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multiforme progression
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Abstract

core of glioblastoma.

highly significant stratification of prognosis.

Background: Glioblastoma multiforme (GBM) is the most common, aggressive and malignant primary tumor of
the brain and is associated with one of the worst 5-year survival rates among all human cancers. Identification of
molecular interactions that associate with disease progression may be key in finding novel treatments.

Methods: Using five independent molecular and clinical datasets with a set of computational algorithms we were
able to identify a gene-gene and gene-microRNA network that significantly stratifies patient prognosis. By
combining gene expression microarray data with microRNA expression levels, copy number alterations, drug
response and clinical data, combined with network knowledge, we were able to identify a single pathway at the

Results: This network, the p38 network, and an associated microRNA, hsa-miR-9, facilitate prognostic stratification.
The microRNA hsa-miR-9 correlated with network behavior and presents binding affinities with network members
in a manner that suggests control over network behavior. A similar control over network behavior is possible
through a set of drugs. These drugs are part of the treatment regimen for a subpopulation of the patients that
participated in the TCGA study and for which the study provides clinical information. Interestingly, the patients that
were treated with these specific sets of drugs, all of which targeted against p38 network members, demonstrate

Conclusions: Combined, these results call for attention to p38 network targeted treatment and present the p38
network-hsa-miR-9 control mechanism as critical in GBM progression.

Background

Glioblastoma multiforme (GBM) is the most common,
aggressive and malignant primary tumor of the brain
and is associated with one of the worst 5-year survival
rates among all human cancers [1]. This tumor diffusely
infiltrates the brain early in its course, making complete
resection impossible. Advances in treatment for newly
diagnosed GBM have led to current 5-year survival rates
of 9.8%. Despite therapy, once GBM progresses, the out-
come is uniformly fatal, with median overall survival
historically less than 30 weeks [2].
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Merging datasets from different studies bridges biases,
leads to identification of robust survival factors [3] and
eases concerns about the instability of mRNA data [4,5].
By combining different datasets, we can overcome biases
such as batch effect and get closer to finding firm prog-
nostic biomarkers. In the work presented here, we ana-
lyzed gene expression data from five independent
publicly available glioblastoma datasets, four from the
Gene Expression Omnibus (GEO) database [6] (from
studies by Freije et al. [7], Murat et al. [8], Phillips et al.
[9], and Lee et al. [10]) and one from The Cancer Gen-
ome Atlas (TCGA) [11].

Here, we take an approach that utilizes network graph
structure and combine it with information on clinical
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outcome to identify curated networks that may serve as
biomarkers for survival and/or to uncover molecular
mechanisms that control disease course. To make use of
network graph structure, we applied methods to merge
expression data with network knowledge for the quanti-
fication of the network expression behavior [12]. Inter-
action and pathway information was obtained from The
National Cancer Institute’s Pathway Interaction Data-
base [13]. We combined pathway metrics with clinical
data to determine the association of network behavior
with phenotype in the five independent datasets. The
four GEO datasets consist of gene expression microarray
and clinical outcome data (vital status), and the data
provided by the TCGA (for 373 patients) comprise
expression abundance through microarrays, copy num-
ber variation, and microRNA expression data.

Somatic copy number variations are extremely com-
mon in cancer, and detection and mapping of copy
number abnormalities provides an approach for asso-
ciating aberrations with disease phenotype and for loca-
lizing critical genes [14]. The role of microRNAs
(miRNAs) in many human diseases is well established,
and their ability to act as both therapeutic agents and
disease prognostic biomarkers makes it important to
understand this family of molecules [15]. By studying
these molecular changes and their versatility, we can
identify targets for sophisticated therapeutics
approaches.

