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Abstract

palliative chemotherapy.

extrahepatic metastases (N = 25).

Background: Presently, colorectal cancer (CRC) is staged preoperatively by radiographic tests, and postoperatively
by pathological evaluation of available surgical specimens. However, present staging methods do not accurately
identify occult metastases. This has a direct effect on clinical management. Early identification of metastases
isolated to the liver may enable surgical resection, whereas more disseminated disease may be best treated with

Methods: Sera from 103 patients with colorectal adenocarcinoma treated at the same tertiary cancer center were
analyzed by proton nuclear magnetic resonance (‘*H NMR) spectroscopy and gas chromatography-mass
spectroscopy (GC-MS). Metabolic profiling was done using both supervised pattern recognition and orthogonal
partial least squares-discriminant analysis (O-PLS-DA) of the most significant metabolites, which enables comparison
of the whole sample spectrum between groups. The metabolomic profiles generated from each platform were
compared between the following groups: locoregional CRC (N = 42); liver-only metastases (N = 45); and

Results: The serum metabolomic profile associated with locoregional CRC was distinct from that associated with
liver-only metastases, based on "H NMR spectroscopy (P = 5.10 X 107) and GC-MS (P = 1.79 x 107). Similarly, the
serum metabolomic profile differed significantly between patients with liver-only metastases and with extrahepatic
metastases. The change in metabolomic profile was most markedly demonstrated on GC-MS (P = 4.75 X 107).

Conclusions: In CRC, the serum metabolomic profile changes markedly with metastasis, and site of disease also
appears to affect the pattern of circulating metabolites. This novel observation may have clinical utility in
enhancing staging accuracy and selecting patients for surgical or medical management. Additional studies are
required to determine the sensitivity of this approach to detect subtle or occult metastatic disease.

Background

While most individuals with metastatic colorectal cancer
(CRC) receive treatments with palliative intent, there are
some who may benefit from more aggressive surgical
therapy with curative intent. The prototypical situation in
which cure can still be achieved in the face of metastatic
disease is when metastases are isolated to the liver. In
patients with limited intrahepatic disease, and in the
absence of extrahepatic disease, resection can result in a
median survival of 40 to 58 months and a 5-year survival
of 40 to 58% [1-4]. Presently, only 25 to 30% of patients
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with colorectal liver metastases have resectable disease. It
is possible that earlier identification of the presence of
liver metastases could increase the proportion of patients
who could undergo surgery with curative intent. There-
fore, biomarkers that facilitate early detection of liver-
only metastases could be useful. In addition, biomarkers
that reveal the presence of radiographically occult extra-
hepatic disease could help to better select patients who
would benefit from resection of liver metastases.
Biomarkers may be defined as any biomolecule or panel
of biomolecules that can aid in the diagnosis of disease,
prognostication, prediction of biology, or prediction of
sensitivity to specific therapies. Recent biomarker discov-
ery efforts have focused largely on the genome, the tran-
scriptome and the proteome, using technologies that
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enable quantification of multiple biomolecules at once. In
metabolomics, the biomarkers of interest consist of meta-
bolites, small molecules that are intermediates, and pro-
ducts of metabolism, including molecules associated with
energy storage and utilization, precursors to proteins and
carbohydrates, regulators of gene expression, and signaling
molecules. Thus, like the proteome, the metabolome
represents a functional portrait of the cell or the organism.
One potential advantage of metabolomics over proteomics
is that metabolic changes may be more closely related to
the immediate (patho)physiologic state of the individual.
Relatively few biomarker discovery efforts have focused on
the metabolome to date.

Our objective was to determine if, in patients with
CRC, the serum metabolomic profile could be used to
discriminate locoregional CRC from metastatic CRC, and
to identify patients with liver-only metastases. We used
proton nuclear magnetic resonance (‘H NMR) spectro-
scopy because it is a well-established, robust and highly
reproducible tool for obtaining a quantitative metabolo-
mic profile of higher abundance metabolites. Gas chro-
matography-mass spectroscopy (GC-MS) was used to
provide a more comprehensive metabolomic profile, and
because it is a highly sensitive, rapid and accurate instru-
ment for the detection of lower abundance metabolites.
Using a combination of '"H NMR spectroscopy and GC-
MS to obtain a relatively comprehensive metabolomic
characterization, we determined that patients with locor-
egional CRC, liver-only metastases, and extrahepatic
metastases could be discriminated using each of these
approaches.

