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Sample-level enrichment analysis unravels shared
stress phenotypes among multiple cancer types
Gunes Gundem1,2* and Nuria Lopez-Bigas1,3*

Abstract

Background: Adaptation to stress signals in the tumor microenvironment is a crucial step towards carcinogenic
phenotype. The adaptive alterations attained by cells to withstand different types of insults are collectively referred
to as the stress phenotypes of cancers. In this manuscript we explore the interrelation of different stress
phenotypes in multiple cancer types and ask if these phenotypes could be used to explain prognostic differences
among tumor samples.

Methods: We propose a new approach based on enrichment analysis at the level of samples (sample-level
enrichment analysis - SLEA) in expression profiling datasets. Without using a priori phenotypic information about
samples, SLEA calculates an enrichment score per sample per gene set using z-test. This score is used to determine
the relative importance of the corresponding pathway or module in different patient groups.

Results: Our analysis shows that tumors significantly upregulating genes related to chromosome instability
strongly correlate with worse prognosis in breast cancer. Moreover, in multiple tumor types, these tumors
upregulate a senescence-bypass transcriptional program and exhibit similar stress phenotypes.

Conclusions: Using SLEA we are able to find relationships between stress phenotype pathways across multiple
cancer types. Moreover we show that SLEA enables the identification of gene sets in correlation with clinical
characteristics such as survival, as well as the identification of biological pathways/processes that underlie the
pathology of different cancer subgroups.

Background
Complex genetic diseases such as cancer are character-
ized by phenotypic heterogeneity reflected at the mole-
cular level in the form of variations in the activity of
certain signaling pathways. In support of this notion,
recent cancer genome studies point to the idea that dis-
tinct types of alterations in different genes tend to accu-
mulate in pathways central to the control of cell growth
and cell fate determination [1-4]. It has been proposed
that expression signatures indicative of activity status of
pathways can be used to define specific molecular phe-
notypes that characterize individual tumors [5]. A num-
ber of methods have been developed to analyze the
transcriptomic changes specific to tumor samples and
identify patterns of pathway deregulation that differenti-
ate distinct patient subgroups [6-12]. These

methodologies are based on the idea that analysis of
pathway-level differences among samples could have an
advantage of reflecting the true oncogenic phenotypes
achieved through consistent expression of a set of genes
compared with the acute expression of a single gene.
However, each of these methods has been designed to
address specific questions and, thus, have limited use for
a more general application. For instance, that of Xia and
Wishart is specific to metabolomic data [9], and that of
Bild et al. [6] requires cell line perturbation data in a
platform comparable to that of the tumor data. The
methodologies developed by Edelman et al. [7], Verhaak
et al. [8] and Yi et al. [10] require a priori information
of phenotypic classification of the samples. In this
manuscript, we propose a new methodology, sample-
level enrichment analysis (SLEA), that overcomes these
limitations and has a more general use for enrichment
analysis (EA) at the level of samples. The pathways or
modules are represented as lists of genes, which can be
obtained from literature or online repositories such as
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Gene Ontology, as well as determined through other
high-throughput assays. Without using a priori phenoty-
pic information about the samples, SLEA calculates an
enrichment score per sample per gene set using z-test.
This score is used to determine the relative importance
of the corresponding module or pathway in different
patient groups. We use this approach to test the hypoth-
esis described in the following paragraph.
It has been proposed that, during the progression of

cancer, the capacity of cancer cells to survive in the
hypoxic and nutrient-deprived tumor microenvironment
is a crucial step towards malignancy [13]. Adaptation to
survival under these stress signals can override normal cel-
lular stress responses, leading to the persistence and pro-
gression of the carcinogenic phenotype. Different types of
stress insults, such as senescence-induced, metabolic, and
oxidative, represent a common set of oncogenesis-asso-
ciated cellular barriers that cancer cells must tolerate
through stress support pathways [14]. For example, to
overcome the senescence barrier, malignant cells have
been proposed to deregulate proteins in senescence-med-
iating pathways such as Rb signaling. These alterations are
collectively referred to as the stress phenotypes of cancers
[14]. In this study, we asked if stress phenotypes of tumor
samples could be used to explain their prognostic differ-
ences. To this end, we used publicly available gene expres-
sion profiles of patient cohorts of different types of
cancers and gene signatures related to different stress phe-
notypes. We performed EA in each tumor sample in each
patient cohort in order to detect differentially enriched
modules. We show that EA with a chromosomal instability
(CIN)-related gene signature has prognostic power in
some cancer types but not in others. In all cancer types,
however, patient sup-groups positively enriched for the
same gene set shared key properties related to their stress
phenotypes, indicating dependence of these tumors in cer-
tain stress support pathways.

