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Abstract

Differentiating true somatic mutations from artifacts in massively parallel sequencing data is an immense challenge.
To develop methods for optimal somatic mutation detection and to identify factors influencing somatic mutation
prediction accuracy, we validated predictions from three somatic mutation detection algorithms, MuTect,
JointSNVMix2 and SomaticSniper, by Sanger sequencing. Full consensus predictions had a validation rate of >98%,
but some partial consensus predictions validated too. In cases of partial consensus, read depth and mapping
quality data, along with additional prediction methods, aided in removing inaccurate predictions. Our consensus
approach is fast, flexible and provides a high-confidence list of putative somatic mutations.
Background
Massively parallel sequencing (MPS) of cancer exomes is
becoming a commonplace technique, and has led to the
identification of genes underlying the pathogenesis of a
number of cancer types [1-6]. In response to the volume of
data generated by these genome-scale studies, a host of
software tools has been developed to aid in distinguishing
genuine somatic mutations from germline variation, align-
ment artifacts, and inherent MPS errors [7-11]. The rarity
and diversity of somatic events that occur on a background
of tumor heterogeneity, normal contamination, technical
artifacts, and genomic complexity makes this task particu-
larly challenging [1,12].
Although the methodology applied by somatic mutation

algorithms varies somewhat, the aim of each program is
to identify tumor-specific variants by comparing sequence
data from a tumor with that generated from a normal tissue
(representing the germline) from the same patient (that is,
matched normal DNA). The most common application is
the identification of point mutations. The germline sample
is usually assumed to be free of genetic material from
the tumor, although this assumption can be tested and
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reproduction in any medium, provided the or
corrected for [12,13]. At every site where there are reads
that differ from the reference genome, the probability
that these reads contain legitimate genetic variants and
not sequencing errors or technical artifacts is calculated.
The probabilities for the tumor and germline data are
compared, and a prediction about whether the site harbors
a somatic mutation is made [7-11]. From this, a list of pu-
tative somatic mutations and associated confidence values
is produced, which can be used in downstream analyses.
The choice of somatic mutation detection algorithm may

have an important influence on the outcome of a tumor
exome-sequencing study. Incorporating more information
from a sequencing run (such as site-specific mapping and
base qualities) improves the performance of variant detec-
tion over that of ad hocmetrics based on read counts alone
[7,10,14,15]. Thus, it would be expected that predictions
from different algorithms, which weigh different properties
of the data in unique ways, may differ significantly. A
conservative algorithm with high specificity may make very
few incorrect predictions, but may miss many legitimate
somatic mutations because of its low sensitivity. Similarly,
a high-confidence set of somatic mutation predictions with
a low false-positive (FP) rate is very useful in a clinical
setting, but in a discovery-based research setting, it
could limit the power to identify novel mutated genes
and pathways [16]. This is important given the small
number of recurrently mutated tumor driver genes, and
the long list of infrequently mutated, yet biologically
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important, targets identified in many cancer types to date
[17,18]. Conversely, although a more inclusive algorithm
may have high sensitivity, the resolution of the follow-up
analyses could be diminished by the inclusion of multiple
FPs, which would also strain resources dedicated to
validating mutations.
In most studies, only a single algorithm is used to predict

which variants are somatic, with predicted mutations
validated by an orthogonal sequencing technology, such
as Sanger sequencing [2,4,6]. Although a number of pub-
lished papers on somatic mutation detection programs
have reported robust sensitivity and low error rates, the
relative advantages of selecting one program over any
other are not clear, especially as few programs have been
evaluated extensively for their sensitivity and specificity in
an unbiased fashion in independent tumor cohorts. A
naive yet logical strategy could be to employ multiple
somatic mutation prediction algorithms and to select
variants for follow-up based on overlapping predictions,
obviating the need to make a priori assumptions about the
relative performance of each program. Such an approach
assumes that true somatic mutations will show strong
evidence of their existence in multiple programs, and
that errors made by individual algorithms are unlikely
to intersect.
We set out to address these questions by applying three

publicly available somatic single nucleotide variant (SNV)
detection programs, JointSNVMix2 [7], MuTect [8], and
SomaticSniper [9]. All three implement sophisticated
detection algorithms, and have been used in major
tumor sequencing studies [2,8,19]. We used these three
programs to make somatic mutation predictions for the
exomes of 27 ovarian tumors and their matched germline
samples. A subset of the predictions from each program
was validated by Sanger sequencing. This high-confidence
set of somatic point mutations and confirmed FP predic-
tions was then used to assess the performance of each
program and the relative benefit of combining predictions
from multiple programs in a consensus approach, and to
compare the properties of validated and miscalled somatic
mutations.
Methods
Sample cohort
Ovarian tumors were collected through two primary
sources: 23 cases from the Wessex region of southern
England [20], and four cases through the Australian
Ovarian Cancer Study (AOCS) [21]. The cohort consisted
of 3 benign, 4 borderline and 10 invasive mucinous
ovarian tumors, and 10 serous borderline ovarian tumors.
Representative hematoxylin and eosin (H&E)-stained sec-
tions, and the tumor pathology reports were reviewed by
pathologists for all cases included in the study.
Ethics approval
The accrual of patient material used in this study was
approved by the following human research ethics com-
mittees (HRECs): Southampton Hospital HREC, Peter
MacCallum Cancer Centre HREC, and the HRECs of all
centers participating in the AOCS. Informed consent was
obtained from all patients included in the study. This pro-
ject was reviewed and carried out in accordance with the
ethical standards of the Peter MacCallum Cancer Centre
HREC (Approval numbers 09/29 and 01/38).