Materials and methods

Sample collection

This study was approved by the Conjoint Health
Research Ethics Board at the University of Calgary
(Ethics ID E21805). The study conduct conforms to the
Helsinki Declaration. Clinically annotated serum samples
were collected from consented patients who underwent
surgery for resection of their primary colorectal adeno-
carcinoma, resection of liver metastases, or resection of
extrahepatic metastases. All patients were treated at the
Foothills Medical Centre, a tertiary referral centre,
between 2004 and 2009. Patients with any acute inflam-
mation or sepsis were specifically excluded. Surgical
pathology was reviewed for all patients, and confirmed all
had colorectal adenocarcinoma. Samples were collected
in a plastic gold top Vacutainer tube (BD Biosciences,
Mississauga, Ontario, Canada), which contained a clot
activator and a gel for serum separation. Samples were
processed within 6 hours of collection, then frozen at
-20°C until the time of analysis. All samples were col-
lected from patients who had fasted, prior to surgery.
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"H NMR spectrometry

'"H NMR spectroscopy was performed as previously
described [5]. Briefly, all experiments were performed on a
Bruker Avance 600 NMR spectrometer (Bruker Biospin,
Milton, Canada) operating at 600.22 MHz and equipped
with a 5 mm TXI probe at 298 K. One-dimensional
"H NMR spectra were obtained using a standard Bruker
pulse sequence program (Bruker prld_noesy). Spectra
were acquired as series of 1,024 scans, and then Fourier
transformed using the Chenomx NMRSuite processor
module in 65,536 data-points over spectral width of 7,211
Hz. A line broadening of 0.5 Hz was applied to all spectra
before a standard procedure of phasing, B-spline baseline
correction, water deletion, and reference deconvolution
with DSS peak calibration using the Chenomx NMRSuite
processor module. Metabolites were assigned based on
comparison of both 'H and '*C chemical shifts and spin-
spin coupling constants with those of model compounds
in the Human Metabolome Database (HMDB, version 2.5)
[6] and Chenomx NMR Suite 6.1 software (Chenomx Inc.,
Edmonton, Canada). Metabolites were quantified using
the targeted profiling approach [7] as implemented in the
Chenomx software. Metabolite intensities were integrally
normalized against the sum of the metabolites’ intensities
for each sample, to adjust for possible inter-sample con-
centration variations.

GC-MS spectrometry

The methods of Bligh and Dyer [8] were used for metabo-
lite extraction. Briefly, layers of the two-phase mixture of
chloroform and methanol were transferred to individual
tubes. Aqueous layer tubes were dried under vacuum
(SpeedVac, Eppendorf, Germany) and stored at -20°C until
derivatization. For metabolite derivatization, 50 ul of
methoxyamine-hydrochloride in pyridine solution (20 mg/
ml) was added to each tube. N-Methyl-N-(trimethylsilyl)
trifluoroacetamide (MSTFA; Sigma-Aldrich, Canada (Oak-
ville, Ontario, Canada)) was added as silylating agent.
Samples were diluted with hexane, and tubes were centri-
fuged to remove any solid particles and micro-particles.
Ultimately, 200 pl of supernatant were transferred to a
GC-MS vial with glass inserts, in preparation for GC
injection.

GC-MS was performed on an Agilent chromatograph
7890A (Agilent Technologies Canada Inc, Mississauga,
Ontario, Canada) coupled with a Waters GCT mass spec-
trometer, using GC-TOF-MS methodology. MS was oper-
ated in a range of 50 to 800 m/z. Mass spectra were
processed using Metabolite Detector software (version 2.06,
Technische Universitdt Carolo-Wilhelmina zu Braunsch-
weig, Braunschweig, Germany). For metabolite identifica-
tion, the GOLM metabolite database [9] and NIST 2008
library [10] were used. Identified peak intensities were
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integrally normalized against the sum of the peak intensities
for each sample as the last step in the data pre-processing.

Data analysis

Patients were allocated to one of three groups, based on
stage and site of disease. Descriptive statistics were uti-
lized to characterize the groups, with unpaired ¢-tests
with unequal variances assumed (Welch’s ¢-test) used to
compare means and Fisher’s exact tests used to compare
categorical variables. All tests of significance were two-
sided and a P-value < 0.05 was considered a priori to
represent statistical significance between groups of
patients in these univariate analyses.

