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Abstract

We present a method, seq2HLA, for obtaining an individual’s human leukocyte antigen (HLA) class I and II type
and expression using standard next generation sequencing RNA-Seq data. RNA-Seq reads are mapped against a
reference database of HLA alleles, and HLA type, confidence score and locus-specific expression level are
determined. We successfully applied seq2HLA to 50 individuals included in the HapMap project, yielding 100%
specificity and 94% sensitivity at a P-value of 0.1 for two-digit HLA types. We determined HLA type and expression
for previously un-typed Illumina Body Map tissues and a cohort of Korean patients with lung cancer. Because the
algorithm uses standard RNA-Seq reads and requires no change to laboratory protocols, it can be used for both
existing datasets and future studies, thus adding a new dimension for HLA typing and biomarker studies.

Background
The major histocompatibility complex (MHC) molecules
display peptide antigens that are derived from intracellular
(class I) and extracellular (class II) proteins on the surface
of vertebrate nucleated cells. The human MHC, called the
human leukocyte antigen (HLA), is highly polymorphic
and comprises three major gene loci for class I (A, B, C)
(Figure 1) and three major gene loci for class II (DP, DQ,
DR), which are expressed co-dominantly. Each cell
expresses three maternal and three paternal HLA class I
and three maternal and three paternal class II alpha and
beta alleles. Determining the sequence of these molecules,
HLA typing, is essential for clinical work (for example,
organ transplantation), immune system research, and
biomarker and drug development. Current HLA typing
techniques use labor- and time-intensive methods, such as
sequence-specific oligonucleotide probe (SSOP) hybridiza-
tion [1], PCR amplification with sequence-specific primers
[2], Sanger sequencing [3] and sero-typing [4].
Next generation sequencing (NGS) is a novel platform

that enables rapid generation of billions of short nucleic
acid sequence reads. Several studies described the use of
NGS in high-throughput HLA genotyping using genomic
DNA (for examples, see [5,6]). Recently, Lank et al.
described a method using RNA for high-throughput

MHC class I genotyping [7,8], which was applied to
assess genotype- and allele-specific expression of MHC
class I in human and macaque leukocyte subsets [9]. This
method involves the reverse transcription of RNA into
cDNA, amplification using highly specific MHC I primers
and subsequent bi-directional cDNA amplicon sequen-
cing using Roche/454 GS FLX pyrosequencing, and is
able to unambiguously resolve MHC alleles with high
accuracy. However, all of these techniques use specialized
NGS protocols including primer design to amplify only
MHC class I alleles and amplicon sequencing with long
reads (≥150 nucleotides) using Roche/454 GS FLX or
Illumina GAIIx.
By contrast, gene expression profiling in patient samples

using ‘whole transcriptome’ sequencing (RNA-Seq profil-
ing) typically uses much shorter reads. The adoption of
the RNA-Seq platform has been rapid: clinical and
research laboratories worldwide have deposited over
14,600 ‘RNA-Seq’ sample profiles into public repositories
such as the National Center for Biotechnology Informa-
tion Sequence Read Archive, including 4,304 human
RNA-Seq samples as of 8 October 2012. As opposed to
previous methods for determining gene expression, the
RNA-Seq platform not only generates expression profiles
but the data also contain nucleotide sequence information.
Given the large number of RNA-Seq profiles in the public
domain and our efforts to develop individualized T cell-
mediated cancer vaccines, which require the knowledge of
a patient HLA type and HLA expression to prioritize tar-
get epitopes [10-12], we sought to develop an algorithm to
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utilize the sequence content of RNA-Seq reads to deter-
mine both HLA type and expression.
To this end, we developed an in-silico method,

‘seq2HLA’, written in python and R, which takes standard
RNA-Seq sequence reads in fastq format [13] as input,
uses a bowtie index [14] comprising known HLA alleles,
and outputs the most likely HLA class I and class II types,
a P-value for each call, and the expression of each class.
As a proof of concept, we applied the method to the
recently released 37-nucleotide paired-end RNA-Seq data
of 50 Utah residents with ancestry from northern and
western Europe (CEU) [15] who are part of the HapMap
project and have been previously typed using the PCR-
SSOP method [16]. Our method, seq2HLA, achieves 100%
specificity and 93.5% sensitivity at a P-value of 0.1. Sensi-
tivity versus specificity curves show that the method works
best using paired-end reads with length at least 37 nucleo-
tides, that allowing one mismatch in the mapping is opti-
mal, and that calls are more sensitive to read length than
the number of reads.

Materials and methods
Datasets
We used three publically available NGS RNA-Seq datasets.
The first dataset comprises RNA-Seq reads from 60

lymphoblastoid cell lines derived from the CEU HapMap
individuals of European descent, including 10 million 37-
nucleotide paired-end reads per sample (Accession Num-
ber [ERA002336]) [15]. The HLA genotypes of 270
HapMap individuals were previously determined by PCR-
SSOP [16] and 51 overlap with the RNA-Seq samples. The
Illumina Human Body Map 2.0 project (Accession Number
[ERA022994]), the second dataset, comprises reads from 16
different tissues from 15 Caucasian- and one African-
American donors, with over seven million 50-nucleotide
paired-end reads per sample. The third dataset contains 77
lung RNA-Seq profiles from a lung cancer study in un-
typed Korean patients and comprises 100 nucleotide
paired-end reads per sample (Accession Number
[ERP001058]) [17]. The datasets are provided for download
in the European Nucleotide Archive at the European Bio-
informatics Institute.