DNA extraction and preparation of exome-sequencing
libraries
DNA extractions were performed as described previously
[4,22]. Briefly, fresh-frozen ovarian tumors were needle-
microdissected to enrich for epithelial cells, to a minimum
of 70% epithelial cell content. DNA was extracted using the
DNeasy Blood and Tissue Kit (Qiagen Inc., Valencia, CA,
USA) according to the manufacturer’s recommendations.
Matching peripheral blood DNA was collected and
extracted from patients at the time of tumor collection,
and used as the source of germline DNA.
To generate sequencing libraries, 500 ng to 1 ug of DNA

were randomly sheared to approximately 200 bp using a
Covaris S2 Ultrasonicator (Covaris, Woburn, MA, USA).
Adapter ligated libraries were constructed and exome-
enriched using either NEBNext DNA library preparation
reagents (New England BioLabs, Ipswich, MA, USA)
and the NimbleGen SeqCap EZ Human Exome Library
(version 1; Roche Nimblegen, Madison, WI, USA) (non-
indexed libraries) or TruSeq DNA Sample Preparation
kits (Illumina, San Diego, CA, USA) and the NimbleGen
SeqCap EZ Human Exome Library (version 2 Roche
Nimblegen) (indexed libraries). Non-indexed libraries
were each sequenced on one lane of an Illumina GAIIx
(Illumina Inc., San Diego, CA, USA) sequencer, using
75 bp paired-end reads. Indexed libraries comprising
three pooled samples were sequenced on one lane of a
HiSeq 2000 sequencer (Illumina Inc.), using 100 bp
paired-end reads. The mean coverage achieved ranged
from 102 to 225 reads per site in the tumors and 119
to 188 reads per site in the germline.

Exome sequencing read alignment and filtering
After quality based read trimming, sequence reads were
aligned to the GRCh37/hg19 human reference genome
using BWA [19] and duplicate reads marked using the
Picard program [23]. Aligned reads for each tumor-
germline pair were combined into one alignment file in
binary sequence alignment (BAM) format [24], followed by
local indel realignment and base quality recalibration using
the Genome Analysis Tool Kit (GATK) software [14,25].
The GATK Unified Genotyper was used to identify putative
SNVs within each individual tumor and germline sample.
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Identification of single nucleotide somatic mutations
MuTect (version 1.0.27783) was accessed through the
MuTect website at the Broad Institute [8,26]. Because
this was a development version of MuTect with limited
options for setting parameters, only the default parameter
set was applied, without filtering germline variants. Predic-
tions not labeled as ‘REJECT’ were accepted as confident
somatic mutation predictions, and considered for subse-
quent downstream validation and analysis steps.
JointSNVMix2 (version 0.7.5) [7] was accessed through

the JointSNVMix project site [27]. Model training and
somatic mutation classification were performed using
the ‘joint_snv_mix_two’ algorithm. The default prior geno-
type probabilities provided in the JointSNVMix package
were used for the training step. Predictions with a joint
probability of having a variant in the tumor sample and
no variant in the germline sample (p_AA_AB) of 0.9999
or greater were considered for subsequent downstream
validation and analysis steps.
SomaticSniper (version 1.0.0) [9] was downloaded from

the github project page for SomaticSniper [28] 0). Somatic
SNVs were predicted using the joint genotyping mode
(−J option) with the default prior probability of a somatic
mutation (0.01). Reads with a mapping quality of 0 were fil-
tered prior to somatic mutation identification. Predictions
with a ‘somatic score’ of 40 or greater were considered for
subsequent downstream validation and analysis steps.
For each sample, the SAMtools mpileup tool [24] was

used to extract data on the mapping qualities, directionality,
and depth of reads that overlapped each SNV for which at
least one program had made a somatic prediction. Putative
somatic SNVs meeting the following criteria were consid-
ered for validation: 1) total read depth was of 8 or greater
in both the tumor and matched germline; 2) mutant allele
present at a frequency of 20% or greater in the tumor and
5% or greater in the matched germline; 3) mutant allele
supported by read mapping in both the forward and reverse
orientations (bidirectional); and 4) variant called in only
one tumor (with the exception of the BRAF V600 and
KRAS G12/G13 hotspot mutations, known to be frequently
mutated in these tumor types), in order to eliminate align-
ment and germline coverage artifacts. These criteria were
chosen to restrict validation to those variants within the
sensitivity of Sanger sequencing, while also minimizing
the inclusion of technical artifacts. For a small proportion
of variants, unidirectional variants were also considered in
order to provide some assessment of the value of consider-
ing only variants with bidirectional read support.

Sanger sequencing validation
Prior to variant validation, 25 to 50 ng of DNA from each
tumor sample were whole-genome amplified (WGA) using
either the Repli-g Mini Kit or Repli-g Midi Kit (Qiagen).
Putative somatic SNVs were validated by conventional
Sanger-based sequencing analysis of PCR products obtained
from the tumor WGA DNA. Purified PCR products were
directly sequenced on an ABI3130 Genetic Analyzer using
BigDye Terminator (version 3.1) sequencing chemistry
(both Applied Biosystems, Foster City, CA, UDA). The
somatic status of all validated mutations was confirmed
by sequencing WGA DNA from the matching germline
sample.

Comparison of true positives and false positives
The R statistical software package (version 2.15) [29] was
used to perform graphical and statistical comparisons
of the data for predicted somatic mutations that were
validated by Sanger sequencing (true positives; TPs)
and predictions that did not validate or were germline
variants (FPs).
To analyze the local sequence context around TP and FP

predictions, a 100 bp region flanking each site was retrieved
from the human genome (GRCh37 assembly) using version
64.37 of the Ensembl database [30]. Custom Perl scripts
were used to assess the GC content, and the length and
abundance of homopolymers flanking each site.
For each variant where validation was attempted, we

counted the numbers of reads covering the variant site
that were classed as uniquely mapped, multi-mapped, or
mate-rescued by the XT field in the SAM file assigned by
BWA. Mismatches were counted in these reads using the
NM field in the SAM file.