Normalized data were log transformed, centered and
unit variance scaled, then analyzed using the SIMCA-P+
program (version 12.0, Umetrics AB, Umed, Sweden).
Pairwise comparisons between the three groups were car-
ried out using the same modeling approach, separately
for each metabolomic platform. First, a preliminary prin-
cipal component analysis (PCA) model was carried out
including up to three components per PCA. This was
done primarily to identify the potential variables that
could form distinct sample subsets and intrinsic patterns,
and to detect potential outlier samples (Figure S1 in
Additional file 1). Next, selection of potentially important
metabolites was carried out using two sample ¢-tests that
assumed unequal variances. A P-value threshold of 0.3
was used to select these potentially important metabolites
for inclusion in the supervised orthogonal partial least
squares discriminate analyses (O-PLS-DA). In previous
work, we have demonstrated that using this filtering
approach to reduce the number of metabolites to those
that are potentially informative results in a high degree of
concordance between P-values obtained from univariate
comparisons and variable influence on projection (VIP)
values in O-PLS-DA models [5,11].

Three performance measures were used to assess the
O-PLS-DA models: CV-ANOVA for assessing their relia-
bility; R*Y, which describes the explained fraction of var-
iation by the non-orthogonal component for the group
status variable; and QZY, which is a measure of the pre-
dictability of the model. This predicted fraction was
determined through a seven-fold cross-validation during
the model-building process by leaving a seventh of sam-
ples out of every round and then testing the model
against the remaining portion of data. R*Y and Q%Y
scores range between 0 and 1, where an R2Y score of
1 demonstrates that 100% of variance is explained by the
model, and a QY score closer to 1 indicates higher relia-
bility of the prediction in the cross-validation procedure.
The R score is always larger than the Q* score, but an
observed difference of more than 0.3 between the R*
and Q” scores should be carefully examined. Potential
confounders (age, gender, and chemotherapy within 3
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months of sample collection) were examined for their
importance in our multivariate regression models. Recei-
ver-operating characteristic (ROC) curves were used to
provide summaries of the predictive performance of con-
structed models using Metz-ROC (University of Chicago,
IL, USA).

Pathway analysis

Known differentially abundant and co-regulated compo-
nents in GC-MS analysis (on supervised O-PLS-DA)
were used for metabolite pathway analysis using Meta-
boanalyst (version 2.0) [12]. This web-based software
enables identification of altered metabolic pathways from
its extensive HMDB-derived collection of more than 70
pathways and metabolite libraries.

Network and pathway analyses were generated using
the Ingenuity Pathways Analysis (IPA) program (Ingenu-
ity” Systems [13]). A dataset containing chemical KEGG
identifiers of the same components was uploaded into
the program, one for each comparison. Each identifier
renders a pertinent metabolite in Ingenuity’s Knowledge
Base, generating a list of network-eligible metabolites.
These metabolites were then projected onto Ingenuity’s
knowledge-based global metabolite network. Subse-
quently, networks of these eligible molecules were algor-
ithmically generated by IPA, based on their connectivity
using functional core analysis.

Results

Patients and demographics

Patients with pathologically confirmed CRC who were
potential candidates for surgery were included in the ana-
lysis. Sera were collected under standard fasting condi-
tions. Patients were assigned to three groups: locoregional
CRC (stages II and III, group 1, N = 42); liver-only metas-
tases (group 2, N = 45); and extrahepatic metastases
(group 3, N = 25). All patients with locoregional CRC and
with liver-only metastases underwent resection. Patients
with extrahepatic metastases underwent various surgical
procedures to remove or to debulk all grossly apparent
disease.

The characteristics of each patient group are summar-
ized in Table 1. There were a number of differences in the
groups that were evaluated in the multivariate model ana-
lyses to determine the effects of these covariables. Patients
in the groups with metastatic disease were significantly
younger, on average, than patients with locoregional CRC
(P = 0.004), but there was no significant difference in aver-
age age between patients with liver-only metastases and
extrahepatic metastases. There was a higher proportion of
males in group 2 compared to group 1, but groups 2 and
3 had similar gender distributions. Chemotherapy was
more frequently given within 3 months of sample collec-
tion in patients with metastatic disease. However, there
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Table 1 Patient characteristics of each group
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Liver-only Extra-hepatic P
Locoregional CRC: metastases: group metastases: group Group 1 Group 2 Locoregional CRC
group 1 (N = 42) 2 (N = 45) 3 (N =25) versus group 2 versus group 3 versus all stage IV

Age (years) 72+ 11 67 £ 13 63 +13 0.05 0.19 0.004
Gender 0.06 0.50 039

Male 21 (50) 31 (69) 15 (60)

Female 21 (50) 14 (31) 10 (40)
Bowel prep 39 (100) 45 (100) 25 (100) NS NS NS
Stage

Stage |l 21 0

Stage Il 21 0

Stage IV 0 45 25
Any 521 16 (36) 9 (36) 0.02 0.79 0.02
chemotherapy
within 3 months
Specific chemotherapeutic

agents

5-FU 5 (100) 15 (94) (78)

Oxaliplatin 1 (20) 7 (44) (44)

[rinotecan 0 (0) 10 (63) (22)

Bevacizumab 00 (13) 00
Other chemotherapy 1 (20) 1(6) 2 (22)

Numbers in brackets represent percent (%). 5-FU, 5-fluorouracil.

was no statistical difference in the proportion of patients
who had chemotherapy in groups 2 and 3. All adminis-
tered chemotherapy agents are listed in Table 1.

