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Human rhinoviruses: coming in from the cold

Katherine E Arden and Ian M Mackay

Address: Queensland Paediatric Infectious Diseases Laboratory, Sir Albert Sakzewski Virus Research Centre, Queensland Children’s Medical
Research Institute, Royal Children’s Hospital and Clinical Medical Virology Centre, University of Queensland, Queensland, Australia.

Correspondence: Ian M Mackay. Email: ian.mackay@uq.edu.au

Published: 28 April 2009
Genome Medicine 2009, 1:44 (doi:10.1186/gm44)

The electronic version of this article is the complete one and can be
found online at http://genomemedicine.com/content/ | /4/44

© 2009 BioMed Central Ltd

Abstract

Rhinovirus infections cause at least 70% of virus-related wheezing exacerbations and cold and flu-
like illnesses. Infections are also associated with otitis media, sinusitis and pneumonia. The annual
impact of human rhinovirus (HRV) infections costs billions of healthcare dollars. To date, 100
serotyped HRV or ‘classical’ strains have been divided between two genetically distinct species
based on subgenomic sequences, but many more, apparently novel strains remain un-
characterized, circulating in unknown patterns and causing undefined illnesses. Until recently, the
genomes of less than half the classical strains had been sequenced. In April 2009, the remaining
classical HRV genome sequences were reported. These data will inform therapeutic development
and phylogenetic analysis for this subset of HRV strains but should be viewed as one step in a
long road leading to comprehensive HRV characterization.

Rhinoviruses: a long cold road ahead

Human rhinoviruses (HRVSs) are the most common cause of
acute respiratory tract illness globally [1], infecting both
upper and lower respiratory tract tissues [2,3]. They cause
more asthma [4-6] and chronic obstructive pulmonary
disease (COPD) [7] exacerbations than any other factor
identified to date, in addition to the majority of cold and flu-
like illnesses (CFLIs) [8]. It is interesting to note that, in
contrast to many of the other well-known respiratory viruses,
the clinical symptoms of HRV infection are primarily caused
by the host’s immune response to infection rather than by
viral cytopathicity [9-12]. HRVSs are the most common reason
for prescribing antibiotics [1] and are associated with
pneumonia [13], otitis media [14] and sinusitis [15]. Up to a
quarter of children worldwide experience asthma symptoms,
with prevalence plateauing in some countries while rising in
other parts of the world [16]. In adults, COPD exacerbations
are predicted to soon become the world’s third leading cause
of death [17]. The HRVs therefore create an enormous direct
and indirect social and economic burden across the
developed and developing world [18,19].

Until recently, less than half the genomes from the approxi-
mately 100 serologically defined ‘classical’ strains (also
called serotypes or types) had been sequenced. A handful of
strains have had capsid structures experimentally defined
and some have been subject to immunological investi-
gations. Now, Palmenberg et al. [20] have completed the
sequencing of all classical HRV genomes.

Rhinoviruses: more than meets the eye?

From the 1960s to the 1990s, human infection and culture-
based methods of HRV detection prevailed, often
augmented by strain typing using neutralizing antisera [21].
The impracticality and insensitivity of these methods
[22,23] resulted in the misconception that compared to
influenza virus and respiratory syncytial virus, for example,
HRVs had straightforward and relatively minor roles in
illness. This thinking limited their further characterization.
Polymerase chain reaction (PCR)-based methods
subsequently started to reveal the extent and complexity of
HRV-induced illness [24] and have identified the frequent
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occurrence of co-detections, including some involving HRV
strains, in respiratory specimens. Associations between an
illness and a single respiratory virus, assumed because it was
the only virus detected, now require re-examination to
confirm that the association holds true. Previous concept-
defining HRV-related epidemiology was conducted without
knowledge of the numerous co-circulating respiratory
viruses discovered since and was biased by the inability of
culture to detect certain strains and species. Many of the
20th century’s conclusions about HRVs will need to be
revisited using modern methods. To date only one HRV
strain, HRV-QPM, has been a deliberate target for intensive
study using molecular tools [25].

