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Abstract

causative roles in disease progression.

Background: Transcriptional studies suggest Alzheimer's disease (AD) involves dysfunction of many cellular
pathways, including synaptic transmission, cytoskeletal dynamics, energetics, and apoptosis. Despite known
progression of AD pathologies, it is unclear how such striking regional vulnerability occurs, or which genes play

Methods: To address these issues, we performed a large-scale transcriptional analysis in the CAT and relatively less
vulnerable CA3 brain regions of individuals with advanced AD and nondemented controls. In our study, we
assessed differential gene expression across region and disease status, compared our results to previous studies of
similar design, and performed an unbiased co-expression analysis using weighted gene co-expression network
analysis (WGCNA). Several disease genes were identified and validated using gqRT-PCR.

Results: We find disease signatures consistent with several previous microarray studies, then extend these results
to show a relationship between disease status and brain region. Specifically, genes showing decreased expression
with AD progression tend to show enrichment in CA3 (and vice versa), suggesting transcription levels may reflect a
region’s vulnerability to disease. Additionally, we find several candidate vulnerability (ABCA1, MT1H, PDK4,
RHOBTB3) and protection (FAM13A1, LINGO2, UNC13C) genes based on expression patterns. Finally, we use a
systems-biology approach based on WGCNA to uncover disease-relevant expression patterns for major cell types,
including pathways consistent with a key role for early microglial activation in AD.

Conclusions: These results paint a picture of AD as a multifaceted disease involving slight transcriptional changes
in many genes between regions, coupled with a systemic immune response, gliosis, and neurodegeneration.
Despite this complexity, we find that a consistent picture of gene expression in AD is emerging.

Background

Alzheimer’s disease (AD) is the most common form of
dementia, affecting nearly half of the population over the
age of 85 years [1]. AD has no cure and although <10% of
cases can be linked to genetic mutations in PSENI,
PSEN2, or APP, the majority of AD cases have no known
genetic cause, and the underlying genetic modifiers are
highly complex and remain elusive [2]. While neurofibril-
lary tangles (NFT's) and amyloid deposition are pathologi-
cal hallmarks of AD, transcriptional studies suggest that
dysfunction of cellular pathways such as energy metabo-
lism [3-5], synaptic transmission [3-6], and myelin-axon
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interactions [3] may precede the neuropathological indica-
tors [7,8]. Other pathways implicated in AD include
inflammation [3,4,9], cytoskeletal dynamics [9,10], signal
transduction [3,4,9,11], protein misfolding [3,12], tran-
scription factors [3,9], and cell proliferation [3,9]. Further-
more, these transcriptional changes do not occur
throughout the brain in a uniform manner; AD follows a
well-characterized progression, with pathology beginning
in brain areas involved in learning, memory, perception,
and emotion, such as the entorhinal cortex, amygdala, and
hippocampus, then spreading throughout the cortex
[7,13]. This regional vulnerability is strikingly apparent in
the hippocampus, where CA1 pyramidal neurons are
invariably affected earlier and more severely than their
neighboring CA3 counterparts.

While many of these transcriptional changes are likely
due to dysfunctional cellular pathways, changes in the
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cellular composition of affected brain regions are also
likely to impact gene expression levels [14]. In addition to
widespread pyramidal cell loss and diffuse atrophy of
affected brain regions [13], the role of glial cells in AD
pathophysiology is becoming more apparent. Microglia,
the resident immune cells in the central nervous system,
have been shown to cluster around amyloid plaques [15],
increasing in number in the early stages of AD [16]. Reac-
tive astrocytes show similar response to disease pathology,
whereas astrocytes not associated with pathology tend to
degenerate [17]. Oligodendrocyte dysfunction has also
been suggested as an early event in AD progression [18].
Although a few groups have used methods such as laser
capture microdissection [19,20] and microaspiration [6] to
enrich their samples for transcripts expressed in pyramidal
neurons, the extent to which cellular composition impacts
gene expression remains unclear.

To address these issues and to complement these for-
ward genetic analyses, we have performed a large-scale
transcriptional analysis in brain of individuals with
advanced AD and non-demented controls, focusing spe-
cifically on the CA1 field of the hippocampus and the
relatively less affected adjacent region, CA3. For compari-
sons between brain regions and across disease status, we
find consistency between our results and several previous
studies; however, with the addition of CA3 samples in
AD we are also able to provide novel insights into AD
pathophysiology. In CA1 we find that genes related to
synaptic transmission and cell-cell signaling tend to show
decreased expression in AD, whereas genes related to cell
death and cell proliferation tend to show increased
expression. Interestingly, many of the changes occurring
in CA1 also occur in CA3, although to a lesser extent.
Furthermore, genes showing decreased expression with
AD progression are likely to also show an initial enrich-
ment in CA3, whereas genes showing increased expres-
sion with AD progression are likely to also show an
initial enrichment in CA1l, indicating that transcription
levels in a region may reflect that region’s vulnerability to
disease. Based on this rubric, we identify ABCA1, MTI1H,
PDK4, and RHOBTB3 as putative vulnerability genes and
FAMI13A1, LINGOZ2, and UNCI13C as putative protection
genes. To account for the changes in cellular composi-
tion that occur in AD, we developed and apply a linear
model, finding that the most differentially expressed
genes are likely involved in dysfunctional cellular path-
ways rather than due to cell loss or gliosis. Along the
same lines, we use weighted gene co-expression network
analysis (WGCNA) to find modules of highly co-expressed
genes enriched with markers for major cell types, each of
which shows a distinct expression pattern that provides
insight into aging and AD. Of particular note is a micro-
glia-associated module that shows increased expression in
controls with early signs of NFT pathology, lending
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support to the idea that microglial activation may be one
of the earliest events in AD progression. Together, these
findings suggest that large-scale regional vulnerabilities in
AD are likely due to the combination of many small differ-
ences in gene expression patterns between brain regions,
affecting multiple cell types.

Materials and methods

Tissue collection

De-identified, pathological specimens consisting of fresh-
frozen human hippocampus and frontal cortex samples
were generously provided by two tissue centers (Alzhei-
mer’s Disease Center, Oregon Health and Sciences Univer-
sity, and Human Brain and Spinal Fluid Resource Center),
both from clinically and neuropathologically classified
late-onset AD-affected individuals, as well as from age-
and sex-matched controls (Table 1; Additional file 1). The
research was performed at UCLA, but because the study
does not use data or specimens from living individuals, it
was not deemed by the UCLA Institutional Review Board
as subject to review.