To evaluate the effects of each of the potential confoun-
ders (age, gender, exposure to chemotherapy within
3 months) on metabolomic profiles, we developed O2-
PLS-DA regression models that included the effects of
these factors in these models. All regression models
revealed that none of these factors had significant con-
founding effects on the metabolomic profiles and so were
not included in the final O-PLS-DA models.

Distinguishing locoregional CRC from liver-only
metastases
By "H NMR spectroscopy, 55 metabolites were detected,
with 25 found to be differentially abundant in the initial
data filtering process, using a P-value < 0.30. This cutoff
was used to select only the potentially informative metabo-
lites, to be included in subsequent supervised multivariate
analysis (O-PLS-DA). By '"H NMR spectroscopy alone,
there was a robust distinction between liver-only metas-
tases and locoregional CRC (R?Y score = 0.61). The pre-
dictive ability of the model was measured by seven-fold
cross-validation (Q* score = 0.39, CV-ANOVA P-value =
5.10 x 10°7; Figure 1a). The coefficient plot demonstrating
degree of differential abundance for each metabolite is
depicted in Figure 1c.

GC-MS could detect 476 components across the
entire range of samples, of which 170 were identified as

metabolites. We found 39 known metabolites and 114
unidentified components to be differentially abundant
between patients with locoregional CRC and patients
with liver-only metastases, using two sample ¢-tests with
P-value cutoffs of 0.3. Following noise filtration, O-PLS-
DA of the 124 remaining components demonstrated
that patients with liver-only metastases could be distin-
guished from patients with locoregional disease (R>
score = 0.68, Q2 score = 0.40, CV-ANOVA P-value =
1.79 x 10°7; Figure 1b). The coefficient plot correspond-
ing to the degree of differential abundance of each fea-
ture is shown in Figure 1d. Table 2 provides a list of
identified metabolites found by each analytical modality
to be differentially abundant between patients with
locoregional CRC and liver-only metastases.

We further analyzed the group with liver-only disease to
derive information on the sensitivity of metabolomics-
based tests for detection of liver metastases. Solitary
metastases were present in 23 patients. These ranged in
size from 14 to 99 mm in maximal diameter. Regression
models revealed that number of liver lesions (solitary ver-
sus multiple) did not have significant confounding effects
on the metabolomic profiles. Indeed, when only patients
with solitary nodules were included, metabolomic profiles
remained different in the two stage groupings, by 'H
NMR spectroscopy (P = 2.60 x 107°) and by GC-MS
(P =417 x 10™).

To ensure that chemotherapy had no inadvertent
effect on our ability to distinguish between locoregional
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Figure 1 Comparison of metabolomic profiles from patients with locoregional CRC and liver-only disease. (a) O-PLS-DA scatter plot
depicting metabolomic profiles analyzed by "H NMR spectroscopy. (b) O-PLS-DA scatter plot depicting metabolomic profiles analyzed by GC-MS.
(c) Coefficient plot demonstrating relative abundance of specific metabolites detected by 'H NMR spectroscopy. Metabolites on the left are
more abundant in sera from patients with liver metastases, and metabolites on the right are most abundant in locoregional disease. (d)
Coefficient plot demonstrating relative abundance of specific metabolites detected by GC-MS. Only identified metabolites are included. t[1],
score for the predictive component in O-PLS-DA,; to[1], score for the Y orthogonal component in O-PLS-DA.
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Table 2 Metabolites found to be differentially abundant in "H NMR and GC-MS in pair of patient groups

