reported 
for the genes encoding KIR2DL5, IL6, IL10, IL12B, CCL5, 
TGFβ, TNFα, IFNγ, osteopontin, GNB3, and CTLA4. 
However, other studies have failed to find associations 
with many of these genes. The inconsistencies in these 
data appear to be due to differences among the studies in 
the racial make-up and HIV co-infection status of the 
cohorts, the definition of therapeutic response, the therapy 
employed (IFNα monotherapy, IFN plus ribavirin, or 
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pegylated IFN plus ribavirin), and the HCV genotype 
infecting the study participants. Together, these data 
clearly demonstrate that polymorphisms in immune 
system genes can strongly influence the outcome of anti-
HCV therapy, but these associations appear to be context 
dependent, and hence are unlikely to be broadly useful in 
predicting treatment outcome.

A breakthrough in understanding human genetic asso­
ciations with outcome of therapy occurred in 2009 when 
three seminal genome-wide association studies demon­
strated that polymorphisms near the IL28B gene, which 
encodes IFNλ3 [19], were strongly associated with treat­
ment outcome for HCV genotype 1 [20-22]. The strongest 
association was found for SNP rs12979860, located about 
3 kb upstream of the IL28B coding region. Patients with a 
CC genotype at this SNP were more than twice as likely 
to achieve SVR as patients with a CT or TT genotype 
[20]. The three studies each identified different SNPs near 
IL28B, but the underlying biological association with 
treatment outcome appears to be the same because there 
is a strong linkage disequilibrium among these SNPs. 
Suppiah et al. [21] estimated that the cumulative effect of 
the favorable allele at the IL28B locus is to increase SVR 
by 32% relative to a population in which the allele is 
absent (population attributable risk). The favorable asso­
ciation of the CC genotype was found in patients of both 
European and African-American descent, and differential 
prevalence of the CC genotype explained approximately 
half of the twofold poorer response rate to treatment 
found in African Americans [20,23].

The effect of variation at r12979860 with HCV treat­
ment outcome has been validated in a new cohort that 

included 186 genotype 1 and 45 genotype 2 or 3 patients 
[24]. The r12979860 SNP has also been associated with 
more rapid decline of viral titers during therapy and with 
end-of-treatment response [25]. An association of the CC 
genotype at the r12979860 SNP with SVR is also found in 
patients infected with the easier-to-treat HCV genotypes 
2 or 3, but only in patients who do not have a rapid early 
decline in HCV titers [26]. The association of IL28B 
polymorphisms and response to treatment also appears 
to hold in patients that are co-infected with HIV [27-29]. 
A similar association of polymorphisms in the IL28B 
r12979860 SNP is found with spontaneous clearance of 
acute genotype 1 HCV infection [30-32], and with a differ­
ent SNP for patients infected with genotype 1 or 4 for both 
spontaneous clearance and response to therapy [33].

The IL28B gene encodes the type 3 IFN, IFNλ [19]. 
IFNλ has been shown to inhibit HCV replication [34], so 
the variations in the IL28B gene mutations presumably 
affect the efficacy of the innate immune response against 
HCV during therapy. Regardless of mechanism, the very 
strong association of the IL28B polymorphisms with 
outcome of IFN-based therapy has already led to clinical 
genetic tests to help guide antiviral treatment.

The association of human SNPs with ribavirin-induced 
reduction in hemoglobin levels has also been assessed 
[35] because treatment-induced hemolytic anemia is one 
of the most serious side-effects of IFN-based therapy [7]. 
This does not directly address treatment outcome, but 
anemia often causes dose reductions that lower treatment 
efficacy. Genotypes of SNPs rs1127354 and rs7270101 
within the inosine triphosphatase gene that decrease the 
activity of the enzyme have been found to be strongly 

Figure 1. Prominent host and viral genetic factors that influence the outcome of IFN-based therapy for HCV. The best-documented host 
genetic factors that favor viral clearance and HCV factors that promote viral survival during therapy are indicated. HLA, human leukocyte antigen; 
ITPA, inosine triphosphatase; SNP, single-nucleotide polymorphism.
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associated with protection against anemia [35]. These 
results were confirmed in an independent cohort of 

western patients [36]. Two additional studies confirmed 
the association of rs1127354, but not rs7270101, with 