Subjects from the Alzheimer’s Disease Center fell into
two categories. First, control subjects were participants in
brain aging studies at the Oregon Aging/Alzheimer’s
Disease Center. Subjects received annual neurological and
neuropsychological evaluation, with clinical dementia
rating assigned by an experienced clinician. Controls had
normal cognitive and functional examinations. Second, the
AD subjects were diagnosed by a clinical team consensus
conference, met National Institute for Neurological and
Communicative Disorders and Stroke-Alzheimer’s Disease
and Related Disorder Association diagnostic criteria for
clinical AD, had a clinical dementia rating of greater than
1.0, and neuropathologic confirmation at autopsy (after
informed consent). Tissue use conformed to institutional
review board-approved protocols. Subjects from the Spinal
Fluid Resource Center met comparable criteria. Ordinal
scales were used to assess NFT burden (Braak stage of
0 to 6) [13] and amyloid plaque burden (0 to 3), where
higher scores indicate greater pathology.

Table 1 Summary of subject information

Category Control AD P-value
Gender 11 M/5F 9 M/8 F 037
Age 817 £ 69 773 £ 9.1 013
PMI 108 + 6.8 112+63 0.85
Plaques 0.58 £ 0.51 259 + 051 6.0E-11
Braak 1.50 + 0.52 533+ 062 6.0E-14

Control and AD groups are controlled for gender, age at death (years), and
PMI (postmortem interval in hours) as closely as possible, but there is

a significant difference in plaque burden (0 to 3; 0 = none, 1 = sparse,

2 = moderate, and 3 = severe) and Braak stage (0 to 6) [13] between groups,
as expected. Values are mean + standard deviation. Gender indicates the
number of subjects of each gender (M, male; F, female) per group.
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Tissue processing, RNA isolation, and expression profiling
Hippocampal CA1 and CA3 subfields were isolated using
the following method. First, frozen tissue was cut into 60
pum sections, with the first section from each sample
stained with cresyl violet. Labeled sections were then
photographed and enlarged, and these images were used
as reference during dissections. Using a scalpel CA1 and
CA3 subfields were dissected from sectioned but unla-
beled tissue on dry ice and immediately placed into elution
buffer for RNA extraction. Total RNA from each sample
was isolated using the RNeasy Micro Kit with DNase I
treatment (QIAGEN, Valencia, CA, USA), then tested for
quality on the Agilent 2100 Bioanalyzer using RNA 6000
Nano Chips (Agilent Technologies, Palo Alto, CA, USA).
For each of the 71 samples passing RNA quality control
standards, 360 ng total RNA were sent to the Southern
California Genotyping Consortium (Los Angeles, CA,
USA) for analysis on the Illumina HumanHT-12 v3
Expression BeadChips (Illumina, San Diego, CA, USA).
Samples were randomly assigned to BeadChips in order to
minimize the impact of any batch effects on differential
expression by region or disease status.

Microarray analysis

Unprocessed expression data for all 71 samples have been
deposited in NCBI's Gene Expression Omnibus (GEO)
[21] and are accessible through GEO Series accession
number GSE29378. [llumina HumanHT-12 v3 Expression
BeadChips measure the expression of over 25,000 anno-
tated genes using 48,803 probes. Initial expression values
were computed from probe intensities using the program
GenomeStudio (Illumina). From these data, six samples
with low inter-array correlation were removed as outliers
(as described in [5]). The data were then quantile normal-
ized. Two final outlier arrays were removed as above, for a
total of 63 samples (32 control, 31 AD) remaining in the
analysis. This outlier removal procedure is completely
unbiased, since it ignores phenotypic traits.

After preprocessing and outlier removal, the following
categories of probes were omitted from the analysis: (i)
probes called as present (P < 0.1) in three or fewer sam-
ples; (ii) probes not assigned gene symbol annotations; and
(iii) duplicate probes for a single gene, but only if these
probes had a Pearson’s correlation value of R > 0.8 (using
the function collapseRows [22]). When removing duplicate
probes for a gene, the probe with the highest average
expression level was retained. This final filtering step left a
total of 23,696 probes in our analysis corresponding to
17,128 genes. The resulting expression matrix is also avail-
able from the same location.

Differential expression analysis
We measured differential expression with respect to
region, disease, and Braak stage, often using only a subset
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of the total data. Unless otherwise specified, an uncor-
rected P-value cutoff of <0.05 (using a Student’s ¢-test)
combined with a fold change (FC) >1.2 was used to deter-
mine differential expression (after correcting for multiple
comparisons, very few genes showed significant differential
expression). When it came to validating findings across
data sets, we kept track of the directionality of gene
expression (for example, genes that are over-expressed in
diseased individuals in one data set should also be over-
expressed in the diseased individuals of another data set).
For region-enrichment comparisons, paired ¢-tests were
used, since CA1l and CA3 were obtained from each
subject.

To characterize lists of differentially expressed genes
based on gene ontology annotation, we used Enrichment
Analysis Systematic Explorer (EASE) [23], as previously
described [3,5]. EASE assigns identified genes to Gene
Ontology (GO), Kyoto Encyclopedia of Genes and
Genomes (KEGG), and other experimentally derived gene
categories, and then tests for significant overrepresentation
of identified genes within each category using a modified
Fisher’s exact test. In order to compare our differential
expression results with similarly designed previous studies,
we first sorted and ranked all genes in our analysis with
respect to region in control only, as well as with respect to
disease status in CA1l alone. We sorted and ranked the
variables using the Z scores. Since a monotonically
increasing function relates Z scores to P-values, this is
equivalent to sorting by P-values. For each previous study,
we then noted where the reported differentially expressed
genes were located in our sorted list, and assessed the
resulting significance using a Z score to measure diver-
gence from a random distribution. Specifically, we quantify
consistency using ‘mean gene rank’, which is the mean
ranked differential expression of a subset of genes, scaled
by the number of total genes and offset by 0.5 to set
chance = 0.