Materials and methods

Gene datasets

The Cancer Genome Atlas dataset

Data were obtained from TCGA. This dataset comprises
molecular characterizations from 373 GBM patients. For
each patient, the database provides copy number (level 2
data, 150 patients), microarray (level 2 data, 373
patients) and miRNA values (level 3 data, 373 patients).
In addition, the following clinical data variables were
recorded for each patient: age, gender, chemotherapy
status and vital status. Copy number variation levels
were obtained from the Human Genome CGH 244A
microarray. This Agilent 244A platform shows the high-
est sensitivity among microarray oligonucleotide plat-
forms, with a single element being sufficient to detect a
single-copy alteration [16]. Comparative genomic hybri-
dization arrays provide a means for quantitative mea-
surement of DNA copy number aberrations and for
mapping them directly on to genome sequences. A
value of 0 (log 2 ratio) indicates a normal state, 1 indi-
cates 2 copy gains and -1 indicates heterozygous dele-
tion. A standard threshold for copy number alteration of
> 0.3 for amplification, and < -0.3 for deletion was
applied as previously described [17-19]. Gene expression
was quantified using an Affymetrix HT Human Genome
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U133 Array Plate Set. The expression data were normal-
ized by quintile normalization to produce robust multi-
array average (RMA) expression values from the Affy-
metrix CEL files. Gene expression in all five datasets
was analyzed on the RMA expression data. miRNA
expression levels were quantified using the UNC Agilent
miRNA 8 x 15K database, which contains expression
values of 1, 510 miRNAs.

Gene Expression Omnibus datasets

Validation set 1 Validation set 1, from Freije et al. [7],
is composed of gene expression and clinical information
from 74 GBM patients (GEO accession [GSE4412]). All
patients were at grade III and IV, and ages varied from
18 to 82 years. The study included 46 females and 28
males. Gene expression was quantified using the Affy-
metrix Human Genome U133A Array.

Validation set 2 Validation set 2, from Lee et al. [10], is
composed of gene expression and clinical information
from 191 GBM patients (GEO accession [GSE13041]).
Gene expression was quantified using the Affymetrix
Human Genome U133A Array.

Validation set 3 Validation set 3, from Murat et al. [8],
is composed of gene expression and clinical information
from 80 GBM patients (GEO accession [GSE7696]).
Gene expression was quantified using the Affymetrix
Human Genome U133 Plus 2 Array.

Validation set 4 Validation set 4, from Phillips et al. [9]
and Costa et al. [20], is composed of gene expression
and clinical information from 77 GBM patients (GEO
accession [GSE4271]). Gene expression was quantified
using the Affymetrix Human Genome U133A Array.
Pathway network interactions dataset

Network information was obtained from the National
Cancer Institute’s Pathway Interaction Database [12].

Gene expression analysis

Pathway consistency and pathway activity metrics were
calculated according to [12,21]. These measures treat
the pathway as a network of interactions and give the
network a score based on the expression levels of each
of the genes in the interaction and on the quality of the
interaction. The analysis takes into consideration the
specific type of interaction (such as inhibition or
promotion).

The activity metric is a measure of the likelihood that
the interaction occurs in the pathway. When taking a
pathway with two genes as input and one gene as out-
put, the algorithm calculates their probability of being in
an ‘up’ state (by taking into account the expression
levels of those genes in all the samples). The activity of
this pathway is the probability that this interaction is
‘active’, meaning the product of the probabilities that
the two genes are in the ‘up’ state. The consistency
metric is a measure comparing the expected versus
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actual expression of the interaction components,
obtained by calculating the probabilities (i) of an active
interaction, (ii) that the output gene is in an ‘up’ state,
and (iii) of the complementary event.

Survival analysis

Kaplan-Meier survival analysis was done on all pathway
measurements for all five datasets (by SPSS software,
SPSS Inc. Chicago, IL, USA), using clinical data (vital
status) to determine a pathway’s survival stratification
power. Log-rank tests were used to test the difference
between survival groups; in all analyses a P-value < 5.0
e was accepted as significant. This analysis was done
in order to identify pathways that could stratify prog-
nosis in all five datasets.

All values (pathway activity and consistency) were
clustered using K-means clustering to stratify the
patients into two distinct groups according to their
pathways values. Kaplan-Meier survival analysis was per-
formed using the groups that emerged from this K-
means clustering and using the clinical outcome data
(vital status). Pathways that showed significant Kaplan-
Meier P-values (< 0.05) were then tagged as successful
stratification metrics for prognosis. All the results were
then compared between the five datasets to identify
overlapping pathways.