In 2006 a large clade of divergent but inter-related strains
was reported [26], and is now recognized as a proposed third
species; HRV C. The HRV Cs were found entirely by
molecular means from specimens collected in 2003/2004
[26-30], reflecting the unsuitability of culture for sensitive
and comprehensive screening. HRV Cs have been heavily
associated with wheezing illness but remain ‘unculturable’,
perhaps reflecting their preference for different cell lines
than those used routinely [25].

New genome sequences raise as many questions as
they answer

The turn of the century has seen many significant advances
in our understanding of the genetic diversity, genomic
features and clinical impact of infection by the HRV group,
as well as the immunological interactions of a few strains.
The first classical strains were officially named in 1967 [31],
the last in 1987 [32]. Sequencing of the 5’ untranslated
(5'UTR)-VP2 region was completed for all classical strains in
2002 [33] and the complete set of 1D regions was available
in 2004 [34]. In 2007 Kistler et al. added 28 genomes [35]
and Tapparel et al. 12, including one common to both
studies [36]. All these data have provided tools to expand
our knowledge of the phylogeny, evolution and epidemiology
of HRVs and to predict their drug susceptibility, with reports
indicating that subgenomic regions usefully represent the
known genomes [34,35]. Completing the sequencing of all
classical strains has allowed more comprehensive in silico
analyses than have been possible to date.

Examination of the entire set of HRV coding and non-coding
regions by Palmenberg et al. produced data that support
recent reports of recombination among the HRVs [37], but
other intensive analyses indicated that this is not a driving
force behind HRV evolution [35,38,39]. The discrepancies
may be due to the different numbers of classical strain
sequences used in each study, the different origins of the
viruses used for sequencing, or the way predictive algo-
rithms were configured. The ability of HRVs to recombine in
practice awaits empirical evidence. Fascinatingly, one of ten
field strains (HRV-54f05) sequenced by Palmenberg et al.
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[20] was predicted to be involved in recombination events
from which seven classical strains arose compared to only
one event for the American Type Culture Collection (ATCC)
variant of the same strain. Previously, one strain needed to
vary only at a few epitopes to be considered distinct from
another. Now, when comparing molecular rather than
antigenic differences, two variants of the same HRV strain
(HRV-54) are found to differ across the genome by almost
600 nucleotides (91% identity, equating to 46 amino acid
changes resulting in 98% amino acid identity). This raises
several questions. How quickly does intra-strain genetic
variation occur? Can such variation accumulate in sufficient
quantity to require that a clinical HRV isolate or PCR
detection be reconsidered as a distinct strain? Are new HRV
strains actively emerging? These questions are especially
important given the obvious impact of nucleotide sequence
variation on evolutionary conclusions. Future studies may
address the extent and location of genetic differences
between clonal yet low-passage field strains [35] versus
culture-adapted ATCC strains. Palmenberg et al. also
proposed that a previously identified (HRV A’ [40]), small
but divergent clade within the HRV A species, which was
renamed clade D, may represent a new species of HRV [20].
When aligned together, two of the three members of this
clade (HRV-8 and HRV-95) differ by no more than 81
nucleotides (>98% identity) or ten amino acids (>99%
identity) and should be recognized as a single strain, as has
been noted [20,34]. The International Committee on
Taxonomy of Viruses (ICTV) set 70% amino acid identity in
two key regions as part of the demarcation between species
within the genus Enterovirus. The definition is met in the
2C+3CD genomic region for assigning clade D to a novel
species, as it exhibits >89% average amino acid identity
between the clade’s two distinct members but only 65%
identity to other HRV A strains. However, the clade remains
similar enough to the other HRV A strains in the P1 region
(>70% average identity), its choice of receptor (major group
[41]) and its similar G+C content. Clade D’s antiviral profile
is more similar to the HRV B strains (antiviral group A).
Other genetic findings from the report of Palmenberg et al.
[20] build upon those described previously for the classical
HRVs [35,36].