Table 1. Host genetic factors that affect treatment outcome

Gene symbol	 Gene name/description	 Polymorphism	 Effect on treatment	 Reference(s)

IFNλ				 

	 IL28B	 Interferon, λ3 	 SNP rs12979860 (C/C)	 Twofold increased rate of SVR	 [20]

	 IL28B	 Interferon, λ3	 SNPs rs8099917 (G)  	 Associated with non-response 	 [22]
			   and rs12980275

	 IL28B	 Interferon, λ3	 SNP rs809917 (T)	 Twofold increased rate of SVR	 [21]

Side-effect modulator				  

	 ITPA	 Inosine triphosphatase	 SNPs rs1127354 (A) 	 Increased protection against	 [35-38]
			   and rs7270101 (C)	 ribavirin-induced anemia

HLA alleles				  

	 HLA-A24-B54-DR4	 HLA class I/II haplotype	 NA	 Associated with non-response 	 [73]

	 HLA-B54	 HLA class I allele	 NA	 Associated with non-response	 [73]

	 HLA-DRB1*0404	 HLA class II allele	 NA	 Associated with response	 [74]

	 HLA-DRB1*0701, -DRA1*0201, -DQB1*02	 HLA class II haplotype	 NA	 Associated with response	 [75]

	 HLA-A11, -B51, -CW5 and -DRB1*15	 HLA class I and II alleles	 NA	 Associated with response	 [76]

	 HLA-A24	 HLA class I allele	 NA	 Associated with non-response	 [76]

	 HLA-DRB1*04	 HLA class II allele	 NA	 Associated with non-response 	 [77]
				    to IFN monotherapy

	 HLA-DRB1*07	 HLA class II allele	 NA	 Associated with response	 [78]

	 HLA-A33	 HLA class I allele	 NA	 Associated with response	 [79]

	 HLA-DRB1*07	 HLA class II allele	 NA	 Associated with non-response	 [80]

	 HLA-DRB1*11, -DRB1*0301	 HLA class II alleles	 NA	 Associated with response	 [80]

	 HLA-A24, -B40 -B46	 HLA class II alleles	 NA	 Associated with response	 [81]

Other immune-related genes				  

	 KIR2DL5 	 Killer cell immunoglobulin-	 NA	 Associated with non-response 	 [82]
		  like receptor

	 IL6	 Interleukin 6	 IL6 C174G	 Associated with response	 [83]

	 IL10	 Interleukin 10	 IL10 -592A and -819T	 Associated with response	 [84,85]

	 IL12B	 Interleukin 2B	 IL12B 3’-UTR 1188C	 Associated with response 	 [86]

	 MXA	 Interferon-inducible protein	 MXA -88G and -123A	 Response to IFN monotherapy	 [87]

	 CCR5	 Chemokine receptor 5	 CCR5 -Δ32	 Associated with non-response to 	 [88]
				    IFN monotherapy

	 CCL5	 Chemokine ligand 5, RANTES	 CCL5 Int1.1C and 	 Associated with non-response	 [89]
			   3’ 222C

	 TGFβ	 Transforming growth factor β	 TGFβ 10T/T, 25G/G 	 High producer TGFβ genotype	 [90]
			   and 10T/C, 25 G/G	 associated with response

	 TNFα	 Tumor necrosis factor α	 TNFα -308A	 Associated with response	 [91]

	 IFNγ	 Interferon γ	 IFNγ -764G	 Associated with response	 [92]

	 OPN	 Osteopontin	 OPN -1748G/G or G/A

OPN -443 T/T	 Associated with response	 [93]

	 GNB3	 Guanine nucleotide-binding 	 GNB3 825 C/C	 Associated with non-response	 [94,95]
		  protein β polypeptide 3

	 CTLA4	 Cytotoxic T-lymphocyte 	 CTLA4 -318C -49G	 Associated with response	 [96,97]
		  associated protein, T-cell 	 haplotype 
		  inhibition

HLA, human leukocyte antigen; IFN, interferon; NA, not applicable; SNP, single-nucleotide polymorphism; SVR, sustained viral response; UTR, untranslated region.
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ribavirin-induced anemia in Japanese patients infected 
with HCV genotype 1b [37,38]. Sakamoto et al. [37] also 
found that patients with the favorable inosine triphos­
phatase allele have a higher rate of SVR, which they 
attribute to better adherence to therapy.