Results
Somatic mutation prediction
We obtained somatic mutation predictions for each of the
27 ovarian tumor samples using MuTect, JointSNVMix2,
and SomaticSniper. The thresholds for defining a putative
mutation as somatic we attempted to set to be as equivalent
as possible between programs, and thus chose a somatic
score of greater than 40 for SomaticSniper, and a joint
genotype probability (p_AA_AB | p_AA_BB) of greater
than 0.9999 for JointSNVMix2. All MuTect predictions
without a ‘REJECT’ FILTER flag were considered in ac-
cordance with the developers’ guidelines. The input for all
programs was a BAM file [24] with alignment data from
BWA [31] and GATK IndelRealigner [14,25].
A combined total of 9,226 somatic SNV predictions

were made by the three programs, with a median of 321
predictions per sample and a range of 147 to 695. There
appeared to be an association between tumor grade and
the number of predicted somatic mutations (Figure 1A),
with invasive mucinous tumors harboring a higher number
of predicted point mutations than benign or borderline
tumors (Kruskal-Wallis. P<0.001). No association was
found between estimates of tumor ploidy and normal
contamination (as measured by ASCAT (Allele-Specific
Copy number Analysis of Tumors [13])) or number of



Figure 1 Frequency, concordance and read depths of somatic variant predictions in 27 ovarian tumors. (A) The total number of somatic
SNVs predicted in each sample by the three algorithms. Bars are colored by tumor grade and histological subtype. (B) Concordance between
somatic variant predictions from different algorithms. The minimum, maximum, and median numbers of predictions per ‘call set’ per sample are
shown. The filtering criterion used for each program is indicated. (C) Non-reference allele frequency, measured as the fraction of reads in the
germline samples carrying the non-reference allele, at sites predicted to be somatic variants, within each call set. Each box covers the
interquartile range, with a horizontal line representing the median. Whiskers indicate the minimum and maximum values. (D) Fraction of reads
carrying the non-reference allele in the tumor samples at sites predicted to be somatic variants, within each call set. Call sets were defined by the
programs that made a prediction above threshold using the following programs: M. MuTect, J = JointSNVMix2, S. SomaticSniper.
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predicted somatic SNVs (see Additional file 1: Figure S1,
Table S1, and Text S1). The proportion of non-reference
reads (non-reference allele frequency; NRAF), was consist-
ently and comparably low across samples (see Additional
file 1: Figure S1C), indicating that the unfiltered mutation
predictions contained significant numbers of FPs, which
may be due to the somatic mutation detection algorithms
included in this study not accounting adequately for
tumor purity and ploidy (see Additional file 1: Text S2; see
Additional file 1: Figure S12). Together, these finding
suggest that the differences in the amount of somatic
variation between the samples analyzed here is largely
driven by biological factors. Benign tumors certainly
could be anticipated to harbor fewer mutations, and
similar inter-tumor variability has been reported from
other studies [2,5,6], consistent with the notion that tumors
at a more advanced stage of malignancy have acquired
more mutations.
SomaticSniper and JointSNVMix2 generally predicted

the most mutations per sample, with a median of 171 and
173 per sample, respectively. MuTect was more conserva-
tive, with a median of only 115 predictions per sample.
However, the majority of somatic mutations predicted by
any one algorithm were not confirmed by any of the other
algorithms (Figure 1B). On average, the three programs
agreed only on 11.5% of the somatic predictions for a
given sample, while on average more than 80% of the som-
atic variants predicted in a single sample were identified by
only one of the three programs used (see Additional file 1:
Figure S2A). This trend remained even after non-coding
variants were discarded (see Additional file 1: Figure S3).
It is likely that a fraction of these program-specific predic-
tions was accounted for by FPs. However, even if only a
minority of such predictions is genuinely somatic, using
only one program could potentially miss many genuine
mutations.

Comparison of the properties of mutation predictions
from different algorithms
The poor consensus between the predictions made by
each program may be explained in part by differences in
their stringency settings; however, it is not clear how to
directly normalize MuTect output to that of the other
programs. Differences may also arise because of the dis-
tinct ways each program filters and processes sequencing
reads between the tumor and germline samples, as all
methods take into account base-calling and read-mapping
accuracy measures when assigning probability to individual
predictions.
To investigate further, we grouped the putative somatic

mutations in all samples by the set of programs predicting
a variant at that site (hereafter referred to as ‘call sets’) and
compared the number of reads containing the reference
and non-reference allele (that is, an SNV or an ‘alternate’
allele) at each site in each sample where a prediction was
made (Figures 1C,D). The property that best discriminated
between prediction sets was the frequency of reads with
non-reference alleles in the germline samples. Predictions
that were specific to SomaticSniper or JointSNVMix2
often fell at sites where a substantial number of reads with
non-reference bases had mapped (Figure 1C). These results
suggest that these two programs tolerate a larger number
of non-reference alleles in the germline sample, which
potentially introduces a significant number of germline
variants into the call set, but such variants can be elimi-
nated by downstream filtering on frequency of reads that
do not match the reference. Conversely, MuTect is much
more stringent on evidence for non-reference alleles in
the germline.
Additionally, predictions made by one or two programs

tended to have a lower proportion of non-reference reads
(NRAF) in the tumor sample than predictions made by
all three programs, for which NRAF was much higher
(Figure 1D), with the exception of predictions that over-
lapped between MuTect and SomaticSniper. The low frac-
tion of non-reference reads may have resulted in some
sites not having sufficient allelic ratios to be predicted as
putative somatic mutations by one or more algorithms, but
enough support to rise above the thresholds of at least one
program. Many of the differences between call sets are
potentially the result of such ‘borderline’, low-confidence
predictions. For example, the Mutect-SomaticSniper call set
has a higher median NRAF than the other two-algorithm
call sets because JointSNVmix2 requires higher read depths
to make confident somatic mutation calls (see Additional
file 1: Figure S4) and SNV calls at low-depth sites tend
to have higher NRAF because a minimum number of
non-reference alleles are needed to make a prediction.
Total read depths in the tumor and germline samples for
each call set were not consistent with differences in NRAF
between groups (see Additional file 1: Figures S4A-D),
suggesting that NRAF is influenced by the tendencies
of each program, and is not confounded by read depth
thresholds.