Materials and methods
Transcriptomic data
We collected 11 publicly available expression profiling
datasets from the Gene Expression Omnibus (GEO) and
TCGA data portal [1,6,15-23] (Table 1). Each dataset
consists of microarray expression data for primary
tumors. We selected as datasets to include those that
are on a single-channel platform, have survival informa-
tion and contain more than 81 patients (see ‘Robustness
analysis’ section below). The sample number varies from
111 to 766 across all datasets. Before EA, the data were
pre-processed as follows (raw data were downloaded for
all datasets). For Affymetrix data (9/11 datasets), CEL
files were processed and normalized using the rma func-
tion in the ‘affy’ package [24] from R Bioconductor [25].
The result of normalization is log2-transformed absolute

readings. For non-Affy experiments (2/11), expression
data were normalized using the vsn normalization
method from R Bioconductor [25]. After normalization,
the input data were obtained by median-centering the
expression value of each gene across all the samples
(row median) and dividing the value by the standard
deviation (row standard deviation). The expression value
obtained in this step is a measure of how much a gene
is expressed in a sample compared to all the other sam-
ples in the dataset. Hence, the heterogeneity and num-
ber of the tumor samples in the dataset affect the
relative expression values. The stratification of the sam-
ples based on their enrichment patterns and the inter-
pretation of this stratification, therefore, is sensitive to
the clinical characteristics of the samples in the dataset.
For example, the meaning of the median-centered
expression value is different if the dataset includes nor-
mals in addition to cancer samples compared to if it
includes tumor samples only. The selection of datasets
should be done taking into account the type of question
to be addressed. With this in mind, in our study, we
include datasets that contain primary tumor samples
only in order to answer the question of which modules/
pathways are differentially enriched among different
groups of samples of the same tumor type. All datasets
used are provided on the SLEA website [26].

Gene modules
Gene modules (gene sets) were collected from Gene
Ontology [27], MSigDB [28] and the supplementary

Table 1 Tumor profiling data sets used in the study

Name Tumor type
(s)

Sample
number

Source

Ivshina et al. 2006
[21]

Breast 289 GEO: GSE4922

Pawitan et al. 2005
[19]

Breast 159 GEO: GSE1456

Wang et al. 2005
[15]

Breast 286 GEO: GSE2034

Kim et al. 2010 [20] Bladder 257 GEO: GSE13507

TCGA 2008 [1] Brain 400 TCGA:
glioblastoma

Tothill et al. 2008
[16]

Ovary 284 GEO: GSE9891

Crijns et al. 2009
[22]

Ovary 416 GEO: GSE13876

TCGA, 2011 [23] Ovary 521 TCGA: ovarian
serous

Bild et al. 2006 [6] Lung 112 GEO: GSE3141

Raponi et al. 2006
[18]

Lung 131 GEO: GSE4573

Smith et al. 2010
[17]

Colon 233 GEO: GSE17538

Each dataset contains a number of patients with survival information. The
‘Source’ column gives the GEO accession id of the experiment.
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datasets of the indicated publications (Table 2). Using
Gitools [29], we performed overlap analysis between the
modules used. Some modules from Gene Ontology and
MsigDB have high overlap (Jaccard index > 0.25) (Figure
S1 in Additional file 1). We interpreted the results tak-
ing this into consideration. All modules used are pro-
vided on the SLEA website [26].

Sample-level enrichment analysis
EA for each sample in each dataset was performed using
Gitools [29,30] (Figure 1b). Gitools is a java application
for genomic data analysis and visualization the main dis-
tinctive feature of which is that data and results are
represented using interactive heat maps. Among other
tests, Gitools provides different statistical methods to
assess the enrichment of gene modules in high-through-
put genome-wide profiling data. The main advantage of
Gitools for the type of analysis presented in this manu-
script is that it can perform many EAs (one per sample
and module in this case) in one single run and the
results are provided in the form of interactive heat

maps, which are useful to compare the results between
different samples and different modules. Modules can
be literature-based as well as consist of sets of genes
obtained through analysis of other types of genome-
wide studies. In this study, we used the z-score method
as described previously [31]. This method compares the
mean (or median) expression value of genes in each
module to a distribution of mean (or median) of 10, 000
random modules of the same size drawn from the
expression values for the same sample. The result of
this EA is a z-score, which is a measure of the difference
between the observed and expected mean (or median)
expression values for a gene set. The P-value related to
each z-score is automatically corrected for multiple test-
ing using the Benjamini-Hochberg method [32]. We
define modules as ‘positively enriched’ in a sample if
they have a positive z-score and a corrected P-value <
0.05, and ‘non-enriched’ otherwise. The results are
visualized as heat maps of z-scores in Gitools, which is
useful for the identification and interpretation of enrich-
ment patterns among samples.