HLA reference sequences
We downloaded 1,635 HLA-A, 2,247 HLA-B and 1,248
HLA-C (October 2011) and 342 HLA-DQA, 1,976 HLA-
DQB and 1,023 HLA-DRB (March 2012) nucleotide
sequences from the international ImMunoGeneTics/HLA
database at the European Bioinformatics Institute (ftp://
ftp.ebi.ac.uk/pub/databases/imgt/mhc/hla/). As exons 2
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Figure 1 HLA sequence variability. (a) The helices encoded by exons 2 (a1- chain: orange) and 3 (a2-chain: red) of the HLA class I alleles bind
peptides (crystal structure 3OXR from PDB). (b) HLA locus is polygenic (A, B, C) and highly polymorphic within and across the three class I genes,
showing the nucleotide variability at each position of a multiple sequence alignment of all HLA class I alleles, where 0 and 2 represent minimum
and maximum variability, as defined using Shannon’s Entropy (2 - Information Content; see Methods). (c) Example sequences are shown for four
regions in seven HLA groups.
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and 3 (class I) and exon 2 (class II) encode for the peptide-
binding site and contain most of the polymorphisms
(Figure 1), we extracted these sequences as reference
sequences for alignments. In order to include reads map-
ping to the exon boundaries of the sequence encoding for
peptide binding and presentation, we added exon 1 (73
nucleotides long) and 75 nucleotides of exon 4 to the class
I reference sequences and 75 nucleotides of exons 1 and 3
to the class II reference sequences.

Mapping of RNA-Seq reads
We mapped the RNA-Seq reads in fastq format [13]
against the reference sequences using bowtie [14]. We
optimized alignment parameters (below), including the
number of allowed mismatches (-v) and the number of
reported mappings (-m or -a).

Variation and grouping within HLA sequences
To quantify and evaluate the polymorphisms of HLA
class I alleles, we computed the variability of sequences
inter- and intra-allele groups (Figure S1 in Additional
file 1). ‘HLA groups’ were defined at the two-digit reso-
lution (for example, A*01), consisting of all sequences
starting with the same two digits. We computed the
Hamming distance of each sequence (exons 2 and 3)
with all other sequences, in terms of edit distance, and
calculated the inter- and intra-group means.
Furthermore, we calculated the variability at each

position across exons 2 and 3 using Shannon’s entropy
and the nucleotide sequence alignments from all HLA
class I alleles (Figure 1). We calculated the variability at
each position in terms of information content using the
binary logarithm formulation, taking into account the
observed frequency of each base (A, T, C and G) across
alleles. We plotted 2 - information content, such that 0
represents minimum variability (only one nucleotide
observed) and 2 represents maximum variability (all
four nucleotides equally likely).

Read length and HLA typing
To evaluate the trade-offs between read length ‘f’ and
HLA typing, we computed the number of unique length
oligonucleotides in each HLA sequence. For each locus,
we created all possible f-mers of each HLA exon 2 and
3 sequence. These reads were aligned using bowtie to
the respective reference sequences (class I or II) using
the mapping parameter -m1 (report only unique map-
pings). To account for the sequencing errors, the para-
meter -v (allowed mismatches) was varied to allow for
zero, one and two mismatches.

Data quality control
Of the previously typed CEU HapMap individuals, 51
overlapped with the 60 lymphoblastoid cell lines

sequenced by Montgomery et al. [15]. After comparison
of the HLA types determined by us and others with the
established pedigrees for the CEU samples, we excluded
sample 1382_1 from further analysis because of HLA
inheritance inconsistencies. On examining the RNA-Seq
seq2HLA calls, an individual (daughter NA12891) had
an HLA type for which the HLA-A, -B and -C alleles
matched the individual’s father (grandfather NA12891)
but the remaining alleles did not match the individual’s
mother (annotated as sample 1382_1, grandmother
NA12892) (Figure S2 in Additional file 1). Further inves-
tigation showed that seq2HLA-determined HLA types
from the RNA-Seq reads were entirely different from
the PCR-SSOP results, the only result in the 51 sample
dataset with a complete discrepancy; the grandmother-
annotated RNA-Seq reads showed expression of Y-chro-
mosome genes, such as EIF1AY, a male-specific gene;
and results of seq2HLA using RNA-Seq reads from the
grandmother from a different experiment [18] matched
the PCR-SSOP results and agreed with the pedigree.
Thus, the available data strongly suggest that sample
1382_1 from Montgomery et al. is not the individual
NA12892, and we removed this individual from our
analysis, leaving 50 CEU HapMap individuals (in the fol-
lowing named as Montgomery test samples). Further,
given the uniqueness of an individual’s HLA type, this
example demonstrates how seq2HLA can be used for
sample annotation quality control, such as in ‘tumor
versus normal’ experiments where both samples should
have the same HLA type.