We also determined putative vulnerability and protec-
tion genes with AD. Vulnerability genes are defined as
genes showing significantly higher expression in CA1l
than CA3 (FC >1.2) and increasing with AD to a signifi-
cantly greater degree in CA1 compared with CA3 (FC in
CA1l >1.2 and FC in CA1 > FC in CA3). Protection genes
were defined as genes showing significantly higher
expression in CA3 than CA1 (FC >1.2) and also increas-
ing to a greater degree (FC in CA3 >1.2, FC in CA1 <1.2)
or decreasing to a lesser degree (FC in CA3 <1.4 x FC in
CA1l) in CA3 compared with CA1. Both vulnerability and
protection genes also must have a Bayes ANOVA signifi-
cance of P < 0.05 as assessed using the function bayesA-
nova (parameters: conf = 12, bayes = 1, winSize = 11)
[24], and all of the FC criteria must hold when defining
groups based on both the mean and the median expres-
sion for each group.
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To ensure that our results for region and disease status
were not solely a product of neurodegeneration and glio-
sis, we used a multivariate linear model to regress indivi-
dual gene expression levels against region, disease status,
and marker genes for four major cell types: neurons
(SYT1I), astrocytes (AQP4), oligodendrocytes (MOG), and
microglia (TYROBP), respectively. These particular mar-
ker genes met the following three criteria: 1) they had
multiple publications linking them to their matched cell
type; 2) they showed significant experimental confirma-
tion in two previous microarray studies; and 3) they
showed high connectivity with their matched cell type in
two previous WGCNA studies in brain [14,25]. We also
note that the model is fairly robust to choice of marker
genes for cell type.

Weighted gene co-expression network analysis and
module characterization

We created a network from normalized expression data by
following the standard procedure of WGCNA [26]. Briefly,
we calculated pair-wise Pearson correlations between each
gene pair, and then transformed this matrix into a signed
adjacency matrix using a power function. The components
of this matrix (connection strengths) were then used to
calculate ‘topological overlap’ (TO), a robust and biologi-
cally meaningful measurement of gene similarity based on
two genes’ co-expression relationships with all other genes
in the network. Genes were hierarchically clustered using
‘1 - TO’ as the distance measure, and initial module
assignments were determined by using a dynamic tree-
cutting algorithm [27]. For computational reasons, initial
module formation was performed only on the approxi-
mately 15,000 genes with the highest overall connectivity,
as previously described [14]. We calculated Pearson corre-
lations between each gene and each module eigengene -
referred to as a gene’s module membership - along with
the corresponding P-values [14,28]. The module eigengene
is commonly used as a representative value for a module,
and is defined as the first principal component of a mod-
ule, and is the component that explains the maximum
possible variability for all genes in a module. For the final
module characterizations, each gene was (re)assigned to
the module for which it had the highest module member-
ship. Thus, genes were each assigned to exactly one mod-
ule, including genes that were omitted from the initial
module formation.

Modules were characterized using the following strat-
egy: first, modules were annotated using EASE (as
described above); second, modules were further anno-
tated by measuring their overlap with modules from pre-
vious WGCNA studies of human and mouse brain
[14,25]; third, cell type annotations were confirmed by
measuring the overlap between our modules and experi-
mentally derived lists of cell type-specific genes using the
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function userListEnrichment [22]; fourth, modules were
annotated for region and disease specificity by measuring
their overlap with lists of differentially expressed genes
from the six studies discussed in the text [3,4,20,29-31];
and finally, module eigengenes were associated with all
phenotypic traits available in this study (region, disease,
age, and so on) in order to gain insight into the role each
module might play in AD pathophysiology. To test for
significant overlap between gene lists from our study and
those from previous lists, the hypergeometric distribution
(Fisher’s exact test) was used. Modules were graphically
depicted using VisANT [32], as previously described [5].
Network depictions show the 250 strongest reciprocal
within-module gene-gene interactions (connections) as
measured by TO. A gene was considered a ‘hub’ if it had
at least 15 depicted connections.

Quantitative RT-PCR validations

RNA for quantitative RT-PCR (qRT-PCR) validations of
eight disease- and region-specific genes was collected as
for the arrays. Although RNA was collected from the same
samples as in the microarray analysis, it was collected
from different sections. Total RNA was collected from lar-
ger pieces of hippocampus and frontal cortex of five select
individuals for qRT-PCR validations of microglial genes.
For these samples, the RNeasy Mini Kit with DNase I
treatment (QIAGEN) was used for RNA isolation. A list of
primer pairs used for qRT-PCR validation is provided
(Table S7 in Additional file 6). In total, 13 genes were
assessed using qRT-PCR. For qRT-PCR validations of
PDPR, results from two separate primer pairs were
averaged.

In situ hybridization validation

Probes for RNA in situ hybridization analysis were
designed using distal forward and reverse primer pairs
from two proximal qRT-PCR validation regions to yield a
probe of approximately 500 bp that was cloned into the
pCR4-TOPO vector (Invitrogen). To produce digitonin-
labeled probes, plasmids were first linearized with Notl
(New England Biolabs, Ipswich, MA, USA), then tran-
scribed using the DIG RNA Labeling kit (Roche, Indiana-
polis, IN, USA) according to the manufacturer’s protocols.
Formalin-fixed paraffin-embedded tissue sections of con-
trol and AD case individuals cut to 16 pm thickness were
obtained from the UCLA Alzheimer’s Disease Research
Center. Hybridization was performed according to [33]
with modifications from [34] using 600 ug RNA per
section.

Results

To address the issue of regional vulnerability with disease
progression, while also taking into account the complexity
of AD, we performed a large genome-wide comparison of
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CA1 and CA3 gene expression in the brain of individuals
with advanced AD and non-demented controls using Illu-
mina Human HT-12 microarrays. The purpose of this
study design was several-fold: first, to identify genes that
show an association with vulnerable regions in AD pro-
gression; second, to quantify the relationship between
region and disease using gene expression; third, to bring
together the results of several previous studies of disparate
design coming to apparently inconsistent results; fourth,
to determine how the composition of cell types in hippo-
campus changes with AD progression; fifth, to identify
genes marking early, presymptomatic signs of AD progres-
sion; and finally, to provide a gene expression resource for
interested scientists. The data discussed in this publication
have been deposited in NCBI's GEO [21] and are accessi-
ble through GEO Series accession number GSE29378.

To minimize the possibility of group bias, brain samples
from individuals with moderate to severe AD (disease
group; N = 17) were matched for gender, age, and post
mortem interval (PMI) with individuals showing little to
no cognitive deficits (control group; N = 16), as closely as
possible (Table 1; Additional file 1). Furthermore, samples
were randomly assigned to microarrays to limit batch
effects. Simple clustering of the arrays reveals no signifi-
cant confounding factors: samples cluster by individual,
but not by batch, brain bank, location on the array, PMI,
gender, or age (Figure S1 in Additional file 6). With the
exception of heat shock proteins, no GO categories
showed significant enrichment for genes differentially
expressed with batch, brain bank, location on the array, or
PMI, further suggesting that our results are properly con-
trolled for possible confounding factors.