Validation of somatic mutation predictions
Enrichment for somatic variants
Although the variant callers used in this study were
designed to identify somatic SNVs, a large number of
germline variants and artifacts were anticipated to be
present in each call set, based on previous analyses. We
enriched for somatic SNVs using a set of minimal filters
applied to all predicted SNVs. Sites covered by fewer than
eight reads in the tumor and the germline samples were
excluded, as were SNVs for which the non-reference allele
frequency was greater than 0.05 in the germline sample
or less than 0.2 in the tumor sample, and also variants
that were identified in more than one sample (with the
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exception of the KRAS and BRAF oncogenic hotspot
mutations). SNVs with evidence of the non-reference
allele in the germline sample have a high probability of
being FPs, such as germline variants or alignment or se-
quencing artifacts. However, considering only variants
for which non-reference alleles are completely absent in
the germline could result in some true somatic variants
being discarded. Thus we selected an NRAF of 0.2 or
higher in the tumor samples because our chosen validation
method (Sanger sequencing) lacks sufficient resolution to
robustly detect SNVs below this frequency [32].
Filtering had a disproportionate effect on the single-

program call sets, removing 84 to 97% of the SNVs
predicted by only one program, but removing less than
7% of SNVs predicted by all three programs (Table 1;
see Additional file 1: Table S2). Filtering for the stated
non-reference allele frequency in the tumor and germline
had the greatest effect on variant numbers, indicating that
the predictions unique to a single program are largely
in regions with weak evidence for the presence of the
non-reference allele in the tumor, and substantive evidence
for the non-reference allele in the germline sample. As
expected, this filtering increased the median percentage
overlap in predictions for each sample (from 11.5% to
46.3%;, however, complete consensus predictions were still
on average the minority of total predictions per sample
(see Additional file 1: Figure S2B). We therefore anticipate
the majority of the variants identified solely by a single
caller to be low-confidence predictions, predominantly
germline variants or sequencing and alignment artifacts.

Variant selection and validation
To determine what fraction of predictions in each call
set were FPs, the predicted somatic SNVs were divided
into call sets according to which program(s) identified
them. Subsets of putative SNVs were selected from each
group for validation by Sanger sequencing. The variants
selected were biased towards those in coding regions, as
Table 1 Total variant calls made by each caller, pre-filtering a
by Sanger sequencinga

MJS MJ MS

All SNVs predicted, n (% of all variants)b 1,483 (16.1%) 83 (0.9%) 462 (5.0%

SNVs suitable for validation (% of all
SNVs suitable for validation)c

1385 (54.4%) 16 (0.6%) 370 (14.5

Average number (range) of filtered
SNVs per sample

51.3 0.6 13.7

(1 to 246) (0 to 6) (5 to 42

Number (%) of SNVs that could not be
used for validation

98 (6.6%) 67 (80.7%) 92 (19.9%

Abbreviations: J. JointSNVMix2; JS, JointSNVMix2 + SomaticSniper; M, MuTect, MJ, M
MuTect + SomaticSniper; NRAF, non-reference allele frequency; S, SomaticSniper; SN
aCall sets are identified as described in Figure 1.
bPredicted variants were filtered on the basis of read depth and NRAF, as described
c‘Suitable for validation’ means evidence for SNV met criteria for validation by Sang
both samples.
these are currently of the greatest clinical and scientific
interest. Some non-coding variants were also investi-
gated to obtain robust numbers in each call set; these
variants demonstrated very similar call set trends and
characteristics to coding variants (see Additional file 1:
Figures S3 and S4).
A total of 364 predicted somatic SNVs were selected

(Table 2). Our aim was to assess the accuracy of somatic
mutation predictions made by each program, and of the
predictions in each call set as well, to determine if consen-
sus predictions based on multiple algorithms are more
reliable than those made by a single program. We calcu-
lated the positive predictive value (TP/(TP+FP)) to assess
specificity, and the true positive rate (TP/)TP+FN)) to
estimate sensitivity.

Validation rates
Of the 364 predicted SNVs assessed by Sanger sequencing,
229 represented genuine somatic variants. Somatic muta-
tions predicted by all three programs (n = 181) had the
highest validation rate (98.9%) (Table 2), showing that the
full consensus between three somatic mutation detection
programs provides a very high-confidence list of predicted
somatic mutations. This high validation rate was achieved
with minimal read depth and allele frequency filtering,
and no additional filtering using often-employed proper-
ties, such as bidirectionality of reads and variant quality
scores. The vast majority (97%) of the variants covered
only by unidirectional reads fell outside the full consensus
call set (see Additional file 1: Table S3), however, all four
variants assessed from the full consensus call set with
unidirectional read support were confirmed as genuine
somatic mutations. In the full consensus call set, variants
with GATK quality scores as low as 58 [14,25] were also
validated as somatic.
Overall, 56.4% of the somatic mutations identified by

two of the programs were also validated (Table 2), although
the validation rate varied from 35 to 78% according to
nd post-filtering out variants not suitable for validation