Results and discussion
Although HLA alleles are highly polymorphic, all
sequences across the A, B and C loci differed by less than
70 nucleotides. Exons 2 and 3 encode the peptide-bind-
ing groove of HLA class I molecules (Figure 1) and con-
tain the majority of the variation but are nevertheless
87% identical (Figure S1 in Additional file 1). Further-
more, there are few sequences that are unique to a given
allele (Table S1 in Additional file 2). The number of
reads mapping to a single HLA allele depends on read
length: only 49% of major alleles, that is, those alleles
from A, B or C locus, comprise a unique tag 37-mer and
67% have a unique tag 100-mer. Allowing one mismatch
to account for sequencing errors, only 0.8% and 3.2% of
major alleles contain unique 37- and 100-mers, respec-
tively, demonstrating the difficulty in identifying a unique
fingerprint for each allele with short NGS reads. More-
over, using RNA rather than DNA has an additional
complication and benefit: results reflect not only HLA
type but also expression levels. Given these challenges,
we nevertheless sought to make an algorithm to deter-
mine HLA types and expression from standard RNA-Seq
data.
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Creating the seq2HLA workflow
Seq2HLA works by identifying the HLA alleles asso-
ciated with the greatest number of NGS RNA-Seq reads.
The read-to-HLA mapping and counting is done in two
stages (Figure 2). In the first stage, all reads from an
RNA-Seq experiment in fastq format are mapped to the
reference HLA sequences using bowtie_ENREF_4. For
each locus, a ‘first round’ winning group is chosen. Let
R1
L denote the set of allelic sequences with respective

read counts at locus L ∈ (A,B,C) in iteration 1. The
top-scoring group for locus L is defined as the group
that contains the allele with the highest number of
mapped reads:

aR1
L
= maxreads{ al|al ∈ R1

L} (1)

To determine the second group at each locus, the reads
mapping to the first round winning group are removed,
the remaining reads are mapped against the reference
dataset and a ‘second round’ winning group is selected,
again based on the number of mapped reads (Formula 1).
At the end of each stage, a ‘digital haplotype’ is generated.

Assigning a confidence score
The algorithm assigns a confidence score to each HLA-
type call reflecting the likelihood that the called group is
correct versus noise. The calculation is based on the
assumptions that the right combination of HLA groups
will account for the largest number of reads and that
the difference between the read count for the right allele
combination and the read counts from all other combi-
nations of alleles (the background) reflects the certainty
of the HLA-type call.

Given a locus L ∈ (A,B,C) , the distribution Ri
L of

reads mapping to the groups of locus L in iteration i,
and the reads mapping the top-scoring group aRi

L , let
p(aRi

L
) denote the probability of observing a value that

is greater or equal to aRi
L from a normal distribution

described by the parameters mean(Ri
L) and sd(Ri

L) :

p
(
aRi

L

)
= 1 − pnorm(aRi

L
,mean

(
Ri
L

)
,Ri

L) (2)

where pnorm
(
x, y, z

)
calculates the cumulative distri-

bution function of a normal distribution centered at y
with standard deviation z and returns the probability of
observing a value that is equal or larger than x given
this distribution. The likelihood of aRi

L being a correct
HLA call - an outlier from the background - is a
P-value poutlier(aRi

L
) which is calculated according to:

poutlier
(
aRi

L

)
= pbinom(0, x, p(aRi

L
)) (3)

where x is equal to the number of elements in Ri
L and

pbinom
(
q, size, p

)
calculates the cumulative distribution

function of a binomial distribution with the parameters
size (the number of trials) and P (probability of success).

For quantile q = 0 , pbinom
(
q, x, p(aRi

L
)
)

returns the

probability of choosing at least one value that is larger
than aRi

L in a Bernoulli experiment with x trials. Thus,
poutlier is a P-value reflecting the certainty of the HLA-
type call.
Calculation of the confidence score is carried in both

iterations of the algorithm in the same way, except for
one difference. Whereas, in the first iteration, the num-
ber of reads mapping the top-scoring group aR1

L is

removed from R1
L , this number aR2

L is not removed

from R2
L , resulting in a stricter calculation of the prob-

abilities. The value aR2
L now impacts the mean and stan-

dard deviation of the distribution, which can result in

smaller poutlier
(
aR2

L

)
compared with the initial approach.