Table 2 List of modules extracted from expression data

Name Description Number of
genes

Reference

CIN genes A signature of genes upregulated in chromosomal instability and predictive of clinical
outcome

70 [35]

Rb-E2F targets Rb-E2F interaction network built computationally using protein interaction databases 147 [43]

Down in senescence
bypass

Genes downregulated in fibroblasts that bypass RAS-induced senescence 3, 030 [37]

Up in senescence bypass Genes upregulated in fibroblasts that bypass RAS-induced senescence 2, 714 [37]

Down in senescence Genes downregulated in fibroblasts in replicative senescence 6, 122 [42]

Up in senescence Genes upregulated in fibroblasts in replicative senescence 6, 048 [42]

Pujana ATM network Computational network around Atm built using expression profiling and functional and
genomic data

1, 041 [45]

Pujana BRCA1 network Computational network around Brca1 built using expression profiling and functional and
genomic data

1, 198 [45]

Pujana BRCA2 network Computational network around Brca2 built using expression profiling and functional and
genomic data

305 [45]

Pujana CHEK2 network Computational network around Chek2 built using expression profiling and functional and
genomic data

559 [45]

Pujana XPRSS network Computational network around Xprss built using expression profiling and functional and
genomic data

118 [45]

Bortezomib treatment
DOWN

Genes downregulated in cancer cells treated with bortezomib 1, 769 [47]

Bortezomib treatment UP Genes upregulated in cancer cells treated with bortezomib 1, 278 [47]

Eeyarestatin treatment
DOWN

Genes downregulated in cancer cells treated with eeyarestatin 2, 170 [47]

Eeyarestatin treatment UP Genes upregulated in cancer cells treated with eeyarestatin 2, 062 [47]

Downreg in PI3K-hyper Genes downregulated in Rb-deficient breast cancer cell line treated with rapamycin 100 [49]

Upreg in Pi3K-hyper Gene upregulated in hormone therapy-resistant breast cancer 1, 475 [49]

PTEN mutation signature PTEN mutation signature upregulated in PTEN-mutant breast cancer 592 [50]

Up in TSC1 mTORC1 Genes upregulated in Tsc1-/- mutant versus WT MEFs 167 [51]

Down in TSC1 mTORC1 Genes downregulated in Tsc1-/- mutant versus WT MEFs 101 [51]

All the modules extracted from gene expression profiling data and used in the study. MEF, mouse embryonic fibroblast; WT, wild type.
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Survival analysis
We used the ‘coxph’ function from the ‘survival’ package
of R [25] (Figure 1c). In survival analysis with the CIN
signature, the survival data of the samples with positive
enrichment for the signature (positive z-scores with cor-
rected P-value < 0.05) are compared to all the rest of
the samples (non-enriched) in the dataset. For the survi-
val analysis related to upregulation of the two-gene sig-
nature (CDKN2A and MKI67) [33], we compare the

samples with an expression value greater than the stan-
dard deviation of the row for both genes to all the rest
of the samples in the dataset.

Web server
To facilitate the representation and interpretation of the
results generated by our analyses, we created a web ser-
vice using Onexus [34] that allows navigation of all the
heat maps and details of the statistical results for each

EP

Figure 1 General schema of the approach. First, module and expression data repositories are created. (a) Left: gene modules were obtained
from a number of sources such as Gene Ontology and MSigDB as well as from expression datasets listed in Table 2. Right: high-throughput
expression profiling experiments of tumor samples with clinical information were normalized by median-centering the expression value of each
gene across all the samples and dividing the value by the standard deviation. In the heat map, purple color indicates low expression while
yellow means high expression. (b) The first step in the pipeline is sample-level enrichment analysis (SLEA) of the dataset with each of the
modules (M) in each of the datasets (D). (c) The second step is survival analysis according to the enrichment pattern (EP) for a module. (d) The
results of the enrichment analysis (EA) can be visualized in Gitools as heat maps. Red indicates significant upregulation of the module while blue
indicates significant downregulation. Grey is for non-significant results. GOBP, Gene Ontology biological process. (e) Differentially enriched
modules are studied for their correlation to some clinical feature, in this case, survival. Shown here are Kaplan-Meier curves of samples with two
different enrichment patterns.
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of the dataset and modules analyzed along with the
datasets included in the analysis [26].