Genes differentially expressed with disease or region
We first determined which genes showed differential
expression with disease progression ('disease-altered’
genes) in CA1l and CA3 separately, and then annotated
these gene lists using EASE [23]. In CA1, we find that
genes related to synaptic transmission and cell-cell signal-
ing tend to show decreased expression with AD, whereas
genes related to cell death and cell proliferation tend to
show increased expression (Table 2; for a complete list of
differentially expressed genes, see Additional file 2). EASE
also identified two specific pathways showing increased
expression with AD progression - the MAPKKK cascade
and the transforming growth factor-f3 signaling pathway.
Both have previously been implicated in AD progression
[35,36]. Similar changes are seen in CA3; however, they
are less dramatic (Figure S2A in Additional file 6), which
is consistent with the lesser vulnerability (relative protec-
tion) of this region to AD-related neurodegeneration com-
pared with CA1.

We next identified genes enriched in either CA1l or
CA3 (region-enriched’ genes) in controls. Since both
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regions were collected from identical tissue sections,
removing a major source of variability, we identified more
differentially expressed genes than in the disease-related
analysis. We find that the list of genes enriched in CA3
shows overrepresentation for genes involved in synaptic
transmission, cytoskeletal protein binding, and cholesterol
biosynthesis (Table 2; Additional file 2). In the case of
CAl-enriched genes, we find over-representation of genes
related to signal transduction, immune response, and cell
motility (Table 2; Additional file 2). Interestingly, we also
find enrichment in metallothioneins, a group of heavy

Table 2 Annotation for lists of differentially expressed
genes

Gene category EASE score
Down with AD (in CA1)
Synaptic transmission 6.18E-14
Cell-cell signaling 7.88E-12
CNS-specific functions 2.99E-05
Potassium channel activity 6.46E-05
Neurogenesis 1.35E-04
cAMP-mediated signaling 5.99E-04
Lipoprotein 1.30E-03
Up with AD (in CA1)
Response to stress 2.36E-05
Cell-matrix adhesion 8.79E-04
MAPKKK cascade 2.73E-03
Polymorphism 2.95E-03
Hs_TGF beta signaling pathway 5.25E-03
Cell proliferation 1.14E-02
Cell death 1.22E-02
Enriched in CA3 (in control)
Transport 2.16E-11
Neurogenesis 1.85E-08
CNS-specific functions 7.37E-08
Synaptic transmission 7.27E-07
Cell growth and/or maintenance 1.28E-05
Cytoskeletal protein binding 2.80E-04
Potassium transport 3.04E-04
Cholesterol biosynthesis 4.70E-04
Enriched in CA1 (in control)
Signal transducer activity 342E-09
Response to external stimulus 3.70E-07
Metallothionein 9.74E-06
Immune response 1.53E-05
Cell-cell signaling 1.89E-05
Cell motility 4.31E-05
Homeostasis 9.97E-05
Polymorphism 948E-03

Significantly overrepresented gene ontology categories (EASE score <0.01) are
presented for region- and disease-related lists of differentially expressed
genes. Numerous other similar significant categories are not included to
reduce redundancy. Complete lists of differentially expressed genes are
presented in Additional file 2. CNS, central nervous system; TGF, transforming
growth factor.
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metal binding proteins that have previously been impli-
cated in aging and AD [37]. When we perform the identi-
cal region-enrichment analysis in the AD group, we see
similar results as with controls; however, fewer genes meet
significance (Figure S2B in Additional file 6). This attenua-
tion of region-enriched genes with disease is consistent
with previous results in ischemia [30], and is not due to
increased variance in the AD samples, as the standard
deviations of the genes differentially expressed in controls
are no different than in AD.

To determine which genes showed the most signifi-
cant gene expression changes, we further refined our
lists of disease-altered and region-enriched genes, by
first including only genes with a fold change >1.4, then
sorting each list by P-value (the top ten genes of each
comparison are presented in Table 3). Many of these

Table 3 Top genes differentially expressed by disease and
region

Gene Fold change  P-value
Genes regionally DE in control only
CA1-specific
SPARCL1 -1.44 (-1.42) 7.0E-08
CYPIBI1 -142 4.7E-07
PPPIR16B -149 4.2E-06
KCNH3 -2.07 5.2E-06
EPHBT -147 5.8E-06
STOX1 -1.56 5.8E-06
MTIM -1.58 1.1E-05
D2 -149 14E-05
SOX2 -149 1.7E-05
GPAM -1.53 1.9E-05
CA3-specific
NRIP3 2.14 (2.52) 7.4E-08
ABHD12 1.54 (1.60) 9.0E-07
TMEM158 1.72 2.0E-06
TSPAN18 4.00 (4.07) 2.9E-06
TOMM34 1.85 4.2E-06
CCDC109A 1.52 6.7E-06
HOMER2 1.57 6.8E-06
CPNE4 3.18 7.5E-06
LINGO1 1.65 7.8E-06
HMGCR 1.65 8.8E-06
Genes changing with AD in CA1 only
Down with AD
SEPTS -1.59 2.8E-05
CSPG5 -1.82 6.9E-05
WFDC1 -147 8.2E-05
KCNIPT -1.77 1.0E-04
CXCL14 -1.96 (-2.09) 1.1E-04
ANKRD20A1 -1.81 1.6E-04
SEC14L5 -1.43 (-1.25) 3.0E-04
LOC648639 -1.71 3.1E-04
ARPP-21 -1.92 39E-04
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Table 3 Top genes differentially expressed by disease and
region (Continued)

ADRATB =211 6.3E-04
Up with AD
S100A6 1.59 (1.83) 4.6E-07
GEM 1.64 (2.05) 5.9E-06
PFKFB3 144 4.5E-05
SERPINA3 211 6.7E-05
TPST1 1.63 1.5E-04
SPARC 171 1.6E-04
CAB39L 146 1.9E-04
RCNT 142 2.0E-04
DMN 173 2.9E-04
BCL2 145 3.1E-04

Top ten CA1-specific genes in control (top list), CA3-specific genes in control
(second list), genes down with AD in CA1 (third list), and genes up with AD in
CA1 (bottom list) with fold change >1.4. For each list, the left column is the
gene, the second column is the fold change of differential expression, and the
right column is the associated P-value as measured by a t-test (Materials and
methods). For genes that were validated using qRT-PCR (in bold), fold
changes from the validations are presented in parentheses in the ‘Fold
change’ column. All genes are still significant after accounting for cell type
composition using a linear model. DE, differentially expressed.

genes are already known to have a role in AD. For
example, high levels of a.1-antichymotrypsin (the protein
product of SERPINA3) in blood plasma have been asso-
ciated with increased risk for dementia [38]. Likewise,
S100A6 was found to show increased expression in both
white matter as well as the subset of astrocytes that sur-
round amyloid plaques in both humans and two trans-
genic mouse models of AD, suggesting that this gene
may play a role in AD neuropathology [39].