Homozygosity score
Within the second iteration, seq2HLA determines
whether each locus is homozygous or heterozygous
according to the allelic groups typed in the first iteration
(Figure 2e). For each locus A, B and C, the median read
count across the locus-associated HLA alleles after the
first iteration is calculated, which acts as a decision
threshold for zygosity. In seq2HLA, we implemented
this by simply comparing the number of reads mapping
to the second round winning group relative to the med-
ian of the first iteration. If the number of reads mapping
to the second round winning group was greater than
this zygosity decision threshold, the locus was consid-
ered heterozygous. If the number was smaller, the locus
was called as homozygous. In case of a homozygous pre-
diction, the associated P-value reflected the certainty of
this locus being homozygous. The smaller the distance
between the numbers of reads mapping to the top-scor-
ing group and the median, the more likely this locus
was not homozygous. This P-value was calculated
according to Formula 3, with the modification that the
median read count of the first iteration was added to
the set of read counts R2

L to enable measuring the dis-
tance of the top-scoring group to this decision
threshold.
Owing to lower sequence variability between the

alleles between and within the HLA class II loci as com-
pared with HLA class I loci, the median as the decision
threshold was found to be too high because many reads
mapped ambiguously in the first iteration. Thus, the
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Figure 2 Workflow of seq2HLA. (a) RNA-Seq reads are mapped against the reference HLA sequences. (b) For each locus, the allele with the
greatest number of reads is determined. (c) Reads associated with the first determined group are removed and the mapping procedure is
repeated. (d) The second digital haplotype is called. (e) Zygosity is determined. (f) The genotype and the associated P-values are reported.
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optimal threshold was found to be
medianL

2
for locus

L ∈ (DQA,DQB,DRB) .

Expression
HLA expression was determined by the total number of
unique sequence reads mapping to class I genes (A, B
and C) or class II genes (DQA, DQB and DRB). Owing
to the highly conserved nature of the HLA alleles, many
reads mapped to multiple alleles and even multiple loci,
and thus the assignment between an individual read and
an individual allele or locus was frequently ambiguous.
To provide an estimate of loci expression, the reads
were proportionally assigned to the determined HLA
loci based on the mappings between a read and the
determined HLA groups (for example, if a read mapped
to two different determined HLA loci, each group
received a 0.5 count). They were then normalized
according to reads per kilobase of exon model per mil-
lion mapped reads (RPKM) [19] using the actual length
of the sub-transcripts contained in the reference dataset:
694 nucleotides for class I and 400 nucleotides, 421
nucleotides and 421 nucleotides for class II (DQA, DQB
and DRB respectively).

Code
Seq2HLA, available as stand-alone and Galaxy modules
from http://tron-mainz.de/tron-facilities/computational-
medicine/seq2HLA/, is written in python and R. Class I
HLA typing using a sample of nine million sequences of
37-nucleotide paired-end reads takes 10 minutes using
six central processing units on AMD Opteron 6174.

Evaluation on healthy individuals
As a proof of concept, we applied the method to the
recently released 37-nucleotide paired-end RNA-Seq
data of 50 CEU HapMap individuals (Montgomery test
samples) [15]. The 300 MHC class I alleles of these 50
individuals have been previously typed using the PCR-
SSOP method [16]. Our method accurately called two-
digit HLA types: seq2HLA achieves 100% specificity and
93.5% sensitivity at a P-value of 0.1 (Figure 3 and 3
Tables S2-5 in Additional file 2).
Out of the 300 alleles, there were five false calls

(1.7%), but at P >0.1. Not surprisingly, the majority of
false calls had high similarities to PCR-SSOP-deter-
mined alleles. Individual NA12004 (sample ID 2963_6),
for example, was predicted to express B*08 instead of
the highly similar B*07, which differs by only 22 of 546
nucleotides (length of exon 2 and 3) (Figure S1c in
Additional file 1). Another example was individual
NA12006 (sample ID 2992_5), which was predicted to
express C*07 instead of C*12, which differ by even fewer

nucleotides from each other (15 nucleotides, Figure 2d).
Furthermore, one false call, individual NA11993 (sample
ID 2005_6), had a missed homozygosity at the B locus,
which was due to a high background (high number of
ambiguous mapping), with the result that B*40 was
assigned a read count higher than the decision thresh-
old. Nevertheless, by assigning a P-value to each call
that reflects this uncertainty, the user can effectively fil-
ter uncertain calls.
Zygosity is challenging for HLA typing with RNA-Seq

data: seq2HLA considers the relative number of reads
associated with the first- and second-called alleles to
determine zygosity. In the Montgomery test samples, 35
of the 150 Class I loci were homozygous: 33 were called
correctly by seq2HLA, whereas two cases were falsely
classified as heterozygous, with incorrect allele calls but
with P-values >0.1. For four loci, seq2HLA could not
confidently determine zygosity and, rather than make an
incorrect HLA call, the loci were classified ‘likely homo-
zygous or single allele expressed.’ In all cases, the first
allele was called correctly; in three cases the second
allele was also correct but with too few reads to confi-
dently call the locus heterozygosis and with a high P-
value assigned, indicating that this locus might be het-
erozygous with the proposed allele being the second
allele.
The samples were also HLA-typed for the class II

alleles HLA-DQA, HLA-DQB and HLA-DRB. In the
HLA calls by de Bakker et al., 24 of the 300 alleles
could not be resolved and thus cannot be evaluated
here. Examining seq2HLA class II calls, 264 of 276 are
correct (95.7%) and 10 (3.6%) are incorrect, and for two
alleles seq2HLA could not make a confident call (Addi-
tional file 2, Tables S6-7). 32 of 37 homozygous loci are
correctly called. The P-values of the class II alleles are
less significant overall, particularly in the second itera-
tion, in part due to less sequence variability between
alleles of each locus as the variability is primarily
encoded only in exon 2 across both alpha and beta loci.
Although the method was validated for HLA class I (A,