These new sequence data are valuable contributions to pure
knowledge, to future rational drug design and for addressing
outstanding phylogeny-based issues. However, the data do
not directly contribute to more clinically relevant areas of
research, such as diagnostic assay design, epidemiology,
immunology, viral interference and co-infection, clinical
impact, differential diagnosis and infection control. To
address these areas is a daunting task because to be most
informative, future respiratory virus studies, whether for
HRVs or other viruses, should undertake an all-inclusive
approach towards virus characterization. To give statistical
power to the findings, large populations should be screened
regularly regardless of symptoms (addressing persistence
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Figure |

Scope of the uncharacterized diversity within the HRV supergroup: 428 classic and novel HRV A (red), B (blue) and C (green) species sequences were
aligned using Muscle within Geneious Pro v4.6.1. The circular neighbor-joining tree (Tamura-Nei model; 100 bootstraps with consensus support shown
at the nodes where space permitted) was produced using Geneious Tree Builder and rooted using CVA-21 (pink). Only sequences included in the report
by Palmenberg et al. [20] are labeled (multiples of the same strain are identified using the first two characters of the GenBank accession code or ‘ATCC’
to identify their origin as per reference [20]). Putatively novel strains and their variants are represented with a terminal gray circle. The subgenomic
fragment spanned 266 nucleotides of the | A (VP4)/IB (VP2) junction. CVA, coxsackievirus A; HEV, human enterovirus; PV, poliovirus.

and pathogenicity), for all viruses (addressing co-infection = rence and seasonality) under case-controlled conditions.
and interference) across multiple years (addressing recur- Ideally, hospital and community-based settings would be
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sampled in parallel (addressing pathogenicity in both
groups), including the collection of appropriate material to
permit serology and immunology investigations. These
studies will need comprehensive and reliable molecular
assays capable of detecting all instances of each virus or
virus group and would benefit from an internationally
collaborative approach.

Have the rhinoviruses coughed up all they have to
offer?

Many novel HRV A, B and C strains are found when HRV-
positive respiratory specimens are typed using subgenomic
regions [24,26] (Figure 1). There are likely to be many more
when sampling extends over a greater period of time, since
HRV strains do not always recur every year at a single
location [42,43]. It is likely that our current PCR-based
methods could identify more than 100 novel HRV strains,
raising more questions. What drives the development of so
many strains when compared to the small number of strains
of other RNA virus species? And why are so many similar
strains apparently retained as stable viral entities over time?

Palmenberg et al. [20] conclude that future HRV epidemio-
logy should make use of full genome sequencing rather than
serotyping. Clearly, serotyping is no longer best or even most
frequent practice, but it is to be hoped that future studies
can determine sequence regions that suitably replicate these
subdivisions, avoiding costly, time-consuming and tech-
nically demanding complete genome sequencing. Currently,
it is impractical for most diagnostic and many clinical
research laboratories to routinely sequence the full genome
of every HRV detected, a task made especially daunting by
the high prevalence of these viruses. The 1D region is the
best subgenomic target for enterotyping [44] and has
previously proven suitable for rhinotyping. However, the
extent to which intra-species recombination will render
subgenomic regions unreliable indicators of strain identity is
a new source of uncertainty. The use of capsid-derived
subgenomic regions for speciation remains reliable. Regions
with high inter-strain sequence homology, such as the
5’UTR, are understandably risky targets for strain or species
typing. An agreed upon definition of what constitutes a
distinct HRV strain would be helpful for future studies and
may become available from the Picornaviridae Study Group
[45] in due course. Once all HRVs are identified, we may
reliably define associations between strains, clades or
species and clinical illnesses and syndromes. Characterizing
the full spectrum of HRVs, including full genome
sequencing, will better inform our efforts to create reliable
therapeutics, such as antivirals that reduce viral replication
and the symptoms of illness. The scope of HRV antigenic
diversity and the possible importance of frequent, mild HRV
infections for the development of a robust antiviral
immunity during the early years of life may mean that a
sterilizing vaccine, if feasible, is not desirable.
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Although HRVs have increasingly become thought of as a
single viral supergroup, now residing alongside their cousins
in the genus Enterovirus, there may be important,
discriminating antigenic, immunogenic, epidemic, clinical
[20,46] and now genomic features that support the treat-
ment of some strains, clades or species as discrete viral
entities, deserving targeted antiviral interventions and
virological, clinical and epidemiological characterization
[21]. The rhinoviruses, known for decades, but often
considered less of a public health and research priority than
other viruses, may at last be facing the modern molecular,
epidemiological and clinical research onslaught due such an
intriguing group of pathogens.
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