Finally, we confirmed the direction and FC of eight of
these highly disease-altered or region-enriched genes by
qRT-PCR (Materials and methods; genes in bold in
Table 3), thus validating a cross-section of our microar-
ray results by an independent method.

In silico validation shows concordance among microarray
studies of Alzheimer’s disease

One of the major issues with microarray analyses, both in
general and with AD specifically, is the apparent lack of
agreement between studies of similar design on which
genes are differentially expressed, which has introduced
confusion and ambiguity in the field. To address this issue,
we assessed how consistent our results were compared
with previous studies finding either region-specific genes
in control or disease-altered genes in CA1, by measuring
how many such genes changed in the direction predicted
by our results. We first compared our regional results to
two previous studies of hippocampus - one in mouse [29]
and one in human [31]. When we include only genes in
our study with either high expression (average expression
>1,000) or high levels of differential expression (P < 0.005),
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thus improving separation of the signal from the noise, we
find nearly perfect agreement between our study and both
previous studies (Figure 1a). Even when we lower our
threshold for what we consider differentially expressed
genes (P < 0.05) we find a very high level of agreement
(86%). Specific examples of between-study agreement are
presented in Figure 1b. As an added control, we compared
our results with results from a recent microarray atlas of
human brain gene expression [40], finding a high correla-
tion of CA3/CALl fold changes (R = 0.44, P ~ 0), along
with several common region-enriched genes in both stu-
dies (Figure 1c; Figure S3 in Additional file 6; Additional
file 3). Likewise, when we compare our disease results to a
previous study of CAl in AD run using a similar design
[3], we find high agreement, in particular when including
only highly expressed and significantly differentially
expressed genes (Figure 1d; Figure S4 in Additional file 6).

We next extended these analyses to all genes, includ-
ing those with much more marginal differential expres-
sion, in a total of six studies: three assessing changes
with AD progression in CA1 (Figure le) [3,4,20] and
three finding CA1- and CA3-enriched genes in control
hippocampus (Figure 1f) [29-31]. We ranked all of our
genes from the most CAl-enriched to the most CA3-
enriched (or the ones most decreasing with AD to the
ones most increasing), and then compared lists of differ-
entially expressed genes from previous studies to our
ranked lists (Materials and methods). For 9 of the 12
comparisons, we find the distribution of genes signifi-
cantly shifted in the expected direction of overlap, and
in the three other comparisons the direction of change
was still correct, but did not reach significance (Figure
le,f). In other words, genes presented as CA3-enriched
in earlier studies are significantly more likely to have
higher expression in CA3 than in CAl in this study, and
likewise for the other phenotypes. Thus, despite the
many differences in experimental designs between stu-
dies, this in silico validation indicates that there is signif-
icant and previously unappreciated concordance
between functional genomic studies related to AD.
These analyses highlight for the first time many com-
mon genes and pathways in AD pathogenesis, showing a
degree of convergence that has not been well appre-
ciated previously.

Interaction between region and disease identifies factors
associated with selective vulnerability

In addition to identifying genes differentially expressed
with disease and with region separately, we can also
assess the interaction between disease and region. Given
the highly complex and heterogeneous nature of AD, it
is likely that a region’s vulnerability to AD depends, in
part, on the expression of large numbers of genes at
slightly varying levels. To address this issue, we repeated
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the differential expression comparisons, this time without
separating either CA1 from CA3 in our analysis of dis-
ease-altered genes, or control from AD in our analysis of
region-enriched genes. We find that genes enriched in
CA3 are likely to also show decreased expression with
AD progression, whereas genes enriched in CA1 are also
likely to show increased expression with AD progression
(Figure 2a). For example, while NCALD shows decreased
expression with AD in both brain regions, the expression
levels of this gene in CA3 in AD have not even dropped
below its CA1 levels in control, while the converse is true
for GNGS5 (Figure 2b). Our results are consistent with the
hypothesis that brain regions with relative protection
from AD pathology will also tend to show a less abnor-
mal gene expression signature at baseline. A list of all
genes showing significant differential expression with
both region and disease are presented in Additional file 4.

To find genes that may play a role in the relative vul-
nerability of CA1 or protection of CA3, we considered
the relative difference in fold change with disease
between these brain regions. Our nomenclature of ‘pro-
tection” and ‘vulnerability’ genes should be interpreted
with a grain of salt, since carefully designed validation
studies are needed to show a causal relationship implied
by the terminology. Such a strategy has previously been
successfully applied in the discovery of potential disease-
related genes in AD [12] and novel neuroprotective
genes in frontotemporal dementia [41]. More specifi-
cally, we would expect vulnerability genes to have higher
expression levels in CA1 than CA3 and also to increase
expression to a greater extent in disease, whereas pro-
tective genes should show the opposite pattern. Overall,
we found four candidates for putative vulnerability
genes (ABCAI1, MT1H, PDK4, RHOBTB3; Figure 2c)
and three candidates for putative protection genes
(FAMI13A1, LINGO2, UNC13C; Figure 2d) meeting
these criteria (Materials and methods). Two of our four
vulnerability genes have been previously associated with
AD: MTIH is a member of the family of zinc-regulating
metallothionein proteins discussed earlier, while ABCA1
is a major cholesterol regulator that can influence amy-
loid plaque aggregation and clearance (reviewed in [42]).
Furthermore, increasing expression of ABCAI with
increasing severity of AD has been measured both func-
tionally and neuropathologically [43]. Although none of
the neuroprotective genes have known roles in AD, two
have been associated with neuroprotection or plasticity
in other contexts: variants of LINGO2 have been asso-
ciated with risk and age of onset in Parkinson’s disease
[44], while UNC13C is a candidate gene for critical per-
iod neuronal plasticity in visual cortex [45].

Finally, to validate expression of UNC13C, we performed
in situ hybridization on tissue from three additional
human hippocampi showing no, moderate, and high
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5. (f) Genes showing significant region-enrichment in control in three previous studies tend to show similar regional enrichment in this study.

pathology according to Braak and Braak staging (Figure S5
in Additional file 6). Consistent with both microarray
probes for this gene, expression of UNCI13C shows
increased expression in CA3 relative to CA1 in AD tissue
compared with control. These results highlight the impor-
tance of including regions of different levels of vulnerability
in transcriptional studies to allow for more comprehensive
disease gene assessments.