Kaplan-Meier survival analysis was also performed on
all combinations of three drug sets; overall there were
249, 984 different combinations (constructed out of 64
drugs). In every iteration, the algorithm gathered all the
patients that received one of the three drugs in question
and calculated the Kaplan-Meier survival P-value for the
generated group. Combinations that are associated with
less than 20% of the patients were removed from the
analysis as being insufficient. All combinations with sig-
nificant P-values are shown in Additional file 1.

False discovery rate for the p38 pathway

To determine whether the behavior of the p38 pathway
across the five independent datasets was greater than
expected by chance, the survival times in each of the
five datasets were scrambled and randomly assigned to
each patient. We performed clustering using k-means
and calculated Kaplan-Meier log-rank P-values (as
described earlier). We performed this renormalization
five times to achieve a substantial sample (the results
are shown in Additional file 2).

Not a single pathway consistently stratified prognosis
in all five iterations in the five datasets. This demon-
strates a 0% chance to identify a common pathway in all
five different datasets and a 100% chance to find 0 path-
ways. Thus, the identification of the p38 pathway is
unlikely to occur by chance.
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Results

We found that the p38 network significantly and
robustly stratifies prognosis in all five datasets (Figure
1). Importantly, none of the genes in this pathway, by
themselves, show any statistical power in survival analy-
sis; that is, the gene components of the network, when
taken separately and out of the network context of the
other genes in the pathway, fail to provide biomedical
meaning. In addition, groups stratified by the network
analyses we present here do not show any correlation
with any clinical features. This furthers strengthens the
hypothesis that this network is intrinsically involved in
the development of GBM.

Pathway analysis

To utilize knowledge of network graph structure, we
applied methods for merging expression data with net-
work information [12]. These methods quantify expres-
sion behavior in specific subnetworks (such subnetworks
can be specific pathways or any other defined subnet-
work) and produce two metrics: pathway activity and
pathway consistency. In brief, a pathway’s activity is a
measure of how likely the interactions within a network
are to be active in the specific sample at hand. A sam-
ple’s pathway consistency measure is a measure of the
compatibility between gene expression abundance in
that sample and molecular description as detailed in the
pathway’s graph. Further details are given in [12].

To apply this network-based methodology, we used
gene expression data from all five datasets described
above and made use of these expression levels to deduce
pathway metrics. Each sample was thus re-represented
using its network metrics. This representation assigns
579 network metric scores (a score for each pathway in
the database) to each sample in every dataset. Network
information was obtained from The National Cancer
Institute’s Pathway Interaction Database [13]. We then
iterated across the set of samples, using the network
scores, to assign Kaplan-Meier P-values for each of the
pathways. This procedure allows us to rank each of the
pathways according to their ability to stratify patients
into prognosis groups. We then combined all results in
the five datasets in order to find overlapping pathways.

Following this procedure, we were able to identify one
robust pathway that stratified prognosis across all five
different sources of datasets; the p38 pathway demon-
strated consistent behavior across all datasets. Further,
this p38 network demonstrated highly significant bio-
marker abilities by stratifying prognosis. Figure 1 illus-
trates Kaplan-Meier survival across the dataset sources.

This pathway, when highly activated, associates with
poor prognosis. This is in agreement with previous
works that found that this pathway induces migration of
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Figure 1 Correlation between p38 pathway activity and patient survival. Kaplan-Meier curves generated according to values for the p38
pathway across all five datasets. Across the five panels, group 1 (blue line), which is associated with better prognosis, shows lower pathway
activity values and group 2 (green line) shows higher pathway activity values. The association of pathway metric levels with prognosis is highly
robust in this case, as it shows low P-values and consistent behavior across datasets.
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glioblastoma cells when it is highly activated [22]. The
pathway activity score is a value between 0 and 1 (see
above), and the p38 network, in the context of the GBM
samples studied, demonstrates highly variable values,
from 0.05 up to 0.79, which result from variability in
expression behavior of the genes in this network.
Despite the range of values, however, the network
metric remains robust enough to separate patients into
two distinct groups. Figure 2 illustrates the difference in
the p38 network metric between the two identified clini-
cal groups.