JS M J S Total

) 298 (3.2%) 1,756 (19.0%) 2,387 (25.9%) 2,757 (29.9%) 9,226

%) 57 (2.2%) 279 (11.0%) 80 (3.1%) 360 (14.1%) 2,547

2.1 10.3 3.0 13.3 94.3

) (0 to 11) (3 to 33) (0 to 23) (5 to 25) (38 to 321)

) 241 (80.9%) 1477 (84.1%) 2307 (96.6%) 2397 (86.9%) 6679 (86.9%)

uTect + JointSNVMix2; MJS, MuTect + JointSNVMix2; + SomaticSniper; MS,
V, single nucleotide variant.

in the text.
er sequencing (tumor NRAF ≥0.2, germline NRAF ≤0.05 and ≥8 reads in



Table 2 Validation results by call set

MJS MJ MS JS M J S Overall

Variants assesseda 181 13 37 28 31 26 48 364

True positivesb (% true positive) 179 (98.9%) 5 (38.5%) 29 (78.4%) 10 (35.7%) 4 (12.9%) 1 (3.8%) 1 (2.1%) 229 (62.9%)

Germlinec 1 0 5 3 15 4 11 39

Did not validatec 1 8 3 15 12 21 36 97

Abbreviations: J, JointSNVMix2; JS, JointSNVMix2 + SomaticSniper; M, MuTect, MJ, MuTect + JointSNVMix2; MJS, MuTect + JointSNVMix2; + SomaticSniper; MS,
MuTect + SomaticSniper; NRAF, non-reference allele frequency; S, SomaticSniper; SNV, single nucleotide variant.
aNumber of sites that were successfully amplified and Sanger sequenced.
bIndicates the number of SNVs that were confirmed as somatic.
cFalse-positive SNVs were either detected in the matched germline (normal) sample (‘Germline’) or did not validate in the tumor sample (‘Did not validate’).

Table 3 Summary of validation results by program and
combination of programs

Call set Specificity Sensitivity

MuTect 82.8%a 94.8%b

JointSNVMix2 78.6%a 85.2%b

SomaticSniper 74.5%a 95.6%b

Consensus of 3 programs 98.9%c 78.2%d

Consensus of 2+ programs 86.1%c 97.4%d

All variants 38.6%c 100%d

Abbreviations: TP, true positive.
aNumber of TPs predicted by program/all predictions by program for which
validation was attempted.
bNumber of TPs predicted by program/all TPs.
cNumber of TPs predicted in the group/all predictions by program for which
validation was attempted.
dNumber of TPs predicted in the group/all TPs.
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which two programs were considered. Predictions that
overlapped between MuTect and one other program were
more accurate than those found by the intersection of
JointSNVMix2 and SomaticSniper predictions. Conspicu-
ously, variants in the overlap of MuTect and SomaticSniper,
where 78.4% of variants represented genuine somatic SNVs,
had notably lower average read depths compared with
variants called by JointSNVMix2 (see Additional file 1:
Figure S4). This more stringent requirement for read
depth probably contributes to high-quality, true somatic
variants with lower read coverage being discarded by
JointSNVMix2, shifting them from the full consensus
call set to the MuTect-SomaticSniper partial-consensus
call set (see Additional file 1: Table S5). Predictions made
by two programs had a much higher validation rate than
those made by a single program alone; only 6 of 105
(5.7%) SNVs predicted by one program could be validated
(Table 2), indicating that predictions that are not sup-
ported by multiple programs are largely artifactual. The
level of normal contamination was observed to affect both
FP and TP rates, both of which improved as tumor purity
increased, largely due to improved ascertainment of TPs as
a result of reduced normal contamination (see Additional
file 1: Figure S1D).
MuTect and SomaticSniper had comparable sensitivity

in our dataset, as they both found approximately the same
proportion of the 229 TP mutations that were ultimately
confirmed, while the sensitivity of JointSNVMix2 was 10%
lower (Table 3). MuTect showed the highest specificity
(82.8%), as it had 4% and 8% higher specificity than
SomaticSniper and JointSNVMix2, respectively, for the
putative somatic SNVs selected for validation (Table 3),
when predictions were combined across call sets. How-
ever, the performance of a given program will depend on
the arbitrary threshold chosen for accepting a prediction.
Although variants predicted by all three algorithms

had the highest specificity (Table 3), 46% of the filtered
variants fell outside of the three-program consensus, and
the overall validation rate for variants detected by fewer
than three programs was greater than 25%. Thus, consid-
ering only consensus predictions will miss a considerable
number of genuine somatic SNVs. This demonstrates how
improved accuracy in somatic mutation prediction can
have costs in terms of limited detection sensitivity,
suggesting that thresholds need to be tuned to strike a
balance between specificity and sensitivity. For example,
the specificity of predictions made by at least two or more
programs was superior to that of any one program alone,
without the same reduction in sensitivity seen in the full
consensus set (Table 3).

Distinguishing false positives from true positives
TP variants identified by one program alone may not be
readily distinguishable from FPs, and therefore it is of
questionable value to pursue such variants. Given that
follow-up validation of predicted variants by Sanger se-
quencing is labor-intensive and expensive [32], a robust
set of criteria for prioritizing putative point mutations for
validation, particularly those lacking consensus between
prediction algorithms, would be of great benefit. To this
end, we analyzed the validation cohort in more detail to
identify factors distinguishing TPs from FPs. We focused
on properties that measure variant representation, base
quality, and sequence and mapping contexts. These metrics
were reported by SAMtools mpileup and BWA, and thus
were measured in a consistent fashion for all predictions,
independently of what was reported by the three programs
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used. Although over a dozen unique properties were
examined (see Additional file 1: Text S3; see Additional
file 1: Table S4) we focused on two that were found to cor-
relate strongly with validation status: sequencing coverage
and read-mapping statistics.