B, C) and II (DQA, DQB, and DRB) at two-digit resolu-
tion, we tested whether the code could be extended to
four-digit resolution. The performance of the current
algorithm at four-digit class I typing was poor: only
roughly 32% of four-digit calls were correct; the incorrect
calls typically were highly similar alleles of the same
groups with slightly fewer read counts than the true four-
digit allele. At this resolution, ambiguous mappings of
the short reads were an issue, resulting in poor separa-
tion. We expect performance to improve with future
datasets containing longer read lengths and additional
sequence information outside exons 2 and 3 (class I) and
exon 2 (class II) for the reference HLA alleles.
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Comparing different mapping and technical parameters
We used sensitivity versus specificity curves to evaluate
the impact on performance of read length, number of
reads, paired-end versus single-end and bowtie alignment
parameters, such as the number of allowed mismatches,
by applying seq2HLA to the Montgomery test samples.

Table S2 in Additional file 2 and Figure 3 depict the
accuracy using different mapping parameters with
respect to allowed mismatches (bowtie options -v0, -v1
and -v2) and reported alignments (bowtie options -m1
-a) for class I. Allowing only unique mappings (-m1)
resulted in very poor accuracy with only 51% and 38%

Figure 3 Sensitivity versus specificity for different mapping and technical parameters applied to the 50 Montgomery test samples.
Bowtie mapping parameters include -a (report all mappings), -m1 (report only unique mappings), -v<0|1|2> (allow zero, one or two
mismatches), using the initial reference dataset consisting of exons 1 to 3, plus 75 nucleotides of exon 4. Analysis of different technical
parameters comprised varying the average number of reads per sample (1e6, 5e6 and 10e6) while mapping against the initial reference dataset
with ‘-a -v1’, shortening the read length (from 73 nucleotides to 30 nucleotides) and using only one of the read pairs to simulate a single-end
read dataset. nt, nucleotide; PE, paired-end; SE, single-end
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correct predictions for zero or two mismatches. Further-
more, it was not possible with these settings to distin-
guish between homo- and heterozygosity as too many
informative reads were lost during the mapping step. The
sequencing error rate was 1% to 2%, and thus the optimal
number of allowed mismatches for reads with length 37
nucleotides was one (bowtie options -a -v1). As can be
seen in Table S2 in Additional file 2, allowing zero or
two mismatches (bowtie options -a -v2) resulted in an
increase in false predictions.
We further assessed technical parameters, including

number of reads, read length and paired-end versus sin-
gle-end. Figure 3 and Table S4 in Additional file 2
depict the sensitivity versus specificity curves for the dif-
ferent parameters. Decreasing read length from 37
nucleotides to 30 nucleotides rapidly impacted perfor-
mance, from 93.5% to 89.4% sensitivity at 100% specifi-
city. Decreasing the number of reads had a smaller
impact: one million reads per sample in these lympho-
cyte-derived cell lines still generated HLA calls with
91.6% specificity. The most dramatic performance drop
was observed when using single-end reads instead of
paired-end, with specificity decreasing from 93.5% sensi-
tivity and 100% specificity to 26.2% sensitivity and 90.5%
specificity with the same number of reads. Using only
exons 2 and 3 as reference dataset instead of using
exons 1, 2, 3 and 75 nucleotides of exon 4 resulted in
two more wrong predictions (seven instead of five). In
summary, the method works best using paired-end
reads with a length at least 37 nucleotides and allowing
one mismatch in the mapping, and that calls are more
sensitive to read length than the number of reads.

Further applications
An advantage of seq2HLA is that it can be applied to
existing RNA-Seq datasets. We applied seq2HLA to
RNA-Seq datasets from the 16 individuals sequenced in
the Illumina Human Body Map 2.0 project and nine
additional individuals from the CEU HapMap RNA-Seq
dataset. None of these individuals had previously been
HLA-typed. We report the derived class I and class II
HLA types of the nine CEU HapMap individuals in
Table S8 in Additional file 2, and of the 16 Illumina
Body Map samples in Table 1.
An RNA-Seq body map dataset consisting of 32 nucleo-

tide single-end reads [20] was previously submitted to the
National Center for Biotechnology’s Gee Expression
Omnibus repository by Wang et al. [GEO:GSE12946]. As
several of the same tissues are found in both datasets, we
internally used them as biological replicates. We applied
seq2HLA to nine common tissues samples and found that
the HLA types from corresponding tissues, except brain,
matched. Thus, eight RNA-Seq profiles from the Wang
et al. dataset are likely derived from the same samples