Technical consideration of SLEA and robustness analysis
Some considerations of the SLEA approach as presented
here are important to take into account. First, the z-test
requires normality on data. Since SLEA uses the distri-
bution of means of random sets of genes, due to the
central limit theorem, even if the expression data do not
follow normal distribution, the distribution of the sam-
ple mean is normal provided that the number of permu-
tations is large (we use 10, 000 permutations). The
distribution of the sample median, on the other hand,
may not be normal, although for large numbers of per-
mutations it is usually close to it. However, the median
is a measure more robust to outliers; hence, we per-
formed the same EAs with sample mean and median
separately and compared the results. The z-scores
obtained with the different test statistics are almost
identical (r = 0.99) (Figure S2 in Additional file 1). We
use the median for all the plots and results of EA shown
in the manuscript.
The second important consideration is the robustness

of SLEA with regard to changes in the cohort and how
it is affected by the sizes of the datasets (that is, the
number of samples included). To assess how this influ-
ences the results obtained with SLEA and to identify the
number of samples under which our methodology
works best, we devised a random sampling procedure
(Figure S3 in Additional file 1). Using three datasets
(Table 1), GSE4922 ([GEO:GSE4922]; breast cancer
dataset with 289 tumor samples), TCGA-OV (ovarian
cancer dataset with 521 samples) and GSE4573 ([GEO:
GSE4573]; lung cancer dataset with 131 samples), we
generated different populations of random datasets with
the same number of samples. The sample size ranged
from 11 to 201 with an increment of 10 for GSE4922
[GEO:GSE4922] and TCGA-OV datasets. For the smal-
lest dataset, it was from 11 to 111 with an increment of
10. Each population contained 100 datasets producing a
total of 2, 000 datasets for GSE4922 [GEO:GSE4922]
and TCGA-OV and 1, 100 datasets for GSE4573 [GEO:
GSE4573] (Figure S3 in Additional file 1). For each of
those random datasets we performed median centering
followed by the median z-test EA for the CIN signature.
Next we performed correlations of the obtained z-scores
for each pair of random datasets in each population and
plotted box-and-whisker plots of correlation coefficients
for each of the dataset sizes (Figure S3 in Additional file
1). This analysis shows that, for datasets with more than
71 samples, the correlations are always higher than 0.99
(Figure S4 in Additional file 1). We also did a t-test
comparing the z-scores of all the samples in a popula-
tion to the z-scores the same sample has in the

population with the greatest number of samples (201
samples for GSE4922 [GEO:GSE4922] and TCGA-OV
and 111 for GSE4573 [GEO:GSE4573]). This analysis
shows that the proportion of samples that are signifi-
cantly different (t-test corrected P-value < 0.05) is less
than 0.05 for sample sizes greater than 81. In summary,
we can conclude that SLEA results are highly robust for
datasets with 81 or more samples.

Results and discussion
In this study, we aim to demonstrate the use of the
SLEA approach by detecting the biological processes
underlying the differences between clinically distinct
patient subgroups. To do this, we performed SLEA
using Gitools [29] for 11 cancer datasets with various
relevant gene sets (Tables 1 and 2). Gitools provides
two main advantages for this type of analysis, i) one sin-
gle run of Gitools is enough to perform EA for a large
number of samples and modules, and ii) the results are
shown in the form of an interactive heat map, which
facilitates the comparison between samples and gene
sets, and the interpretation of the results. For the sake
of clarity and space considerations, we focus on the
results for one breast cancer dataset (GSE4922 [GEO:
GSE4922]; Table 1) and we point to similarities with
and differences from the rest of the datasets, for both
breast and other cancer types. The results of the 11
datasets along with the statistical details are accessible
at the web service [26] and some results are shown as
supplementary figures in Additional file 1.

Stratification of patient cohorts in breast cancer
Focusing on the three breast cancer datasets, we first
aimed to stratify the tumors in each cohort by perform-
ing EAs with a CIN-related gene signature previously
shown to predict clinical outcome in multiple tumor
types [35]. In all the datasets, based on the EA results,
we separated the tumors into two groups: positively
enriched (positive z-scores with corrected P-value <
0.05) and non-enriched (all the rest of the samples that
did not satisfy the criteria) (Figure 2; Figure S5 in Addi-
tional file 1; online supporting material [26]). Subse-
quent survival analysis showed that the first group had
worse survival than the second group in all the breast
cancer datasets analyzed (Figure 2b; Figure S5 in Addi-
tional file 1). Moreover, the tumors in the first group
coincided with more aggressive subtypes of breast can-
cer (luminal B and basal-like) [36] (Figure S5 in Addi-
tional file 1) and p53 mutation carriers [36] (Figure 2a).
These results show that our EA approach can be used
to stratify patients with respect to a clinical property, in
this case survival. We refer to the tumors with signifi-
cant upregulation of the CIN signature as ‘CIN-positive’
in the rest of the manuscript.