Group comparison, analytical platform

Increased in liver-limited metastases

Decreased in liver-limited metastases

Metabolite P Metabolite P
Liver-only disease versus locoregional disease, "H NMR 2-Aminobutyrate 0.07 Isoleucine 0.13
2-Hydroxyisovalerate 0.05 Mannose 0.10
B-Alanine 0.09 O-Phosphocholine 0.08
Formate 0.005 Hypoxantine 0.10
Histidine 0.16 Creatinine 0.11
Glutamate 0.0007 2-Oxoglutarate 0.02
Isobutyrate 0.002 Glutamine 0.0004
Glycerol 0.05
Liver-only disease versus locoregional disease, GC-MS Azelaic acid 0.11 Ribose 0.03
Pentacosane 0.30 Trehalose 0.22
Tridecan-1-ol 0.19 Cysteamine 0.15
Pyroglutamate 0.13 Heneicosane 0.13
|dose 0.04 Glutamine 0.10
Benzyl alcohol 0.19
Myo-inositol 0.23
Nonadecane 0.13
Galactose 0.03
Mannose 0.02
Extrahepatic metastases versus liver-only disease, "H-NMR  Isoleucine 0.03 Methionine 0.07
2-Oxoglutarate 0.07 Fumarate 0.23
Mannose 0.07 Tyrosine 0.24
Glutamine 0.12 Serine 0.07
Leucine 0.12 Formate 0.10
2-Aminobutyrate 0.16 Alanine 0.17
Glutamate 0.14
Extrahepatic metastases versus liver-only disease, GC-MS Tridecan-1-ol 0.003 Butanoic acid, 3-hydroxy 0.12
Sulfuric acid 0.25 Glutamine 0.14
Pentadecan-1-ol 0.07 Glucuronic acid 0.05
Phenylalanine 0.10 Myo-inositol 0.23
Tetradecanoic acid 0.03 Uric acid 0.30
Octadecadienoic acid 0.03 Glucose 0.16

Metabolites in these tables were selected based on the two-sample t-test statistics used for data filtering (P-value < 0.30) and the threshold of variable
importance in the projection (VIP) > 0.8. Correlation with the model comparison is determined by scaled and centered coefficients.

disease and liver metastases, we excluded patients who
had chemotherapy within 3 months of sample collec-
tion, and utilized the same models to compare these
two groups. This confirmed that the metabolomic pro-
files were different in the two stage groupings, by 'H
NMR spectroscopy (P = 5.32 x 10°°) and by GC-MS
(P = 0.0006).

Distinguishing liver-only metastasis from extrahepatic
metastasis

After statistical filtering using a ¢-test to remove unin-
formative metabolites, 17 metabolites were included in
the regression analysis in 'H NMR profiling for the
comparison of patients with liver-only metastases and
patients with extrahepatic metastases. In this instance,
orthogonal discriminant analysis did not produce the

same strong discriminant components for distinguishing
between these groups of patients as was found in the
analysis between locoregional CRC and liver-only metas-
tases. In this model, R*Y was only 0.36 and the model was
not strongly predictive of metastatic site (Q*Y score =
0.13; CV-ANOVA P-value = 0.04; Figure 2a). Having said
this, isoleucine and 2-oxoglutarate were more abundant in
sera from patients with extrahepatic metastases, while
methionine and fumarate were more abundant in liver-
only metastases (Figure 2c and Table 2).

Interestingly, GC-MS was more capable of identifying
differences between patients with liver-only metastases
and extrahepatic metastases. After feature selection of
the GC-MS data, 152 components were used for discri-
mination modeling between these two patient groups, of
which 59 were identified as metabolites. The resulting
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Figure 2 Comparison of metabolomic profiles from patients with liver-only metastases and with extrahepatic metastases. (a) O-PLS-DA
scatter plot depicting metabolomic profiles analyzed by 'H NMR spectroscopy. (b) O-PLS-DA scatter plot depicting metabolomic profiles
analyzed by GC-MS. (c) Coefficient plot demonstrating relative abundance of specific metabolites detected by "H NMR spectroscopy. Metabolites
on the left are more abundant in extrahepatic metastases, and metabolites on the right are most abundant in liver metastases. (d) Coefficient
plot demonstrating relative abundance of specific metabolites detected by GC-MS. Only identified metabolites are included. t[1], score for the
predictive component in O-PLS-DA; to[1], score for the Y orthogonal component in O-PLS-DA.
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model included metabolites that explained much of the
variation in the groups (R*Y score = 0.69), and it was
predictive (Q*Y score = 0.54; CV-ANOVA P-value =
475 x 107°) (Figure 2b). Figure 2d depicts the contribu-
tions of each feature to the model, and Table 2 provides
a list of identified metabolites that were seen to be dif-
ferentially abundant.

Again, to ensure that chemotherapy did not inadver-
tently affect our observations, we used the same models in
patients who had not been exposed to chemotherapy
within 3 months of sample collection. This analysis con-
firmed that the metabolomic profiles continued to be dif-
ferent in the two patient groupings, by 'H NMR
spectroscopy (P = 0.69) and by GC-MS (P = 3.78 x 107).