used in the Illumina Human Body Map 2.0 project and,
except brain, should not be used as biological replicates
but rather technical replicates.
Seq2HLA does not rely on a priori knowledge of

population-specific HLA distributions. To demonstrate
the applicability of the method to different ethnic
groups, we applied seq2HLA to 77 lung RNA-Seq pro-
files from a lung cancer study in un-typed Korean
patients [17]. The HLA calls for each sample are listed
in Table S9 in Additional file 2. We compared the dis-
tribution of the determined HLA class I alleles from 59
CEU HapMap individuals with European ethnicity (50
Montgomery test samples and the nine previously un-
typed CEU HapMap samples), 15 Illumina Body Map
samples (those with European ethnicity) and the Korean
patients with lung cancer (Table 1 and Tables S3 and
S9 in Additional file 2) to established allele frequencies.
Encouragingly, we found that the alleles in the 74 CEU
HapMap and Illumina Body Map Samples (seq2HLA
samples [europ. descent]) are those HLA alleles more
frequently found in European populations [21,22] and
not frequently found in Korean individuals [21,23,24],
such as A*01, A*03, B*08 or C*07 (Figure S3 in Addi-
tional file 1). Further, the distribution of alleles found in
the Korean patients (Table S9 in Additional file 2)
matched the established distribution of alleles in the
Korean population; we again found a high correlation
between the HLA class I distribution of our predictions
and studies assessing HLA class I distribution in the
South Korean population (Figure S3 in Additional file 1),
including more frequent A*33, B*54 and C*01.
Previous RNA-Seq studies using standard algorithms do

not accurately determine HLA expression because gene
counts determined from read mappings using a single
reference genome and transcriptome reflect HLA genetics
in addition to HLA expression. By using RNA reads in
conjunction with over 6,000 known HLA allele reference
sequences, seq2HLA incorporates genetics and expression
and outputs HLA expression profiles. We determined
HLA class I and II expression across the 16 Illumina
Body Map tissues (Additional file 1 and Figure 4), the
locus-specific HLA class I and II expression of the 50
Montgomery test samples (Figure S4 in Additional file 1),
and locus-specific class I and II expression across the Illu-
mina Body Map tissues (Figure S5 in Additional file 1). As
expected, HLA class I expression was highest in the white
blood cells and lowest in brain and skeleton muscle
[25-29]. Class II expression was highest in lung and leuko-
cytes [30-32]. In contrast to class I molecules, class II
expression was expected to be restricted to a subset of
cells, the ‘professional antigen-presenting cells’: indeed, we
found lower overall class II expression. In the CEU-derived
lymphoblastoid cell lines, the class I loci were expressed at
comparable levels, with B slightly higher than A, which is
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slightly higher than C (Figure S4 in Additional file 1).
Class II DRB was expressed at higher levels than DQA
and DQB, which were expressed at similar levels. In tis-
sues (Figure S5 in Additional file 1), class I A, B and C
were expressed at comparable levels whereas class II DRB
was expressed at higher levels than DQA and DQB.

Conclusions
The main task of the immune system is to protect the
body against pathogenic influences from the outside,
such as bacteria or viruses, and from the inside, such as
tumor-genesis. HLAs play a central role in this task as
they present peptides to the immune cells, which are
derived either from normal self-proteins in a healthy

condition, from pathogens in case of an infection or
from abnormal self-proteins.
To determine the HLA type of an individual, com-

mon laboratory techniques use either genomic DNA in
combination with PCR or proteins and HLA-targeting
antibodies. Recent studies employing NGS describe
specialized laboratory protocols for high-throughput
HLA typing, targeting genomic DNA (for example, see
[5,6]) and cDNA [7] from the class I HLA loci.
Although these new NGS laboratory protocols and
existing clinical testing are critical for clinical applica-
tions, such as organ transplantation, an algorithm for
use with standard RNA-Seq sequence reads would
enable HLA typing of thousands of existing and future

Table 1 HLA genotypes of Illumina Human Body Map individuals determined by seq2HLA .

HLA class I HLA-A HLA-B HLA-C

Tissue Sample Id A1 P A2 P B1 P B2 P C1 P C2 P

Adipose FCB1 A*01 2E-01 A*24 2E-02 B*27 7E-04 B*08 4E-03 C*02 5E-14 C*07 8E-03

Adrenal FCB2 A*25 3E-04 A*03 4E-02 B*18 1E-09 B*40 1E-02 C*02 2E-03 C*12 1E-01

Brain FCB3 A*02 2E-11 homoz 6E-02 B*35 9E-03 B*07 2E-03 C*04 2E-04 C*07 1E-02

Breast FCB4 A*03 1E-02 A*02 4E-04 B*13 5E-09 B*40 3E-03 C*02 3E-03 C*06 4E-02

Colon FCB5 A*01 6E-02 A*03 2E-02 B*08 2E-03 B*13 1E-04 C*06 1E-02 C*07 7E-03

Heart FCB7 A*24 6E-02 A*01 2E-02 B*27 5E-08 B*37 6E-06 C*02 6E-03 C*06 3E-02

Kidney FCB6 A*24 3E-02 A*03 7E-03 B*50 7E-03 B*55 2E-02 C*06 4E-05 C*03 8E-03

Liver FCB8 A*02 3E-09 A*03 5E-03 B*44 2E-11 B*35 1E-03 C*05 1E-01 C*04 3E-02

Lung FCA8 A*24 8E-03 A*11 4E-03 B*81 8E-02 B*07 5E-02 C*04 6E-04 C*07 1E-02

Lymph node FCA7 A*01 4E-04 homoz 5E-02 B*08 4E-07 homoz 6E-01 C*07 2E-13 homoz 1E-04