Gundem and Lopez-Bigas Genome Medicine 2012, 4:28
http://genomemedicine.com/content/4/3/28

Page 5 of 15



CIN-positive tumors activate a senescence-bypass
transcriptional program
Senescence is an important tumor suppressive barrier to
the progression of cancer [37-41]. Molecular markers of
senescence are observed in pre-malignant lesions while
they are lost in the malignant counterparts [37-41].
Prompted by this idea, we set out to compare the CIN-
positive tumors to the non-enriched tumors in terms of
their expression of senescence-related transcriptional
programs. We performed EA with genes that are differ-
entially regulated in fibroblasts undergoing replicative
senescence (with the modules named ‘down and up in
senescence’) [37] and in fibroblasts that bypass RAS-
induced senescence (with the modules named ‘down
and up in senescence-bypass’) [42]). Indeed, in all breast
cancer datasets, the primary tumors with the CIN signa-
ture were enriched for the senescence-bypass-related
transcriptional program while they exhibited expression

patterns opposite to that observed during senescence
(Figure 2; online supporting material [26]). Furthermore,
we checked the expression level of the genes CDKN2A
and MKI67, biomarkers indicative of an abrogated
response to senescence-inducing stimulus [33]. These
markers were previously shown to indicate compro-
mised Rb signaling and predict subsequent tumor events
in breast cancer patients diagnosed with ductal carci-
noma in situ [33]. Indeed, some of the CIN-positive
tumors displayed concomitant over-expression of
CDKN2A and MKI67 together with Rb targets CCNE1
and E2F3 (Figure 2; online supporting material [26]),
indicating deregulation of the Rb pathway. As a better
measure of Rb signaling status, we used a set of genes
repressed by Rb-E2F (with the module name ‘Rb-E2F
genes’) when Rb signaling is functional [43]. EA with
this gene signature confirmed that, although the overlap
between the two signatures is low (Jaccard index =
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Figure 2 Enrichment with the CIN signature reflects the response status to oncogene-induced stress and has prognostic power in
breast cancer. (a) Heat map of tumor samples as columns and genes or modules as rows. Enrichment with gene modules is shown with
colors from blue (downregulation) to red (upregulation) while gray values indicate no significant deviation from the expected median value.
Samples are ordered according to the z-score of the chromosomal instability (CIN) signature. (Note that a sample might be insignificant (shown
with gray) even if it has a z-score greater than the adjacent non-gray sample. This is because multiple testing correction is done for each sample
independently.) Expression levels of genes are shown in colors from purple (low expression) to yellow (high expression). The samples with
upregulation of the CIN signature include those that upregulate CDKN2A with concomitant down-regulation of RB1. Deregulation of Rb signaling
in these samples is reflected in their over-expression of the Rb-E2F target genes CCNE1 and E2F3. These samples show a transcriptional program
opposite to what is observed in senescent cells, indicating that they activated transcriptional programs indicative of senescence bypass. Shown
is a breast cancer dataset by Ivshina et al. [21] (289 samples). (b) Kaplan-Meier curves for breast cancer patients. The red curve is for the samples
with high expression of CKDN2A and MKI67 (lower panel) and positive enrichment of the CIN gene signature (upper panel). The black curves are
for the rest of the samples in the dataset. It was shown that the concomitant expression of CDKN2A and MKI67 is related to impairment of the
Rb pathway, hence to subsequent tumor events in ductal carcinoma in situ of the breast. The CIN gene signature has stronger prognostic power
than the two-gene signature.
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0.22), CIN-positive breast tumors have positive enrich-
ment for Rb-E2F targets, and thus have signs of com-
promised Rb signaling (Figure 2; online supporting
material [26]). All these results indicate that CIN-posi-
tive tumors have activated transcriptional programs
indicative of an abrogated response to senescence.
Finally, we compared the prognostic power of the CIN

signature to that of concomitant overexpression of
CDKN2A and MKI67 (positive normalized expression
values for both genes in the same sample) [33]. As seen
in Figure 2 (Figure S5 in Additional file 1; online sup-
porting material [26]), the CIN signature is more infor-
mative than the two-gene signature (smaller P-values).
As many samples with upregulation of the CIN signa-
ture have p53 mutations, we sought to determine if the
prognostic power of the CIN signature is independent
of p53 mutation status. We performed survival analysis
in the datasets with p53 mutation status information
excluding the tumors with p53 mutations. Of 289

tumors, 189 had wild-type p53 in the GSE4922 dataset
[GEO:GSE4922]. In breast cancer, enrichment with the
CIN signature is strongly related to bad prognosis even
among samples with wild-type p53, indicating that
indeed the predictive power of this signature is indepen-
dent of p53 mutation (Figure S6 in Additional file 1).