Sequence coverage and allele frequencies
Sequence coverage was a major indicator of the accuracy of
a predicted mutation. FP somatic mutation predictions had
significantly lower total read depth, in both the tumor and
the germline sample (Table 4; Figure 2A; see Additional
file 1: Figures S6 and S7A). This discrepancy was seen in
both alleles, and was conserved within the set of non-
consensus predictions (see Additional file 1: Figure S7A).
Another factor that correlated strongly with validation
status was the non-reference allele frequency in the tumor
sample, which showed differences between FPs and TPs
(Table 4; see Additional file 1: Figure S6B and S7B),
pointing to the relative proportion of alleles as another key
metric in estimating the confidence of a somatic mutation
prediction.

Read mapping
Errors produced by inaccurate mapping and the misalign-
ment of short sequencing reads can create the appearance
of apparent sequence variants that do not actually exist
[14,33]. To investigate the extent to which this effect con-
tributed to FPs in our validation set, data on the number of
unique mapping reads and on the number of reads map-
ping to repeat regions were extracted from the mpileup
files for each sample. On average, FP mutations had a
lower fraction of uniquely mapping reads than did genuine
Table 4 Sequencing coverage and read-mapping quality featu

Feature All TP

Median read depth

Germline 105

Tumor 94

Mean non-reference allele frequency

Germline 0.08%

Tumor 43.10

Mean percentage uniquely mapped reads 97.10

Fraction of SNVs with <95% reads mapping uniquely 8.3% (19

Fraction of predicted SNVs with >5% of reads mate-rescued 4.4% (10

Mean percentage of reads mapped to multiple locations 1.90%

Abbreviations: DNV, Did not validate; FP, false positive; J, JointSNVMix2; JS, JointSNV
JointSNVMix2; + SomaticSniper; MS, MuTect + SomaticSniper; NRAF, non-reference
true positive.
a‘Includes all SNVs that validated in the tumor sample.
bCombined value for these two categories of FPs.
c Indicates SNVs that were not confirmed in the tumor sample.
dIndicates SNVs that were also detected in the matched germline.
Significance was tested using Wilcoxon rank-sum test for continuous variables and
to multiple locations: :eP<0.05; fP<1 × 10−5; gP<1 × 10−10;,,hP<1 × 10−15.
somatic SNVs (Table 4, Figure 2B). Thus, inaccurate or in-
correct read mapping is a likely source of the FPs in our
dataset. This association was stronger for somatic SNVs
that did not validate (DNV) in the tumor sample, where
61.8% of SNVs had less than 99% of their reads map
uniquely, compared with 73/229 (31.8%) of the validated
SNVs (Fisher exact test; P<6.8 × 10−7), than it was for
SNVs that were also found in the germline sample
(‘Germline’) where only 18/39 SNVs had <99% uniquely
mapped reads (46.2%; Fisher exact test P = 0.09).
One method used by the BWA alignment process to

establish the correct location of an ambiguously mapping
read is to attempt alignment within a limited region defined
by the mapping location of the other read in the mate pair
[31]. Such ‘mate-rescued’ reads made up a significantly
higher proportion of the reads for the SNVs that did not
validate, compared with the genuine somatic SNVs (Table 4,
Figure 2C). This trend was stronger in the DNV predic-
tions, as 46.4% of SNVs in that category had more than
5% of their reads mapped using mate-pair rescue, com-
pared with 4.4% of validated SNVs (Fisher exact test.
P<2.2 × 10−16), while 23.1% of predicted SNVs in the
‘Germline’ category had greater than 5% mate-rescued
reads (Fisher exact test, P = 0.0038). It appears the process
of mate- escue can falsely generate sites that differ from
the reference sequence, perhaps by forcing misalignment
of reads as a result of constraints introduced by the
mapped location of their mate pair.
Reads from common sequence repeats are often difficult

to map uniquely, given the numerous potential high-
scoring matches such reads can have. FP SNVs were
more likely than validated variants to have reads that
res for true-positive and false-positive predictions

sa All FPsb DNVc Germlined

25h 28h 12g

20h 21g 19g

1.4%g 1.27%g 1.77%g

% 30.9%h 27.3%h 39.80%

% 85.3%f 83.7%f 89.30%

/229) 52.2%h (71/136) 57.7%h (56/97) 38.4%f (15/39)

/229) 39.7%h (54/136) 46.3%h (45/97) 23.1%e (9/39)

4.7%e 4.40% 5.5%f

Mix2 + SomaticSniper; M, MuTect, MJ, MuTect + JointSNVMix2; MJS, MuTect +
allele frequency; S, SomaticSniper; SNV, single nucleotide variant.; TP,

Fisher’s exact test for fraction of reads mapping uniquely/by mate-pair rescue/



A
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Figure 2 Sequencing coverage and read-mapping results for validated somatic mutations and false positives. (A) Log2-scaled read
depths for sites harboring validated somatic mutations (red dots) and mutations that failed validation (black stars), in the tumor and normal
samples from each individual predicted to harbor the mutation. (B) Fraction of reads containing the non-reference allele that mapped uniquely
by BWA for validated somatic mutations (Somatic), mutations that were also detected in the germline sample during validation (Germline) and
those that were not detected in either the tumor or the germline during validation (Did Not Validate; DNV). (C) Fraction of reads mapped by
BWA using mate-pair rescue for validated somatic mutations (Somatic), mutations that were also detected in the germline sample during
validation (Germline) and those that were not detected in either the tumor or the germline during validation (DNV). (B,C) Each box covers the
interquartile range, with a horizontal line representing the median. Whiskers indicate the minimum and maximum values.
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mapped to multiple locations, but in contrast to uniquely
mapping reads, this effect was strongest for SNVs in
the ‘Germline’ category (Table 4; see Additional file 1:
Figure S8), pointing to possible differences in the
underlying causes of these two different classes of FPs.
Misalignment of non-unique reads could lead to apparent
FPs in the tumor sample, while SNVs may be missed in
the germline samples if reads are being titrated away
by mismapping to similar sequences elsewhere in the
genome. The latter effect could be particularly pronounced
when a read maps equally well to two locations in the
genome, as BWA and other read mappers randomly map
such reads to one of the two locations [31].