Viral genetic associations with outcome of 
IFN‑based therapy
The clearest indication that the high genetic variation of 
HCV affects outcome of therapy is that patients infected 
with genotype 1 achieve SVR about 50% of the time 
following 48 weeks of therapy, whereas patients with 
genotypes 2 and 3 achieve SVR with frequencies >80% 
after only 24 weeks of treatment [5]. HCV genotype is 
therefore a key parameter in deciding whether to initiate 
treatment, with a higher proportion of patients infected 
with genotype 2 and 3 being eligible for treatment.

A fundamental aspect of the biology of HCV is its 
replication as a quasispecies. The influence of quasi­
species diversity/complexity on efficiency of antiviral 
therapy has been extensively explored, with conflicting 
results. Better responses have been linked to low 
pretreatment quasispecies diversity/complexity in most 
studies [39-42] but not in others [43,44]. The reasons for 
this discrepancy are not fully understood. In contrast, a 
rapid shift of the quasispecies spectrum early during 
treatment is clearly associated with better response 
[45,46]. In an attempt to clarify the role of HCV quasi­
species variation in viral sensitivity to IFN-based therapy, 
we evaluated the association of baseline HCV quasi­
species diversity/complexity in the hypervariable region 
1 of the E2 protein with response to therapy in 153 HCV 
genotype 1 patients and found that quasispecies diversity/
complexity can affect the outcome of therapy, but that 
this effect may become apparent only when the diversity/
complexity rises above a critical point [47].

Variations in the quasispecies master sequence (defined 
in practical terms as the consensus HCV sequence within 
a patient) between individuals have also been associated 
with outcome of therapy. The first such observation was 
that the number of variations in subtype 1b amino acid 
residues 2209 to 2248 (the ‘interferon sensitivity deter­
mining region’, ISDR) relative to HCV strain J was 
correlated with response to IFN-based therapy [48]. The 
ISDR is part of a PKR-binding site [15], and consequently 
this association is based on a reasonable mechanism: 
differential inhibition of PKR activity by variant HCV 
genomes. The association of variability in the ISDR with 
non-response has been consistently found in Japanese 
patients infected with subtype 1b, but is weak in other 
contexts [49,50]. The sequence at the ISDR remains an 
independent predictor of outcome for Japanese genotype 
1b patients even when normalized for the effect of IL28B 
polymorphisms [51,52].

Variation at HCV core protein positions 70 and/or 91 
relative to the prototype sequences of R70 and L90 has 
been repeatedly associated with non-response to IFN-
based therapy in Japanese genotype 1b patients [53-55], 
but in not in genotype 2a patients [56]. Variation at core 
residues 70 and/or 91 in HCV 1b patients has remained a 
predictor of treatment outcome in multivariate models 
including the IL28B polymorphisms [57] and during 
triple therapy including IFN, ribavirin and one of the 
promising NS3 protease inhibitors [58].

Similarly, genetic variation at a PKR-binding site in the 
viral E2 protein, termed the PePHD, has been associated 
with response to therapy in a few studies [59,60], but not 
in most [61,62].

This association of low viral genetic diversity relative to 
the population-wide consensus sequence with poor 
response to therapy implies that viral sequences with low 
diversity are closest to an optimal sequence and hence 
have the greatest IFN-resistance potential. In this 
context, resistance can be impaired by variations at many 
different sites throughout the viral genome. However, 
results from the various HCV genetic studies have often 
been incompletely reproducible, possibly due to comple­
mentation between the multiple immunosuppressive 
activities of HCV that would not have been evident in 
analysis of individual viral genes. This appears to be the 
case because analysis of the full HCV coding potential 
revealed that the viral genomes in responders to IFN-
based therapy are much more diverse than genomes from 
non-responders, that these diversity differences are 
concentrated in genes with known immunosuppressive 
activities (especially the core, E2, NS3 and NS5A genes), 
and that an individual isolate may not necessarily have 
the same diversity pattern at all of these genes [63-65]. 
Our very rough estimate is that differences in HCV 
genetic diversity among infected individuals may account 
for about 30% of the treatment failures [65]; this fraction 
is similar to that contributed by variation in the human 
IL28B locus [21].