Stress phenotypes of the CIN-positive tumors
Next we performed EA with all Gene Ontology biologi-
cal process terms in order to identify the biological
properties characterizing CIN-positive tumors. These
tumors significantly downregulate genes related to pro-
cesses such as ‘cell communication’ and ‘wound healing’
(Figure 3; online supporting material [26]). This is in
agreement with previous observations showing that the
upregulation of a wound response signature is inversely
correlated with good prognosis [44].
On the other hand, some categories such as ‘cellular

response to DNA damage’, ‘protein folding’ and

-10 10
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cell cycle
cellular response to DNA damage stimulus
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DNA replication
mitosis
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amino acid activation
proteosomal protein catabolic process
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ribosome biogenesis
RNA metabolic process
RNA splicing
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pentose metabolic process
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GSE4922: breast, Ivshina et al. 2006 (289 tumors)

Figure 3 Enrichment analysis of Gene Ontology biological process terms in tumors with upregulation of the CIN signature. Heat map
of tumor samples as columns and Gene Ontology biological process terms as rows. Color codes are as described in Figure 2. The top part of
the heat map shows the p53 mutation and estrogen receptor (ER) status in each sample. The samples with upregulation of the CIN signature
significantly upregulate genes annotated with ‘cell cycle’, ‘DNA replication’ and downregulate genes related to ‘cell adhesion’, ‘cell
communication’, and so on.
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‘translation’ were significantly upregulated. We argue
that this transcriptional program can be explained by
non-oncogene addiction, which is defined as the depen-
dence of cancer cells on stress support pathways that
are not themselves tumorigenic [14]. Most of the differ-
entially enriched Gene Ontology terms can be attributed
to one of these stress support pathways: ‘DNA damage
and replicative stress’, ‘mitotic stress’, ‘proteotoxic stress’
and ‘metabolic stress’ (Figure 4; online supporting mate-
rial [26]). The deregulation of these pathways might be
indicative of non-oncogenic vulnerabilities of the CIN-
positive tumors.

Dependence on DNA damage signaling
We performed EA with selected gene modules from
MSigDB. CIN-positive tumors, which are positively
enriched for sets of genes related to mitotic checkpoint,
anaphase- promoting complex, DNA damage response,
are also enriched for networks of genes built computa-
tionally around key repair proteins (MSigDB modules
from Pujana et al. [45]) (Figure 5; and online supporting
material). Moreover, compared to other tumor samples,
these tumors have higher expression levels of DNA
repair/DNA damage response genes, including PARP1/2
and BRCA1/2 (Figure 5; online supporting material).
Higher expression of these genes indicates that these
tumors are dependent on the DNA damage response as
explained by non-oncogene addiction. This observation
also points to ideas for specialized therapeutic strategies
for these aggressive tumors, which are mainly basal-like
and luminal B, based on the possible addiction of these

tumors to DNA repair pathways. Indeed, very recently,
it was shown that combination therapy of iniparib (a
poly (ADP-ribose) polymerase (PARP) inhibitor) and
chemotherapy, without significant increased toxic
effects, improved the clinical benefit and survival of
patients with metastatic triple-negative breast cancer, a
majority of which are also basal-like [46].

Dependence on proteotoxic stress mechanisms
We assessed the prevalence of proteotoxic stress
mechanisms by performing an EA with sets of genes
deregulated in cancer cell lines treated with bortezomib
and eeyarestatin [47]. CIN-positive tumors significantly
upregulated genes that increase in expression in
response to both bortezomib, a proteasome inhibitor,
and eeyarestatin, an inhibitor of endoplasmic reticulum-
associated protein degradation (Figure 6; online support-
ing material [26]). At the gene level, these samples upre-
gulated genes that are members of the chaperonin-
containing complex and heat shock proteins. Of these
genes, HSP90 complex is already a molecular target in
cancer [48].

Dependence on phosphoinositide 3-kinase/Akt signaling
CIN-positive tumors were also positively enriched for
metabolism-related categories such as ‘nucleotide meta-
bolism’, ‘generation of precursor metabolites and
energy’, ‘electron transport chain’, ‘ribosome biogenesis’,
and so on. Hence, we focused on a specific pathway that
plays a crucial role in the regulation of cellular metabo-
lism and its coupling to proliferation. We collected gene
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Figure 4 Tumors with upregulation of the CIN signature have distinctive stress phenotypes. Heat map of tumor samples as columns and
Gene Ontology biological process terms as rows. Color codes are as described in Figure 2. The top part of the heat map shows the p53
mutation and estrogen receptor (ER) status in each sample. The samples with up-regulation of the CIN signature significantly upregulate genes
related to important stress support mechanisms such as ‘mitotic stress’, ‘proteotoxic stress’, and so on.
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sets related to the phosphoinositide 3-kinase (PI3K)/Akt
pathway and its downstream mammalian target of rapa-
mycin (mTOR) signaling: ‘genes deregulated in PI3K-
hyper-activated, hormone resistant cells’ [49] (modules
named ‘upreg and downred in PI3K-hyper’), ‘PTEN
mutation signature’ [50] and genes deregulated in TSC1
knockout cells (’upreg in downreg in TSC1-ko’) [51].
Figure 7 shows that the transcriptional program of
tumors with the CIN signature is enriched for hyper-
activated PI3K signaling as well as for genes upregulated
in PTEN mutant cells. mTOR signaling activates the
expression of genes encoding nearly every step of