Ovary FCA3 A*26 4E-02 A*23 4E-02 B*58 3E-06 B*51 1E-01 C*03 9E-03 C*07 9E-03

Prostate FCA6 A*24 5E-04 A*02 5E-04 B*14 3E-05 B*41 3E-03 C*08 2E-01 C*06 3E-02

Skeletal muscle FCA5 A*29 2E-04 A*02 2E-03 B*39 6E-03 B*44 6E-06 C*02 2E-05 C*12 1E-01

Testes FCA2 A*01 5E-02 A*03 3E-02 B*47 1E-03 B*14 5E-04 C*06 3E-05 homoz 2E-04

Thyroid FCA1 A*24 2E-05 A*02 7E-04 B*14 2E-12 B*15 4E-02 C*08 5E-02 C*03 8E-03

White blood cells FCA4 A*25 2E-04 A*03 2E-02 B*07 5E-02 B*40 7E-03 C*03 2E-03 C*07 9E-03

HLA class II HLA-DQA HLA-DQB HLA-DRB

Tissue Sample Id A1 P A2 P B1 P B2 P B1 P B2 P

Adipose FCB1 DQA1*05 0E+00 DQA1*03 0E+00 DQB1*02 3E-01 DQB1*03 4E-01 DRB1*03 7E-03 DRB1*11 2E-01

Adrenal FCB2 DQA1*02 6E-02 DQA1*01 3E-01 DQB1*06 3E-02 DQB1*02 3E-01 DRB1*15 3E-02 DRB1*07 1E-02

Brain FCB3 DQA1*03 2E-07 DQA1*01 4E-01 DQB1*05 2E-02 DQB1*03 3E-01 DRB1*01 9E-03 DRB1*04 1E-02

Breast FCB4 DQA1*03 1E-05 DQA1*05 3E-01 DQB1*02 1E-01 DQB1*03 4E-01 DRB1*03 3E-02 DRB1*04 2E-02

Colon FCB5 - NA - NA DQB1*02 0E+00 homoz NA DRB1*03 7E-02 DRB1*07 2E-02

Heart FCB7 DQA1*03 5E-02 DQA1*01 3E-01 DQB1*06 8E-03 DQB1*03 3E-01 DRB1*04 1E-03 DRB1*15 5E-02

Kidney FCB6 DQA1*02 2E-01 DQA1*01 4E-01 DQB1*05 1E-02 DQB1*02 2E-01 DRB1*15 3E-02 DRB1*07 2E-02

Liver
Lung

FCB8
FCA8

DQA1*03
DQA1*04

2E-01
2E-01

DQA1*01
DQA1*01

0E+00
4E-01

DQB1*06
DQB1*06

1E-03
1E-01

homoz
DQB1*04

1E+00
4E-01

DRB1*13
DRB1*08

4E-02
1E-01

DRB1*04
DRB1*15

3E-02
3E-02

Lymph node FCA7 DQA1*02 0E+00 homoz 6E-02 DQB1*02 1E-01 DQB1*03 3E-01 DRB1*07 0E+00 DRB1*15 3E-01

Ovary FCA3 DQA1*01 1E-11 DQA1*05 0E+00 DQB1*05 7E-03 homoz NA DRB1*10 2E-10 DRB1*12 2E-02

Prostate FCA6 DQA1*03 5E-11 DQA1*05 3E-01 DQB1*02 5E-02 DQB1*03 4E-01 DRB1*04 0E+00 DRB1*15 3E-01

Skeletal muscle FCA5 DQA1*01 0E+00 homoz NA DQB1*06 8E-02 DQB1*05 0E+00 DRB1*01 0E+00 DRB1*13 1E-01

Testes FCA2 DQA1*01 0E+00 DQA1*02 4E-01 DQB1*06 0E+00 DQB1*02 0E+00 DRB1*07 2E-02 DRB1*13 3E-01

Thyroid FCA1 DQA1*05 5E-01 DQA1*01 4E-01 DQB1*05 3E-02 DQB1*03 4E-01 DRB1*01 2E-03 DRB1*11 1E-01

White blood cells FCA4 DQA1*01 4E-02 DQA1*05 2E-01 DQB1*05 3E-01 DQB1*03 2E-01 DRB1*12 1E-02 DRB1*01 1E-02