Additional filtering of partial-consensus predictions
The accuracy of predictions lacking full consensus be-
tween programs is often low (2 to 36%, excluding the
MuTect-SomaticSniper call set), but ignoring these SNVs
could result in potentially important genuine somatic mu-
tations being discarded. Although many factors that differ
between TPs and FPs can be found, identifying filters that
can be readily implemented by researchers to significantly
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enrich for TPs without sacrificing sensitivity is complex.
Because FP calls arise for a variety of technical and bio-
logical reasons, as well as stochastically, no single feature
or simple agglomeration of features is able to separate
100% of TPs from FPs. However, the validation rates from
the two-caller overlaps are sufficient to warrant investiga-
tion as to whether further filtering and selection can enrich
for TPs within these groups.
We tested the effects on the initial (base) validation rate

and loss of TP variants in applying additional filtering
parameters based on thresholds for sequencing coverage,
non-reference allele frequency, and mate-rescued reads.
These variants were selected based on their strong asso-
ciation with validation status (Table 4), and threshold
values that best optimized discrimination of TPs from
FP predictions were applied to the partial-consensus
and no-consensus call sets.
The single filter that best enriched for TPs was per-

centage of reads mapped using mate-pair rescue. Simply
removing SNVs for which 7% or more of the mapped
reads were mate-rescued increased the validation rate in
the lower confidence prediction groups from 27% to
38% without eliminating any TPs (Table 5). Decreasing
the germline non-reference allele frequency from less
than or equal to 0.05 to less than or equal to 0.02 also
increased the validation rate with a low effect on TPs
(Table 5). Other metrics were not as effective. Increasing
the minimum read depth in the tumor and germline from
8 to 10 reads resulted in a 5% increase in the validation
rate, but at a cost of 10% of TPs. Further increases in read
depth thresholds rapidly escalated the TP dropout rate
(see Additional file 1: Table S5). Increasing the minimum
tumor non-reference allele frequency was explored, but
Table 5 Additional filtering improved specificity of prediction

Validation ratea

Partial consensusb

Base validation ratee 44/78 (56%)

Percentage of mate-rescued reads <7%f 44/64 (64%)

RD >10 (tumor and germline)g 40/68 (59%)

Germline non-reference allele frequency ≤0.02h 42/65 (65%)

GATK prediction for SNV in tumori 43/66 (66%)

GATK + mate-rescued 43/56 (77%)

GATK + mate-rescued + RD >10 39/46 (85%)

Abbreviations: RD, read depth; SNV, single nucleotide variant; TP, true positive.
aValidation rate = TPs/total SNVs assessed.
bPartial-consensus predictions (made by two programs).
cNo consensus predictions (made by only one program).
dPercentage of TPs that would be discarded if the indicated set of filters was applie
eRefers to specificity prior to filtering.
fFiltering on percentage of reads made from mate-pair rescue.
gFiltering on RD increased from 8 to 10 in tumor and germline.
hNon-reference allele frequencies in germline decreased from ≤0.05 to ≤0.02.
iFiltering SNVs predicted in the tumor but not the germline by GATK Unified Genot
was also found to excessively penalize TPs (see Additional
file 1: Table S5). Filtering variants based on whether they
were represented by bidirectional reads was also explored,
but found to have little effect on the validation rate
(see Additional file 1: Table S5).
We also examined the value of increasing the overlap

between the original three programs by lowering the
stringency of the parameters used for the initial call sets,
thereby including some variants that were initially discarded
by the third program. A large proportion of the SNVs
identified by two programs at or above our initial
thresholds was in fact also detected by the third program,
but below threshold. Although this approach significantly
increased the validation rate from 27% to 63%, the effect
on TP dropout was also significant (34%) (see Additional
file 1: Table S6).
Based on our findings, a simple approach for improv-

ing the reliability of lower confidence somatic mutations
would be to implement an additional program. GATK
Unified Genotyper [14,25] is optimized for variant calling
on individual or pooled samples; however, it can be (and
regularly is) used to find somatic mutations, by comparing
the set of confident variant predictions between a tumor
sample and its matched germline control. Taking the
consensus between GATK predictions and one or two
of MuTect, JointSNVMix2, and SomaticSniper increased
the overall specificity in these lower confidence groups
from 27% to 42%, while discarding only two TPs (Table 5).
In combination, consensus with GATK Unified Genotyper
and mate-pair rescue read filtering increased specificity to
55%. Additionally, requiring a minimum read depth of 10
in both the tumor and germline further increased specifi-
city to 66%, but this gain must be weighed against the 14%
s lacking full consensus

TP dropout rated

No consensusc Overall

6/105 (6%) 50/183 (27%)

6/69 (9%) 50/133 (38%) 0%

5/72 (7%) 45/140 (32%) 10%

6/75 (8%) 48/140 (34%) 4%

5/47 (11%) 48/113 (42%) 4%

5/31 (16%) 48/87 (55%) 4%

4/19 (21%) 43/65 (66%) 14%

d, that is, loss in sensitivity.