glycolysis and the pentose phosphate pathway, as well as
critical enzymes in the de novo synthesis of sterols, iso-
prenoids, and fatty acids [51]. We used modules of
genes regulated by mTORC1, a molecular complex that
contains mTOR [51], to check if indeed the CIN-posi-
tive tumors also have activation of processes down-
stream of mTOR. As expected, the genes upregulated by
mTORC1 are also upregulated in these samples (Figure
7; online supporting material [26]). mTORC1 promotes
the expression of HIF1A [51]. In agreement with this,
CIN-positive tumors overexpress HIF1A along with its
target vascular endothelial growth factor (Figure 7;

DNA repair
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Figure 5 Tumors with upregulation of the CIN signature are addicted to DNA repair. (a) Heat-map of tumor samples as columns and
genes or modules as rows. Color codes are as described in Figure 2. The top part of the heat map shows the p53 mutation and estrogen
receptor (ER) status in each sample. The samples with up-regulation of the CIN signature significantly upregulate genes annotated with DNA
damage/repair-related categories and gene signatures related to DNA damage signaling network around ATM-BRCA1 (from MSigDB). (b)
Selected genes involved in DNA damage repair.
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online supporting material [26]). As mTORC1 has been
shown to induce the transcription of genes involved in
important metabolic pathways [51], we checked the
mRNA levels of enzymes from the glycolysis and pen-
tose phosphate pathway. Indeed, most of these enzymes
are upregulated in CIN-positive tumor samples (Figure
7; online supporting material [26]). Together these
observations indicate that the CIN-positive tumors have
activated signaling through mTOR. These results sug-
gest two things. First, these tumors might be addicted to
pathways related to metabolic stress in addition to DNA
damage stress. If this is indeed the case, then, secondly,
inhibitors of mTOR, such as rapamycin, might be useful
for the treatment of these cancers. The observations in
this and the previous section show that sample-level EA
can help pinpoint pathway dependencies in different
subgroups of tumors, which can be used to design
rational therapeutic approaches specific to each group of
patients.

CIN-positive tumors indicate worse prognosis in breast
cancer but not in other cancer types
In order to determine if we can see similar patterns in
other types of cancers, we performed the same EAs in

tumor datasets comprising different types of cancer (in
total 11 datasets): brain, lung, ovary, bladder and colon.
In all the datasets the enrichment of the CIN signature
divided the samples into two (see online supporting
material [26]). There were two datasets showing mar-
ginal predictive power for the CIN signature (GSE13507
[GEO:GSE13507] for bladder and GSE13876 [GEO:
GSE13876] for ovarian cancer). The rest of the datasets
did not show significant difference in survival between
the tumors defined by upregulation of the CIN signature
and the rest of the samples (Figure S7 in Additional file
1). Nonetheless, in all the datasets, the tumors with sig-
nificant upregulation of the CIN signature also upregu-
lated the senescence-bypass transcriptional program and
exhibited similar stress phenotypes as observed in breast
cancer datasets (Figure S8 in Additional file 1; online
supporting material [26]), indicating that the pathway
interdependencies observed in breast tumors are shared
across different types of cancer (Figure 8).

Conclusions
EA is an effective way to analyze the statistically signifi-
cant gene sets obtained using high-throughput func-
tional genomics data. In this work, we propose an
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Figure 8 Pathway interdependencies. Oncogenic signaling causes stress through many different, interrelated mechanisms. These mechanisms
include: 1) up-regulation of the CIN-related genes; 2) activation of transcriptional program related to senescence-bypass; 3) upregulation of DNA
damage response pathways; 4) upregulation of proteotoxic stress response mechanisms; 5) upregulation of mitotic stress response mechanisms;
and 6) upregulation of metabolic pathways regulated by TORC1/HIF1 activation.
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alternative approach for the analysis of tumor genomics
data to detect clinically relevant patient subgroups.
Instead of finding genes differentially expressed between
two groups, we identify differentially enriched modules
by performing sample-level EA (SLEA). Our method
does not require information related to phenotypic clas-
sification of samples and can directly take gene sets as
input. Moreover, by comparing enrichment results with
available clinical information, SLEA enables the under-
standing of pathways/processes that underlie the clinical
phenotypes such as survival. We applied our methodol-
ogy to test the prognostic power of a gene signature
related to chromosomal instability and to study the pre-
valence of stress phenotypes in different patient sub-
groups defined by the expression of this gene signature.
The tumors significantly upregulating this signature
were strongly correlated with worse prognosis in the
three breast cancer datasets studied, but not in other
tumor types. In all cancer types, however, the tumors
with positive enrichment for this gene signature dis-
played a transcriptional program pointing to evasion of
the senescence barrier and particular stress phenotypes,
indicating strong interdependencies between these dif-
ferent pathways and therapeutic vulnerabilities for the
tumor.