HLA, human leukocyte antigen; NA, no reads detectable.
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samples. Further, none of the existing algorithms
determines HLA expression.
The NGS RNA-Seq protocol has been rapidly adopted

worldwide to profile gene expression. Here, we show
that the sequence reads derived from deep sequencing
the transcriptome using standard NGS RNA-Seq can be
further used to determine the HLA type and expression.
We developed a novel method, seq2HLA, that takes the
RNA-Seq read files in fastq format as input and deter-
mines the HLA class I and II types and expression. By
providing a confidence score to each HLA type, which
reflects the likelihood that the called group is correct
versus noise, the user can effectively filter results by
P-value for their specific application. We overcame
major challenges when mapping mRNA reads for HLA
typing: the HLA genes are not only highly polymorphic
but also have thousands of known alleles, many individuals
are homozygous at a locus, and most RNA-Seq reads are
less than 100 nucleotides long. The seq2HLA achieved
100% specificity and 93.5% sensitivity for two-digit class I

prediction on the control samples (Montgomery test sam-
ples) and took 10 minutes per sample to run. Applied to
RNA-Seq replicates from the same individual, seq2HLA is
reproducible, generating identical HLA types. The Illu-
mina Body Map and the Korean lung samples are further
demonstrations of the algorithm, showing that the algo-
rithm works in a diverse set of samples.
HLA typing has obvious application to immunological-

related processes, from basic research to cohort disease
studies to clinical studies. For example, having the HLA
type allows the selection of cell lines for use in immunolo-
gical assays (for example, if we need a non A*02 cell line).
A different application is as an inherent sample identifier,
enabling determination of incorrect sample annotation.
Mislabeled and ‘sans papiers’ cell lines are not uncommon
[33]. Using the HLA type, seq2HLA provides a sample
annotation quality control, both for previously un-typed
cell lines and for matching cell lines with previously deter-
mined HLA types [34]. Further, cancer studies typically
compare the transcriptomes of tumor and normal samples
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Figure 4 Summed expression of MHC class I and class II in normal tissues in RPKM units [19]. Seq2HLA was applied to the 50 nucleotide
paired-end RNA-Seq dataset from the Illumina Body Map 2.0 project. HLA, human leukocyte antigen; RPKM, reads per kilobase of exon model
per million mapped reads.
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from the same individual. Using RNA-Seq data, seq2HLA
provides a fast and easy quality control to validate annota-
tion (both tumor and normal should have the same HLA
type).
In addition, we find that many non-immunological-

aware researchers are currently accumulating large geno-
mic and transcriptomic datasets using NGS, such as with
disease population and clinical trial cohorts to find bio-
markers (for example, risk factors and response markers).
We expect that including HLA types into the analysis
will enable the identification of novel HLA disease and
response associations. Furthermore, previous RNA-Seq
studies do not accurately determine HLA expression as
they, during read alignment, do not take into account the
polymorphism of the HLA loci. By contrast, seq2HLA
not only accurately calls the HLA type of an individual,
but also outputs an RPKM HLA expression profile. This
is critical for monitoring malignant and therapeutic pro-
cesses that modify HLA expression.
We foresee extensive synergies and improvements (espe-

cially with four-digit-resolution typing) resulting from
feedback between seq2HLA and increased NGS read
length, increased NGS read accuracy, larger datasets and
increased reference HLA sequence databases, especially
with more identified and recorded sequence information
outside of exons 2 and 3 (class I) and exon 2 (class II).
In summary, we provide a tool that uses standard

RNA-Seq reads, requires no change to laboratory proto-
cols, and can be used both for existing and future data-
sets to determine HLA type and expression.

Additional material

Additional file 1: Additional figures. Figure S1: Mean edit distances of
all reference sequences (exon 2 and 3 = 546 nucleotides) within and
between the groups of alleles to quantify and visualize HLA
polymorphisms. Figure S2: Pedigree and HLA types of CEU individuals
NA12892, NA12891 and NA12878. Figure S3: Comparison of the
distribution of predicted HLA types of this study with population-specific
HLA distributions. Figure S4: Average locus-specific expression of HLA
class I and II in the 50 Montgomery test samples using seq2HLA. Figure
S5: Locus-specific expression of HLA class I and II in the 16 Illumina
Human Body Map samples.

Additional file 2: Additional tables. Table S1: Number of alleles
containing at least one f-mer, which is unique for this nucleotide sequence
when compared with all alleles within a locus. Table S2: Accuracy of
seq2HLA in determining the HLA class I type of the 50 Montgomery test
samples using different mapping parameters. Table S3: HLA class I types of
the 50 Montgomery test samples. Table S4: Sensitivity versus specificity of
different mapping and technical parameters. Table S5: Number of true
predictions, false predictions and missed alleles per allelic group. Table S6:
Accuracy of seq2HLA in determining the HLA class II type of the 50
Montgomery test samples using the optimal mapping parameter. Table S7:
HLA class II types of the 50 Montgomery test samples. Table S8: HLA class I
(A) and class II (B) types of nine previously un-typed CEU HapMap
individuals. Table S9: Predicted HLA class I types of 77 normal lung derived
from Korean individuals.
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