Internal verification of clinical applicability

The ROC curve is an indicator of the predictive perfor-
mance of a developed test and depicts the range of rela-
tionships between sensitivity and specificity. In this study,
we tested the predictive performance of our discriminant
models to distinguish between pairs of disease states
(locoregional disease, liver-only metastases, and extrahepa-
tic metastases) by constructing seven models with one-
seventh of the data excluded from each model, and with
each sample excluded once. The ability of the average of
the seven models to predict the excluded samples pro-
vided a measure of the predictive ability of each metabolo-
mic profiling model. Using these average predicted group
values (Ypredcv from the Umetrics software), we were
able to generate a ROC for each comparison.

ROC curves were plotted for '"H NMR spectroscopy and
GC-MS to demonstrate the ability to predict the presence
of liver-only metastases or locoregional CRC. The area
under the ROC curve (AUROC) was 0.88 for 'H NMR
spectroscopy and 0.87 for GC-MS (Figure 3a and 3b,
respectively). Values greater than 0.8 indicate excellent
predictive ability. The P-values for cross-validation in both
series were remarkably low and indicate excellent predic-
tive ability. These data demonstrate that the metabolomic
profile can be useful to identify the presence of liver
metastases or, at least, to distinguish patients with locore-
gional disease and liver-only metastases.

ROCs were also calculated for "H NMR spectroscopy
and GC-MS to demonstrate the ability to predict the pre-
sence of extrahepatic metastases. While the AUROC was
only 0.72 for "H NMR spectroscopy, it was still very high
for GC-MS (AUROC 0.90) (Figure 3c and 3d, respec-
tively), which may be attributed to the higher sensitivity of
the MS analytical platform.

Pathway analysis

We were intrigued that the metabolomic profile differed
so dramatically in the sera of patients with locoregional
disease as compared to liver-only metastases. Further

Page 8 of 13

analysis was conducted to glean some understanding of
whether this was a reflection of differences in tumor biol-
ogy, or due to differences in the host response to disease
involving different organs, or both. Metabolomic pathway
analysis and network analysis were performed using data
derived from GC-MS.

Accelerated galactose metabolism was apparent (P-value
= 0.0006 on univariate analysis). The liver is central to
galactose metabolism; however, there are no reported
alterations in galactose metabolism in tumor cells. Accel-
erated glutamine and glutamate metabolism was also
apparent (P-value = 0.04 on univariate analysis). Again,
the liver is known to actively take up glutamine and con-
vert it to glutamate, making it available for gluconeogen-
esis or for subsequent conversion to other amino acids.
Glutaminolysis is also known to be an important energy
source in tumor cells, including in CRC [14-16].

A network analysis was performed to explore potential
upstream altered pathways associated with liver metas-
tases. The IPA network analysis uses information
extracted from the literature to extrapolate known signal-
ing and metabolic pathway relationships from the (co-
related) metabolites found to be differentially abundant in
our experiments. Two networks, representative of
observed changes in levels of identified compounds, could
be constructed. In the first network, higher levels of NFkB,
mitogen-activated protein kinase (MAPK) and its related
Ca”"/calmodulin-dependent protein kinase II (CaMKII)
complex, JNK and ERK1/2 are predicted to be involved
with liver metastasis (Figure 4a). Interestingly, this combi-
nation of signaling complexes and pathways typifies the
colorectal cancer metastasis signaling pathway [17-24]. In
this first network, there was also higher activity of several
kinases and inflammatory cytokines in the context of liver
metastasis. These have not previously been shown to have
a direct contribution to metastasis of colorectal cancer.
CaMKI], a kinase for several mediators in cell proliferation
and apoptosis pathways, is one such molecule. In the sec-
ond network, a highly connected web of inflammatory
mediators, including TNEF, IL-8, and IL-17B, could be
visualized (Figure 4b). IL-17B was recently identified to
activate both TNF and NFkB pathways [25]. IL-17B-
induced expression of TNF and IL-1B results in monocytic
chemotaxis [26], a phenomenon that is well described in
colorectal liver metastases [27,28].