Accounting for cell type differences occurring with
disease progression

One potential variable that we wished to explore was the
role of cell type differences underlying differential expres-
sion changes. For example, with neurodegeneration there

will be lost neurons, increases in glial cells, and a likely
infiltration of inflammatory cells. To address this issue,
we created a linear model measuring differential expres-
sion with region and with disease, which also takes into
account four major cell types in the brain using linear
regression (Materials and methods). We chose genes
used extensively in the literature as markers, and that
have also been labeled as hub genes in previous tran-
scriptional studies of human brain [14,25] (although we
note that choice marker gene makes very little difference
in the results). As a caveat, we point out that this linear
model ignores within-subject relationships and resulting
P-values should only be interpreted as descriptive as
opposed to inferential measures.
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After accounting for cell type, we found that approxi-
mately 60% of differentially expressed genes are still signif-
icant (Figure S6 in Additional file 6), and that most of the
same GO categories from Table 2 still show significant
enrichment, albeit to a lesser extent. This result suggests
that, with relatively equal contributions, differentially
expressed genes in our analysis mark two distinct phe-
nomena: first, there are differences in cell composition

between regions and disease states - a result that we will
discuss extensively in the context of WGCNA below - and
second, many genes show significant changes in expres-
sion even after accounting for changes in cell composition.
This second category likely represents the subset of differ-
entially expressed genes marking dysfunctional cellular
pathways, which we hypothesize encompasses the most
significant gene expression changes, and includes all the
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genes from Table 3. These results suggest that standard
microarray analyses of heterogeneous tissue can accurately
pinpoint genes related to dysfunctional intracellular path-
ways for the most highly differentially expressed genes,
but that more sophisticated analyses are required to
address cell type composition for the majority of such
genes.

WGCNA uncovers disease-related expression changes of
major cell types

To complement traditional differential expression analyses
and further explore the pathophysiology of AD from a sys-
tems perspective, we performed WGCNA on our samples
(Materials and methods). We found 19 modules of highly
co-expressed genes (Figure S7 in Additional file 6; see
Additional file 5 for more specific module information and
see Figure S8 in Additional file 6 for module depictions).
As with previous WGCNA studies of brain tissue [14,25,
46], many of these modules correspond to cell types and
to basic cellular components (Table 4). Each marker gene
used in our linear model shows high connectivity in a
module corresponding to that same cell type, confirming
that the genes for our linear module were appropriately
chosen. Furthermore, for each major cell type, we find
modules associated with AD-relevant traits. For example,
the module eigengenes of many neuron-associated mod-
ules show decreased expression in AD individuals com-
pared with non-demented controls (Figure 3a). Astrocyte
modules tend to have the opposite pattern, showing
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increased expression in AD (Figure 3b). In addition, we
find one module highly enriched for oligodendrocyte mar-
kers (the red module), which does not show region or
disease specificity, but is the only module positively corre-
lated with age in controls (Figure 3c). We also find that
one module marking microglia (the light green module)
shows significantly increased expression in non-demented
controls in Braak stage 2 compared with controls in Braak
stage 1 (Figure 3d), suggesting a relationship between
microglia activation and tau pathology, even in the
absence of AD symptoms. Finally, as a methodological
control, we evaluated the expression patterns of the top
hub gene for each cell-type module using the Allen Mouse
Brain Atlas resource [47]. We find that in mouse each hub
gene seems to mark the correct cell type, providing further
evidence that our module characterizations are valid
(Figure 4).

Microglia markers are early indicators of tau pathology

To further examine the association between microglia
and early tau pathology, we determined which genes
showed the most significant increase in expression
between Braak stages of 1 and 2 using a ¢-test, this time
including CA1 and CA3 samples together to increase
statistical power. Overall, we found 490 significant
genes, including many in the light green ‘microglial’ mod-
ule and >60 from the ‘defense response’ GO category (P <
107'®). To validate our results we performed qRT-PCR,
adding two new controls to our analysis (Additional file 1).

Table 4 Summary of module characterization and trait association

Module Characterization Trait association

Black Astrocyte Up with AD

Blue Mitochondria, neuron Down with AD

Brown Pyramidal neuron Down with AD duration, down with AD, enriched CA3
Cyan Glutatmatergic synapse, neuron Down with AD, down with age, enriched in CA3
Green Astrocyte (and other glia), cell death? Up with AD

Green-yellow Ribosome, oligodendrocyte —

Grey60 Microglia (M8)? Up with AD

Light cyan Astrocyte Enriched in CAT

Light green Microglia (M10) Enriched in CA1, up with NFTs in CT, up with AD
Light yellow Pval+ interneuron Down with AD, enriched in CA1

Magenta Pyramidal neuron Down with AD, enriched CA3

Midnight blue Heat shock Up with AD, down with PMI, batch, Brain Bank
Pink Many mixed categories —

Purple Choroid plexus, extracellular signaling —

Red Oligodendrocyte, ribosome Up with age

Salmon Glia? Up with AD

Tan Neuron? Down with age

Turquoise Signal transduction —

Yellow Transcription, MSh Up with AD duration, up with AD

For each module, summary characterizations and trait associations are presented (as described in the text). Module characterizations in bold were confirmed in
[46]. Trait associations in normal font were found in this study only, those in italics were found in previous studies only, and those in bold were found in both

previous studies as well as this study.
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Of the five additional genes tested, three were validated
(Figure 4). We then repeated the analysis on frontal cortex
from the same individuals, and found that four of these
genes validated (Figure 4). Since NFTs have not yet
formed in CA3 or frontal cortex by Braak stage 2 and are
only isolated in CA1 [13], this result suggests that micro-
glial activation spreads throughout the brain before NFT
pathology, and may therefore be one of the earliest indica-
tors of AD progression.

This result does not, by itself, suggest an association
between NFTs and microglia: instead it suggests that
NFT pathology in the transentorhinal region and sys-
temic microglial activation are both early presympto-
matic events. To determine what, if any, association may

exist between NFTs and microglia, we analyzed data
from a published study of layer 2 stellate island neurons
in the entorhinal cortex in subjects with mid-stage AD
(GEO accession number GSE4757) [19]. In this study,
laser capture microdissection was used to collect 1,000
neurons bearing NFTs and 1,000 normal neurons from
the same ten subjects. From these data, we obtained a list
of genes up-regulated in neurons bearing NFTs. Of the
top 25 genes significantly up-regulated in NFT-bearing
neurons and also overexpressed in Braak stage 2 controls
(P < 0.03; Table S6 in Additional file 6), we find that 20
are in the light green (microglial) module, including 5
hubs (Figure 5). Together, these results suggest that
microglia activation occurs early in the progression of
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AD and is associated with NFTs in addition to amyloid
pathologies.