The false discovery rate calculated using the intersec-
tion of all five datasets (as described in Materials and
methods) was 0%, which means that identifying a single
robust pathway (out of 579 different pathways) that sig-
nificantly stratifies prognosis in five independent data-
sets could not occur by chance alone.

Copy number variation analysis

To further study the molecular characteristics of this
pathway, we made use of the intensive molecular fea-
tures available through TCGA, which provides genetic
information for each tumor sample. We analyzed copy

number profiles of the p38 pathway genes. Using a
Mann-Whitney U test, a non-parametric test that assess
whether two independent samples have equally large
values, we examined copy number aberrations in tumors
and matched normal samples to see if copy number var-
iations in these, for each specific gene, are independent
samples from identical continuous distributions with
equal medians, rather than the alternative that they do
not have equal medians.

Probe sets with an inferred log2 ratio of > 0.3 or <
-0.3 were classified as gains and losses, respectively. This
analysis revealed that 11 out of the 13 genes in this
pathway are highly targeted for copy number changes
(P-value < 0.05; Table 1). Five of the genes were signifi-
cantly amplified and six were deleted compared to the
normal samples. These results reveal that the pathway is
highly targeted by genomic variation, which may
account, in part, for the demonstrated robust connec-
tion with disease outcome.

miRNA analysis
miRNAs are known to be involved in the regulation of
transcription in a complex manner [23]. As TCGA
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Figure 2 hsa-miR-9 regulation of the p38 pathway. (a) Distribution of p38 signaling pathway activity levels across groups. Group 1 (blue,
higher survival rates) has low pathway activity, and group 2 (green, lower survival rates) has higher activity levels. This figure demonstrates the
large range in the activity levels between groups, and the distinct difference between them. (b) The p38 signaling network. Genes highlighted

p38 survival groups.

in blue are in the p38 signaling pathway, and the genes in red boxes are those found by PITA to be possibly targeted by hsa-miR-9. (c)
Correlation between hsa-miR-9 and p38 pathway levels. Group 1 (blue dots) has a significant, strong negative correlation between miRNA
expression levels and pathway activity while group 2 (green dots) has a lower correlation value. The groups presented here are based on the

provides quantification of miRNA abundance for many
samples, we were able to combine quantified network
metrics with abundance levels of 1, 510 miRNAs to
identify miRNAs that show significant correlation with
network behavior and can thus be further studied as
network control mechanism regulators.

Previous studies have shown the control function of
miRNAs over pathways [24-27]. miRNAs hold the abil-
ity to simultaneously target and regulate many cellular
pathways, the most noticeable of which control devel-
opmental and oncogenic processes. Notably, miRNA
processing defects also enhance tumorigenesis. Inter-
estingly, we were able to find significant negative cor-
relation (P-value < 0.0001) between the p38 network
and the miRNA hsa-miR-9. Further, gene sequences
revealed that 4 out of the 13 genes in the pathway
have a possible binding site for hsa-miR-9 (this analy-
sis was performed using PITA [28], a prediction algo-
rithm for potential miRNA targets). Possible binding
between hsa-miR-9 and genes within the p38 pathway
strengthen the hypothesis that miR-9 may indeed be a

key regulator over pathway behavior and may serve as
a potential therapeutic target for GBM patients.

Drug target analysis

Over the past 25 years and despite vigorous basic and
clinical studies, the median survival of patients with
GBM remains low. The dataset from TCGA contains a
significant body of clinical data that includes the type of
treatment each patient received.

Different from the single gene perspective, pathways,
constructed out of multiple genes that interact with one
another in a combinatorial manner, contribute to phe-
notype in a more complex manner. The key argument
here is that the function of a pathway is entirely defined
by molecular interactions that take place between its
components. Therefore, pathway targeting can be per-
formed in different ways; it could be directed towards
different key genes and still lead to similar phenotypes.
Specifically, the regulation of the p38 pathway by hsa-
miR-9 may be mimicked by different pharmaceutical
components already in use.
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Table 1 Copy number variation profile of the p38
pathway

Gene symbol Tumor Normal

Amplified genes
HSP27 21% 2%
CREB1 27% 16%
TCF3 14% 2%
ER8T 45% 6%
CDC25B 36% 20%

Deleted genes
MAPKAPK3 20% 11%
LSP1 31% 25%
H 37% 14%
YWHAZ 63% 27%
ALOXS 68% 7%
RAFT 13% 9%

Of the 13 genes in the p38 pathway, 11 show significant change (according
to Mann-Whitney U test) in copy number, amplification or deletion, between
the tumor and its matched normal sample across all patients.