"H NMR spectroscopy data were then utilized for path-
way analysis. Because fewer metabolites were found to be
differentially abundant (compared to GC-MS), it was
considered that using these data may not yield a particu-
larly accurate picture of altered metabolic pathways.
Remarkably, however, the network derived from pathway
analysis using "H NMR spectroscopy data revealed a role
by many of the same signaling molecules and
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Figure 3 ROC curves depicting the predictive performance of generated classifiers in each comparison. (a) ROC curve illustrating
performance of the NMR model in distinguishing liver-only metastases from locoregional CRC. (b) ROC curve illustrating performance of the GC-
MS model in distinguishing liver-only metastases from locoregional CRC. (c) ROC curve for the NMR model distinguishing extrahepatic
metastases from liver-only metastases. (d) ROC curve for the GC-MS model distinguishing extrahepatic metastases from liver-only metastases.
AUC, area under the ROC curve; FPF, false positive fraction; TPF, true positive fraction.

inflammatory mediators demonstrated by analysis of the  tumor. This pathway analysis therefore supports the
GC-MS data (Figure S2 in Additional file 2). hypothesis that the metabolomic profile that distin-

We interpreted this analysis to reflect the fact that guishes liver metastases from locoregional CRC reflects
tumors that metastasize differ biologically from tumors elements of a site-specific host response to tumor, as
that are confined to the colon. In addition, these data  well as changes in tumor biology associated with
may reflect the response of liver to the local effects of  metastasis.
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Discussion

Presently, preoperative staging for CRC involves radio-
graphic studies such as CT scans to determine extent of
disease. Operative findings and pathological examination
of the surgical specimen(s) result in a modification of the
initially assigned stage. Specifically, the depth of tumor
invasion and involvement of lymph nodes are determined.
In some cases, however, occult metastatic disease can be
missed using contemporary staging methods. Postopera-
tively, patients are followed closely for local or distant
recurrence, in hopes that early detection will hasten treat-
ment before it becomes disseminated. The current guide-
lines by the American Society of Clinical Oncology
suggest annual CT scans for patients eligible for curative
surgery [29], as well as serum carcinoembryonic antigen
(CEA) every 3 months for stage II and III disease for at
least 3 years if the patient is a candidate for surgery or
chemotherapy for metastatic disease [30]. This intensive
postoperative follow-up is designed to detect metastatic
disease that is amenable to resection. For example, limited
liver metastases in the absence of extrahepatic disease may
be resected. Biomarkers that facilitate the detection of
occult metastatic disease before or after surgery would
therefore enhance the staging of CRC patients, potentially
impacting on treatment decisions.

Using 'H NMR spectroscopy and GC-MS, we have
demonstrated convincingly using internal validation that
the serum metabolomic profile differs in patients with
locoregional CRC and metastatic CRC. Moreover, we have
observed that there are differences in serum metabolomic
profile between patients with metastatic disease that is
confined to the liver and extrahepatic metastases. This is a
novel finding. External validation will be required to con-
firm the exact metabolic alterations that occur with each
disease state. In addition, more work will be required to
determine the sensitivity of the changes. That is, it will be
essential to determine the minimal amount of intrahepatic
or extrahepatic disease that can be detected by this techni-
que. In order for this biomarker approach to be clinically
useful, it must be possible to detect even small, solitary
liver metastases, and it must be possible to detect radio-
graphically invisible extrahepatic metastases. Our data are
promising in this regard, as a large proportion of patients
in the liver-only disease group had solitary metastases as
small as 14 mm. Finally, the unique and complementary
roles of "H NMR spectroscopy and GC-MS must be evalu-
ated, for a test that is based on a single analytical modality
may be more feasible and cost-effective than a test
employing two analytical modalities.

Metabolomic biomarkers have numerous advantages
over transcriptomic and proteomic biomarkers. First,
changes in the metabolome are amplified relative to
changes in the transcriptome and proteome [31]. There-
fore, metabolites may change even when protein levels do
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not. Second, metabolomic profiling is cheaper and easier
than proteomic and transcriptomic profiling. Thus, a test
based on metabolomics could be more easily implemented
in the clinic. Third, changes in metabolism result in altera-
tions of the abundance of groups of metabolites. There-
fore, identification of the patterns of changes in
metabolites would provide insight into the functional
changes that occur due to any given condition. The meta-
bolomic profile therefore represents a complex biomarker
of considerable interest, albeit one that has been studied
relatively little.