The potential for intragenomic complementation is 
emphasized by the recently discovered genome-wide hub-
and-spoke networks of amino acid covariances in HCV 
[66,67]. The structure of these networks indicates that the 
viral genome functions as an integrated unit. Therefore, we 
asked whether the networks could improve prediction of 
therapeutic efficacy through their ability to integrate infor­
mation across the viral genome. The covariance networks 
were found to be very different in sequences from 
responders and non-responders to IFN-based therapy, and 
differences in the networks could help predict outcome of 
therapy in this set of samples [66]. This result has not been 
independently confirmed because there are no other 
publicly available full-ORF HCV sequences from patients 
for whom the outcome of IFN-based therapy is known.
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Impact of the new direct-acting drugs on 
pharmacogenetic tailoring of therapy
Antiviral therapy for HCV will change dramatically in the 
near future as direct-acting antiviral drugs targeting the 
viral protease and RNA polymerase activities become 
available [9-11]. These compounds cannot be used as 
monotherapies because resistance develops within weeks 
when they are used alone [12,68-70], so at least the first 
generation of direct-acting drugs will be used in combi­
nation with IFNα and ribavirin. Therefore, pharmaco­
genetic personalization of HCV therapy will soon add 
assessment of viral resistance mutations to the direct-
acting agents to evaluation of host and viral markers of 
IFN efficacy. Evaluation of the resistance markers will be 
similar to what is currently done for HIV and hepatitis B 
virus [71,72]. As the anti-HCV pharmacological toolbox 
increases, the viral markers governing efficacy of the 
direct-acting antivirals will become progressively more 
important for guiding the choice of drugs to be employed. 
Eventually, a cocktail of direct-acting compounds is 
expected to eliminate the need for IFN entirely. When 
this happens, the role of host immunological poly­
morphisms and immunosuppressive genetic patterns of 
HCV in predicting therapeutic efficacy will be supplanted 
by assessment of viral variables that define the sensitivity 
of a given HCV isolate to the drugs. A role for host 
markers in guiding therapy may persist, but it will be 
limited to evaluation of sensitivity to side-effects of the 
drugs. Although many promising anti-HCV drugs are in 
the pipeline, it is impossible to predict when IFN will be 
supplanted, and so pharmacogenetic prediction of the 
response of HCV to therapy will remain a dynamic field 
for the foreseeable future.

Conclusions
HCV infections are a leading cause of liver disease and 
liver cancer worldwide. HCV infection is treated with 
IFNα plus ribavirin, but this expensive, year-long therapy 
is plagued with severe side-effects and it clears the virus 
in only about half of patients. Response of HCV to IFN-
based therapy is affected by variations in human genes 
controlling antiviral immune responses and by differ­
ences in HCV genes that suppress these immune 
responses. The most prominent human genetic associa­
tions with outcome of therapy are polymorphisms within 
the IL28B gene, but associations with variations in the 
human leukocyte antigen and cytokine genes also exist. 
Obtaining a molecular understanding of the mechanisms 
by which these genetic associations modulate the out­
come of therapy would substantially improve therapy. 
The most obvious viral genetic association is that HCV 
genotype 1 is less sensitive to treatment than are geno­
types 2 and 3, but genetic differences at the isolate and 
quasispecies levels also affect outcome of therapy. 

Understanding the mechanisms underlying these viral 
genetic associations would also improve therapeutic 
options for HCV patients. The contribution of both host 
and viral genetic variations in determining the outcome 
of therapy indicates that predicting the outcome of 
therapy for HCV will require integrating the efficacies of 
the immunosuppressive mechanisms of a viral isolate, 
and then interpreting the viral resistance potential in 
context of the genetic profile of the patient at genes 
associated with outcome of therapy. Reaching this goal 
will require a deeper understanding than is currently 
available of the human and viral genetic associations with 
response to therapy and of how these genetic variations 
interact with each other. Anti-HCV therapy is expected 
to change dramatically in the near future with the 
approval of direct-acting inhibitors of viral proteins, so 
outcome prediction will soon need to incorporate viral 
genetic markers of the resistance of HCV to the new 
drugs. This will require detailed viral genetic analyses to 
identify clinically relevant resistance mutations and their 
cross-resistance characteristics. Eventually the direct-
acting drugs are expected to eliminate the need for IFN 
and ribavirin. At this time, evaluation of human genetic 
markers of immunological efficacy and viral markers of 
immunosuppressive potential will be supplanted by 
assessment of viral biomarkers of drug sensitivity.
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