To investigate if drug regimen does control this path-
way’s behavior, we identified drugs that target genes in
the p38 pathway and may lead to a phenotype similar to
the one induced by hsa-miR-9 activity. Data on drugs
administered to GBM patients in TCGA cover 64
unique drugs. Using DrugBank [29], a bioinformatics/
chemoinformatics resource that combines detailed drug
data with comprehensive drug target information, we
were able to filter these drug targets into two groups:
drugs that target genes that are part of the p38/mito-
gen-activated protein kinase-activated protein kinase
(MAPKAP) pathway; and drugs whose targets are not
included in the p38/MAPKAP pathway (Additional file
3). Using this simple classification, we tagged six drugs
that target genes in the p38/MAPKAP pathway. Table 2
lists these drugs and their associated target genes,
together with the pathway of which the genes are mem-
bers. To learn about the clinical relevance of this phar-
maceutical intervention, we divided patients into two
groups: group 1, whose members received treatment
with one of the six drugs that target the network; and
group 2, whose members did not receive treatment with
drugs that target the network. Using these groups as the

Table 2 Glioblastoma drug targets
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basis for a Kaplan-Meier analysis, we see a highly signifi-
cant (P-value < 0.0001) prognosis stratification (Figure
3). In clinical terms, this means that patients who were
administered one of the six drugs that target genes in
the p38/MAPKAP pathway had significantly higher sur-
vival rates than patients who were not: patients in group
1 had an average survival time of 896 days with a med-
ian survival of 691 days, while patients in group 2 had
an average survival time of 433 days and a median survi-
val time of only 310 days.

GBM patients usually receive a broad spectrum of drugs
from chemotherapy to hormonal therapy. All of the
patients in this study received several drug regimens
with no pattern of combination; the only common
denominator were the six drugs described above. To
validate that the combination of drugs we found is
indeed the most significant one, we performed survival
analysis on all combinations of sets of three drugs, and
a Kaplan-Meier test was performed across all 249, 948
possible combinations (significant P-values are given in
Additional file 1). Interestingly, after removing all com-
binations that are associated with less than 20% of the
patients, we obtained 577 combinations that significantly
stratified prognosis. Most importantly, however, the
combination of drugs that targets the p38 pathway was
more significant than that found by the exhaustive
search.

The significant difference in survival times and the
high significance in prognosis stratification between
treatments that target the p38 pathway and those that
do not strengthen the hypothesis that the p38 network
is critical in the progression of GMB and perhaps in its
development. Specific care should be given in view of
these results with regard to treatments used in future
clinical studies.

Discussion

Auffray, Chen and Hood recently suggested that ‘Sys-
tems approaches will transform the way drugs are devel-
oped through academy-industry partnerships that will
target multiple components of networks and pathways
perturbed in diseases’ [30]. The work described here is
an effort to take up this challenge.

Drug name Target Pathway

Accutane RARA MAPK inactivation of SMRT co-repressor

CCNU STMN4 Signaling mediated by p38-gamma and p38-delta pathway
Celebrex COX2 Signaling mediated by p38-alpha and p38-beta pathway
Cis-retinoic acid RARA MAPK inactivation of SMRT co-repressor

Sorafenib RAF1 p38 signaling mediated by MAPKAP kinases

Tamoxifen ESR1 Signaling mediated by p38-alpha and p38-beta pathway

The table lists 6 of the 69 drugs in TCGA clinical dataset that target genes in the p38/MAPKAP pathway. MAPK, mitogen-activated protein kinase.
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Merging datasets from different studies leads to iden-
tification of robust survival factors, and applying tests
that predict clinical outcome for patients based on RNA
abundance in tumors is likely to increasingly affect
patient management, heralding a new era of persona-
lized medicine [31]. The consortium that is behind
TCGA is the first to provide the community with popu-
lation-sized, high-throughput molecular classification of
diseases. This unique data resource, large portions of
which are publicly available, offers a never before seen
view of a disease’s landscape.