There have been only four reports so far of serum meta-
bolomic changes associated with CRC, and none have
described stage- or organ-specific changes to the metabo-
lomic profile. Qiu et al. [32] compared 64 Chinese patients
with CRC to healthy controls; metabolomic profiles were
determined by GC-MS and liquid chromatography-mass
spectrometry (LC-MS). The metabolomic profiles in CRC
patients (including eight patients with stage IV CRC) were
distinct from those of healthy controls. Interestingly, sev-
eral metabolites were differentially abundant in all stages
of disease. This study demonstrated the feasibility of using
metabolomics to diagnose CRC. Kondo et al. [33] similarly
used GC-MS to demonstrate that serum fatty acid compo-
sition differed in a small cohort of Japanese CRC patients
compared to healthy controls. Since only 20 patients were
examined, it was not feasible to evaluate differences in
subgroups. Ludwig et al. [34] used NMR spectroscopy to
delineate the metabolomic signature of 38 patients with
various stages of CRC (including 20 patients with stage IV
disease), and identified a typical Warburg signature in
association with CRC. The only group so far to specifically
study patients with metastatic CRC did not evaluate site of
disease as a contributing factor in the metabolomic profile
[35]. Moreover, their study population consisted of
patients who had been heavily pretreated with multiple
cytotoxic chemotherapy regimens. Therefore, the metabo-
lomic profile derived may not be entirely representative of
metastatic CRC in general. Interestingly, there were differ-
ences in abundance of a number of metabolites between
patients who had short survivals and longer survivals. The
findings in each of these series will require validation, and
further work will be required to evaluate differences in
findings in populations from different countries that may
occur due to differences in dietary, environmental and
genetic factors. Moreover, additional research will be
required to identify disease factors that modify the meta-
bolomic signature, including tumor biology, stage and the
host response.

One factor that must be further evaluated in the con-
text of our series is the effect of chemotherapy. Patients
with metastatic disease were more frequently exposed to
chemotherapy within 3 months of sample collection, and
it is possible that this influenced our results to some
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degree. Having said this, there are two lines of evidence
that chemotherapy exposure did not have a significant
effect. First, regression analysis demonstrated no statisti-
cally significant effect on the metabolomic profile. This
may be because the time between the last dose of che-
motherapy and the date of sample collection was suffi-
cient to ‘wash out’ any residual metabolic effects of these
drugs. Second, we determined that the models derived
were unchanged even in individuals who had not
received chemotherapy. Ultimately, it will be important
to validate our findings in a larger cohort that was not
exposed to chemotherapy prior to sample collection.

The finding that metabolomic profile changes with site
of disease was surprising and intriguing. The question is
whether changes in the circulating metabolites reflect dif-
ferences in tumor biology or alterations in the host
response to tumor, or a combination of both. The host
response may change with metastasis because metastatic
disease is, by definition, biologically distinct from a cancer
that remains confined in the tissue of origin; and more
aggressive tumors may incite a more (or less) exuberant
response by the host. The response of the host may also
differ because of the local effects of tumor. For example, a
tumor may have numerous paracrine effects on the sur-
rounding microenvironment, and the metabolic or inflam-
matory response of surrounding normal tissues may differ
between colon, liver and other metastatic sites. The path-
way analysis is meant to be hypothesis generating, and this
analysis suggested that tumor biology and the host
response may both be contributing to the changes in
serum metabolomic profile seen with site of disease.
Further experimentation on the contributions of various
tissues to the circulating metabolome will be required to
delineate the relative effects of tumor and host.

In addition to the limitations described above, it is possi-
ble that the performance of our metabolomic tests is the
result of over-fitting. On the other hand, the generated
models demonstrate acceptable and often excellent good-
ness of fit, as well as satisfactory goodness of prediction
for human sample type metabolomic studies. Ultimately,
however, it will be imperative to validate our models with
a completely independent patient cohort for these metabo-
lites to be useful in a clinical setting.

Conclusions

We have described a novel observation in which the
metabolomic profile of CRC varies with stage and disease
site. We must externally validate our findings, to confirm
the metabolic profiles observed. This will also aid in
determining whether one or both metabolomic analytical
modalities (*"H-NMR spectroscopy and/or GC-MS) will
be required to assay for metastatic disease. Further
experiments will be required to understand the contribu-
tions of tumor and host on the metabolic perturbations
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in the circulation. Finally, the clinical utility of the tests
developed for use in CRC patients will have to be tested
in a prospective group of patients being staged for CRC
or being followed for recurrence.

Additional material

Additional file 1: Figure S1 - PCA scatter plots of metabolomic
profiles. (a) 'H NMR spectroscopy, locoregional CRC versus liver-only
metastases. (b) GC-MS spectrometry, locoregional CRC versus liver-only
metastases. (c,d) Liver-only metastases versus extrahepatic metastases.
(©) "H NMR spectroscopy, liver-only metastases versus extrahepatic
metastases. (d) GC-MS spectrometry, liver-only metastases versus
extrahepatic metastases. t[n], score for the n'"" principal component in
PCA analysis.

Additional file 2: Figure S2 - pathway analysis derived by
comparison of the relative abundance of metabolites from sera
derived from patients with locoregional CRC and liver-only
metastases, as determined by '"H NMR spectroscopy.
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curve; CRC: colorectal cancer; CT: computed tomography; GC-MS: gas
chromatography-mass spectrometry; HMDB: Human Metabolome Database;
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