Additional material

Additional file 1: Supplementary figures. Supplementary figure 1:
result of overlap analysis of the modules used. Heat map of the Jaccard
indices for overlap analysis among modules used in this study. Pink cells
indicate high overlap (Jaccard index ≥ 0.6) while light blue shows no
overlap. Supplementary figure 2: comparison of z-score mean and z-
score median. Scatter plot of z-scores obtained using mean and median
as the test statistic in EA of the Ivshina et al. [21] dataset with the
chromosomal instability (CIN) signature. Since the correlation is high and
the median is more robust to outliers, it is used for the test statistic.
Supplementary figure 3: robustness analysis of SLEA. Step 1:
randomization procedure to test for the size of the dataset. Populations
of random datasets were created from the three datasets GSE4922 ([GEO:
GSE4922]; Ivshina et al. [21]), TCGA-OV (TCGA Nature 2011 [23]) and
GSE4573 ([GEO:GSE4573]; Raponi et al. [18]). Each population contained
100 datasets of a fixed number of samples. For GSE4922 [GEO:GSE4922]
and TCGA-OV, the sample number varied from 21 to 201, and for
GSE4573 [GEO:GSE4573], from 11 to 111. Step 2: for each random dataset
in each population, we performed EA with the CIN signature. Step 3:
within each population, we performed pair-wise correlation analysis
between all random datasets. Step 4: we plotted the distribution of
Pearson’s correlation values for all populations in a box-and-whisker plot.
Correlation values get closer to 1 as sample size increases and are
greater than 0.99 for populations of 71 or more. Supplementary figure 4:
results of the robustness analyses. Robustness analysis for changes in the
cohort was performed for three datasets. Shown here are the plots for
them. For GSE4922 [GEO:GSE4922] and TGCA-OV, correlation coefficients
for all datasets get closer to 1 as sample size increases. Among all three
datasets, correlation is greater than 0.99 for datasets of size 71.
Supplementary figure 5: predictive power of the CIN signature in other
breast cancer datasets. In the other breast cancer datasets, EA with the
CIN signature segregates the patients into two groups that difference
according to survival. Clinical information available for each dataset is
shown along with the results of EA with the CIN gene signature. The
color code for EA results is the same as in Figure 2. The red curve is for

the samples with positive enrichment of the CIN signature (cin = 1).
These samples have worse survival compared to all the other samples in
each dataset (cin = 0; black curve). Supplementary figure 6: the
predictive power of the CIN signature is independent from p53 mutation
status. Kaplan-Meier curves for a patient cohort of breast cancer
((GSE4922) [GEO:GSE4922]) with wild-type p53. The red curve is for the
samples with positive enrichment of the CIN gene signature (cin = 1).
These samples have worse survival compared to all the other samples in
each dataset (cin = 0; black curve). Supplementary figure 7: predictive
power of the CIN signature in other types of cancers. Kaplan-Meier
curves for brain, ovarian, lung and bladder cancer patients. The red curve
is for the samples with high positive enrichment of the CIN gene (cin =
1). The black curves are for the rest of the samples (cin = 0). The CIN
gene signature has a prognostic power in none of the datasets.
Supplementary figure 8: CIN-positive tumors have similar stress properties
in different cancer types. The panels are for brain, ovarian, lung and
bladder cancers. For each cancer type, six properties are shown. The
color code for enrichment analysis results (red to blue) is the same as in
Figure 2. The properties are 1) upregulation of chromosomal instability
genes, 2) senescence-bypass program, 3) DNA and replicative stress
response genes, 4) metabolic stress response genes, 5) mitotic stress
response genes, and 6) proteotoxic stress response genes.

Abbreviations
CIN: chromosomal instability; GEO: Gene Expression Omnibus; mTOR:
mammalian target of rapamycin; PI3K: Phosphoinositide 3-kinase; SLEA:
sample-level enrichment analysis.
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