Discussion

We have performed a large genome-wide analysis of gene
expression in the human hippocampus in the context of
AD progression. To address the issue of selective regional
vulnerability - that is, why neurons die more readily and
earlier in certain areas - we performed microarray-based
gene expression analysis on RNA both from CA1 and the

nearby, relatively less affected CA3. Using this novel study
design, we find that CA3 has a less abnormal expression
pattern at baseline than CA1, consistent with the observed
pathological gradient in susceptibility. We also find candi-
date protection and vulnerability markers for AD, some of
which have already been implicated in the disease (ABCA1
and MT1H). We perform an in silico validation of previous
gene expression studies, identifying significant, previously
unrecognized convergence of gene expression abnormal-
ities in AD. Finally, we use WGCNA to find co-expression
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modules (which turn out to be enriched with markers for
major cell types) and measure their expression in the con-
text of aging and AD progression (Table 4). The identifica-
tion of disease-associated modules permits extending the
results from analysis of single genes independently, to the
identification of dysregulated pathways. Of note, results
from one module suggest that microglial genes show
increased expression in controls of Braak stage 2.

Inclusion of CA3 allows for an in-depth look at
Alzheimer’s disease pathophysiology

To the best of our knowledge, this study represents the
first transcriptional snapshot of CA3 in AD human
brain, although multiple transcriptional studies of
dementia have compared regions of differing degrees of
vulnerability in order to gain insight into disease. For
example, comparisons between cortex and cerebellum in
mice with and without a tau mutation led to the discov-
ery of puromycin-sensitive aminopeptidase (PSA) as a
potential tau protease acting as a neuroprotective factor
in frontotemporal dementia [41]. In a microarray study
of AD, Hata and colleagues [12] found that calcineurin
Af3 showed significantly enriched gene expression levels
in hippocampus relative to parietal cortex in AD, but
not in control. Using in situ hybridization and RT-PCR
analysis, they then confirmed that this gene might play a
critical role in the pathophysiological mechanisms of
AD. Another study of AD in the human brain compared
gene expression levels across six brain regions affected
by AD at different stages of progression [20]. They
found decreased expression of MAPT, CDK5, and var-
ious tubulin proteins across multiple AD-affected
regions (including CA1l), possibly indicating a cellular
attempt to inhibit NFT formation. These studies high-
light the importance of including regions with differing
levels of vulnerability in the analysis of diseases in which
there is a specific stereotyped progression.

There are several advantages of using CA3 as the com-
parison region for CA1, rather than a more distant, unaf-
fected, region. First, CA1 and CA3 are structurally similar:
they each have four layers, are directly connected via the
Schaffer collateral, and are located in the hippocampus.
Because of these similarities, it is more likely that differen-
tial changes with disease are due to disease pathology,
rather than due to changes in local environment. Second,
since both CA1 and CA3 are distinctly laminated, it is
relatively easy to dissect these regions in a consistent man-
ner between samples. Thus, we were able to collect reli-
able data using microscope-aided dissection. Third, the
proximity of CA1 and CA3 allows us to collect samples
from the same slide, thus eliminating one level of technical
bias. Finally, many previous studies have compared CA1
and CA3 in control tissue, providing a valuable test of the
validity of our results.
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Prominent disease-related genes

As with most microarray studies of disease, we first deter-
mined AD-related genes by finding the most differentially
expressed genes between control and disease. Using this
method we have found several genes, including SERPINA3
[38] and S100A6 [39], which have been previously asso-
ciated with AD (Table 3). We can also find disease genes
by filtering our list of differentially expressed genes using
data from previous studies (for example, Figure S4E in
Additional file 6). One advantage of our methodology is
that we can find protection and vulnerability genes by tak-
ing into account expression levels in tissues that are differ-
entially affected by disease progression. In this way we find
ABCAI [42] and MT1H [37], which have also been pre-
viously associated with AD (Figure 2), along with several
novel disease genes. Using WGCNA we can find addi-
tional disease genes in the form of hub genes for modules
correlated with AD-related traits. Previous studies have
shown that hubs are more likely than other genes to be
functionally relevant; for example, in the case of oncogenic
signaling networks in glioblastoma, nearly all hubs of a
cancer-related module were found to be molecular targets
for treatment [48]. In this case we find that RGS4, a gene
involved in calcium signaling that has been found to show
decreased expression in several studies of AD [49], was
the top hub gene in the light yellow module (Figure S8I in
Additional file 6), which also shows decreased expression
with AD (Table 4). Together, these results demonstrate
that a multifaceted systems biology analysis of expression
data increases a study’s effectiveness in finding disease-
related genes.

Current results are consistent with previous studies of
region and disease

By a number of measures, we show remarkable consis-
tency (that was previously unrecognized) between pub-
lished studies of gene expression in AD: first, genes
showing increased expression with AD in CA1l are
enriched for synaptic transmission and cell-cell signaling,
while those decreasing with AD are enriched for cell death
and proliferation genes (Table 2); second, we find that
most previously published lists of genes differentially
expressed by hippocampal region or disease state are con-
sistent with our results, even if they do not on the surface
appear to be in agreement with each other (Figure 1; Fig-
ures S3 and S4 in Additional file 6); and finally, we find
modules of co-expressed genes that are highly overlapping
with previously published modules corresponding to basic
cell types and cellular components (Table 4). Such a high
level of between-study conformity, particularly regarding
differential expression of individual genes, stems from
our large sample size and robust statistical methods,
adding confidence that our results represent real biological
effects.
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Alzheimer’s disease involves many cell types

Our results regarding the changing expression patterns of
cell type-specific modules suggest that both neurons and
glia are affected by AD progression. Specifically, we
found that neuron-associated modules showed decreased
expression with AD, astrocyte-associated modules
showed increased expression with AD, the oligodendro-
cyte-associated module showed increased expression
with age, and a microglia-associated module showed
increased expression with Braak stage in controls (Figure
3). While AD is usually thought of as a neurodegenera-
tive disorder, there is mounting evidence that changes in
glial cells occur with AD progression as well. Since oligo-
dendrocytes produce the brain’s supply of cholesterol
and since progression of neurodegeneration in AD fol-
lows the reverse pattern of developmental myelination
[7], oligodendrocyte dysfunction has been suggested as
an early event in AD progression [18], and has been
clearly linked to aging [50]. Hundreds of publications
have linked astrocytes and microglia to AD progression,
generally in the context of inflammation (for example,
see [51]), although the complex issue of whether these
effects are protective or pathological is still open to
debate (reviewed in [52]). Increases in inflammatory mar-
kers have been seen in many transcriptional studies of
AD [3,4,9,53,54], often occurring early in the disease pro-
gression. Finally, both microglia [55] and reactive astro-
cytes [17] have been found to surround amyloid plaques,
suggesting that glial dysfunction, along with neurodegen-
eration, is something that occurs throughout disease
progression.