Cancer is a disease of genomic alterations; changes in
DNA sequence and genomic variations in copy number
together provide a scaffold for the development and
progression of malignancies. GBM is no different,
although the clinical value of most GBM-associated
molecular aberrations in terms of their significance for
diagnosis and prognosis or as predictive molecular mar-
kers has remained unclear [32]. A better understanding
of the molecular characteristics and biology of GBM
may help improve treatment and identification of cellu-
lar factors that drive prognosis, and may also provide
clues to novel treatments.

The genome-wide quantification of gene expression
levels allows us to make the transition from single-gene-
based research to molecular network-based analysis.
Genome-wide details of genomic variation facilitate
association of gained network knowledge with copy
number variation, and abundance levels of miRNAs
further provide a means to observe connections between

such small RNAs, control networks and genomic varia-
tion. Finally, proper documentation of clinical data
enables the rendition of network and molecular findings
into translational medicine.

The results we present here demonstrate that these
molecular networks, when scrutinized using the proper
perspectives, enable associations between clinical and
network modification data by stratifying patients’ prog-
nosis according to the molecular characterization of
their tumors. Specifically, by first identifying the p38
transcription network as critical in disease outcome, by
following this identification to uncover a possible regu-
latory mechanism involving the miRNA hsa-mir-9, and
to finally match drug response to this network behavior,
we reveal the clinical relevance of the p38-miR9 network
and call for continued clinical scrutiny of it.

As we see here, patients in which hsa-miR-9 controls
the p38 network in an efficient manner have better prog-
nosis, and patients in which this hsa-miR-9 control fails
have poorer prognosis. Interestingly, the same phenom-
enon is evident when considering drug control over the
network; patients that receive drugs that target and inac-
tivate the network have better prognosis, perhaps in a
similar manner to that confered by hsa-miR-9. To sup-
port pathway behavior and to demonstrate its robustness
as a clinical biomarker, we demonstrate that the same
network behavior associates patients with outcome,
regardless of specific batches of experimental procedures.

Through better understanding of the pathway
mechanisms and the interactions that undergo changes,
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we may find targets for new treatments. The fact that
the pathway we identified did not correlate with gender,
age or chemotherapy status and was found in all five
datasets strengthens the hypothesis that this pathway is
a core mechanism of GBM.

Conclusions

Integrating multidimensional, disease-specific, high-
throughput data in the context of RNA control networks
and their relevant drug responses provides an initial
response to the biomedical community’s appeal to identify
pathways critically involved in disease outcome (for exam-
ple, [33]). The transition from gene-disease to network-
disease thinking is in need of further impetus. A careful
clinical follow-up on findings such as those presented
here, combined with careful molecular investigation of
gene control mechanisms, such as the relations suggested
here, could lead to the discovery of novel biomarkers and
novel therapies. Further, an important point raised by
Emmert-Streib and Glazko [34] is that the network as a
‘conceptual framework’ is, in and of itself, a way of think-
ing that may become an important systems biology para-
digm in medical thinking. Network target identification,
together with novel means to construct drug-target net-
works [35], are to advance rational drug discovery.

Additional material

Additional file 1: Table S1 - the most significant three-drug
combinations with corresponding P-values. The P-value represents
significance with regard to stratification of prognosis according to
Kaplan-Meier survival analysis.

Additional file 2: Table S2 - all drugs with their corresponding gene
targets. This table also indicates whether there is a connection or not
between a drug and the p38 pathway, and provides the number of
patients who received each drug.

Additional file 3: Figure S1 - heat maps describing the false
discovery rate analysis. The five heat maps illustrate the five iterations
that were performed. Every row represents a different pathway (overall
579 pathways), and columns represent the five datasets tested. A black
line indicates a significant P-value (< 0.05) in Kaplan-Meier survival
analysis. The heat map at the bottom shows the actual analysis that was
performed with the p38 pathway as significant for survival in all five sets.
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mitogen-activated protein kinase-activated protein kinase; miRNA: microRNA;
TCGA: The Cancer Genome Atlas.
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