Using microglia as a preclinical indicator of Alzheimer’s
disease pathology

Microglia are extremely sensitive to disease pathologies,
and as such could act as diagnostic markers of disease
onset or progression [51]. Furthermore, it is widely
accepted that microglia often are found near amyloid
deposits [15] and that microglia-mediated inflammation
contributes to the progression of AD [56]. What associa-
tion microglia and neuroinflammatory markers have with
NFT pathology is less clear. Whereas microglial cell activa-
tion has been linked to NFT burden in some cases [57,58],
this association has not received nearly the same attention
as that of microglia and amyloid plaques [15,59]. Overall,
it is clear that microglia activation occurs in the AD brain,
but its timing and role in AD progression has been diffi-
cult to pin down.

Our finding that microglial markers show increased
expression in controls in Braak stage 2 (Figures 3 to 5)
lends support to the idea that an increase in inflamma-
tory processes may be one of the earliest events in AD
progression. In a longitudinal analysis of blood from

Page 14 of 17

approximately 900 subjects, higher protein levels of three
inflammatory markers (interleukin 6, a1-antichymotryp-
sin, and C reactive protein) were associated with an
increased risk of dementia in general and of AD specifi-
cally [38]. A separate study found that a panel of 18 sig-
naling proteins involved in immune response could
accurately predict the transition of mild cognitive impair-
ment to AD when measured in blood plasma [60]. While
these are not the same genes that we found differentially
expressed with Braak stage, these studies highlight the
possibility of using blood biomarkers as a preclinical pre-
dictor of AD progression. Immune response genes have
also been linked to blood lipid levels [61], another possi-
ble indicator of AD progression. Positron emission tomo-
graphy (PET) is another non-invasive strategy that has
the potential of preclinically predicting AD progression.
One group found that approximately 40% of the patients
they imaged with mild cognitive impairment showed
increased microglial activation [62]. Interestingly, the
only place where they found significant microglial activa-
tion in amyloid-positive versus amyloid-negative mild
cognitive impairment patients was frontal cortex, which
is consistent with our qRT-PCR validations (Figure 4b).
Thus, several studies suggest that some measure of
inflammatory markers could be combined with a longitu-
dinal study design to create a relatively accurate predictor
of AD onset.

Our results further demonstrate that these same micro-
glial markers show increased expression in or near neurons
bearing NFTs (Table S6 in Additional file 6), suggesting
that microglia may react to both major AD pathologies,
not only amyloid plaques. The major question that remains
is whether the upregulation of microglia reflects immune
activation, or some other function, such as synaptic prun-
ing or homeostasis [63], and whether this process is protec-
tive or dysfunctional. Since microglia can cross the blood
brain barrier [64] and since they may be involved in amy-
loid plaque degradation [59], we surmise that they serve a
protective role. At least two studies of transgenic mice with
APP and PSENI mutations support this hypothesis. The
first found that injection of transgenic mice with macro-
phage colony-stimulating factor, a protein that stimulates
the production of bone marrow-derived microglia, prevents
cognitive decline when injected presymptomatically and
stabilizes the cognitive decline when injected after the
appearance of amyloid pathology [64]. The second study
found that activated microglia colocalize with newly
formed amyloid plaques within 1 to 2 days, at which point
these plaques no longer increase in size, suggesting that
microglia may stabilize their growth [15]. Similar results
were found in human: in individuals with possible AD, not
only were there more microglia and amyloid plaques rela-
tive to controls, but amyloid plaques were also never found
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without an adjacent microglia [16]. Thus, despite the rela-
tive lack of success of anti-inflammatory trials to date [65],
our results suggest that approaches to AD treatment invol-
ving the mobilization of anti-inflammatory processes may
have the potential to be both noninvasive and effective.

Conclusions

Despite a century of study, the number of AD diagnoses
continues to increase, suggesting that new strategies for
studying AD need to be developed and that previous
results need to be confirmed in order to better understand
this complex disease. Tollervey and colleagues [66], for
example, used splice junction microarrays to find changes
in alternative splicing in temporal cortex, both with age
and with neurodegenerative disease, allowing them to dis-
tinguish disease-specific changes, which mostly affect neu-
rons, from common changes, which affect both neurons
and oligodendrocytes. We have taken a complementary
approach by confirming previous transcriptional studies of
AD on many levels, but go beyond these studies in a num-
ber of ways. We find candidate genes for neuroprotection
and vulnerability in the AD hippocampus, as well as a
robust relationship between disease- and region-specific
gene expression changes. We identify co-expression mod-
ules corresponding to major cell types, which show
expression patterns consistent with known disease-related
changes, and suggest that a more detailed look into the
role of microglia in preclinical AD is warranted. Together,
these results paint a picture of AD as a multifaceted dis-
ease involving slight transcriptional changes in many
genes between regions, coupled with a systemic immune
response, gliosis, and neurodegeneration. Despite this
complexity, we find that a consistent picture of gene
expression in AD is emerging.

Additional material

Additional file 1: Table S1. Phenotypic information for each subject
used in this study.

Additional file 2: Table S2. All differentially expressed genes across all
comparisons.

Additional file 3: Table S3. Statistics comparing CA1 versus CA3
expression in the Allen Human Brain Atlas [40].

Additional file 4: Table S4. All genes that are both disease-altered and
region-enriched.

Additional file 5: Table S5. Module membership values for each gene
and its assigned module from the WGCNA.

Additional file 6: Supplementary Figures S1 to S7 and Tables S6
and S7. Figure S1 shows that there are no obvious confounding factors
in our data. Figure S2 plots the number of differentially expressed genes
for each comparison. Figure S3 plots common region-enriched genes
between this study and [40]. Figure S4 shows the agreement between
disease-altered genes in this study and [3]. Figure S5 shows in situ
hybridization validation for UNC13C in human brain. Figure S6 shows
that around half of differentially expressed genes are due to changes in
cell type composition. Figure S7 shows the network depictions and
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module assignments for the WGCNA. Figure S8 plots the top genes and
connections for each module in the WGCNA. Table S6 lists the top 25
NFT-associated genes (of which 20 are in a microglial-associated
module). Table S7 lists the primer pairs used for qRT-PCR validation.
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