yper.
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loss in sensitivity that resulted from applying these filters
(Table 5). The results of additional filtering on each call
set are provided (see Additional file 1: Table S5).
Discussion
We have presented here an easily implemented but
highly effective strategy for enriching true somatic SNVs in
exome-sequencing data, using consensus between multiple
somatic mutation prediction algorithms. Our validation
data demonstrates how a consensus approach greatly
improves specificity while preserving high sensitivity. Such
an approach can provide guidelines for the interpretation
and prioritization of predicted somatic variation from
matched tumor-germline exome-sequencing data for
downstream validation studies (Table 6).
The way this consensus approach should be applied

will ultimately rest on the particular needs and aims of a
given project. For example, in a clinical setting, where
the priority is for maximum accuracy, simply taking the
complete consensus set of variants might be sufficient.
By contrast, the benefits of improved sensitivity may out-
weigh the burden of extra validation in certain contexts. In
addition, a longer list of mutations increases power when
searching for the enrichment of mutations in genes or
pathways [16], and thus in such situations it may be better
to consider variants with incomplete consensus.
Clearly, complete consensus between three somatic mu-

tation prediction programs provides a very high-confidence
set of predicted mutations. Conversely, predictions made
by a single program, and not replicated by another, could
be considered FPs, unless there is a compelling biological
reason to pursue validation. For variants with partial
consensus, further value can be derived from these
calls by considering additional characteristics. The three
programs used here were selected because they are widely
used in the cancer MPS community, and use distinct
detection algorithms, but any combination of programs
should lead to improved somatic mutation detection.
Consistent with our findings, requiring consensus with
additional prediction algorithms improved specificity, while
minimizing the loss of TPs.
Introducing additional filtering based on read-mapping

statistics further improved specificity without reducing
sensitivity, in particular with filters based on the fraction
Table 6 Recommendations for applying consensus results to

Prediction set Recommendations

Consensus Accurate, high-confidence pred

Partial consensus Roughly equal numbers of gen
maximize sensitivity. Further filt

No consensus Largely false positives; may be
high-confidence list of variants
of reads that were mate-pair rescued. This is, to our
knowledge, the first report linking the often-used process
of read mapping by mate-pair rescue as a source of FP
variant calls in MPS. Although filtering on read depth can
provide minor improvements to the TP rate, the cost in
sensitivity may be substantial. Likewise, the effects of
sample purity and ploidy need to be considered when
filtering predictions having low frequencies of non-
reference reads. TP rates could be raised further by in-
creasing the stringency of filtering on evidence for the
non-reference allele in the germline, and by filtering
germline SNVs using public resources such as the Exome
Variant Server [34] and the 1000 Genomes database [35].
Such filtering was not performed here, as the aim was to
assess the raw output from the somatic variant prediction
algorithms.
Our findings show how applying just a few simple

heuristic filters dramatically improves discrimination
between tPs and FPs for partial-consensus predictions,
suggesting a means by which somatic point mutation
prediction algorithms could be further improved. More
sophisticated somatic mutation filtering methods do exist,
and could be used to improve classification further. For
example, Ding et al. showed that applying machine learning
algorithms based on predictive discriminative approaches
to a set of 106 features based on sequencing metrics signifi-
cantly improved on existing methods of somatic mutation
detection [36]. Similarly, Lower et al. used a scheme based
on sequencing of control samples in duplicate, and applied
a random-forest classifier based on the output of three
somatic mutation prediction programs (including one
of those used here, SomaticSniper) to develop a false-
discovery rate (FDR) measurement that they showed
can be used to enrich for true somatic variants [37].
However, these approaches rely on generating extra,
redundant sequencing and/or complex implementation of
advanced algorithms, which may be beyond the means of
some laboratories, and might hamper retrospective study
of existing data. By contrast, obtaining a consensus set
of predictions can be quickly and easily implemented
using currently available software. This approach avoids
the need for complex, highly specialized software or the
generation of additional datasets, and provides specificity
and sensitivity suitable for most purposes. Indeed, most of
the ‘low-FDR’ mutations validated by Lower et al. were
somatic mutation predictions

ictions suitable for further analysis

uine somatic mutations and false positives. Utility dependent on need to
ering can be performed to improve confidence

disregarded unless compelling biological interest exists. Explore using
from consensus
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consensus predictions between the three programs they
used on their data [37]. Thus, we feel our approach should
be accessible to a wide array of cancer researchers, even
those without access to advanced bioinformatics resources.
The success of a consensus approach is also expected

to vary with the sensitivity and accuracy of the somatic
mutation prediction algorithms. We selected three pro-
grams that are widely used and considered ‘state of the art’
for their accuracy and sensitivity, but any set of available
programs for somatic mutation prediction could be used,
and would be likely to share some fraction of their predic-
tions [10,37]. Very similar algorithms would be expected
to have a high degree of overlap in their predictions, while
less similar algorithms would in general be expected to
show poor overlap; however, some level of dissimilarity is
necessary for the consensus approach. Although it may be
anticipated that sequencing artifacts (arising from features
such as sequence context, GC content, capture bias, and
alignment artifacts) would affect the tumor and germline
sample equally, and thereby result in consensus FPs, this
is evidently not always the case. Differences in the quality
of the tumor and germline DNA, allelic imbalances in the
tumor, and stochastic allelic dropout in regions of low
read depth are likely to unveil artificial ‘somatic’ variants,
to which each variant calling program is more or less
sensitive. Users should adjust program parameters and
downstream filtering accordingly, as optimal thresholds
will vary by dataset and experiment. One strength of a
consensus approach is that can be applied to assign confi-
dence to predictions, even when there is uncertainty over
the best cut-off thresholds to use.
Our study is limited by the validation approach taken,

in that the validation rate may be affected by a combination
of the sensitivity of Sanger sequencing and the inaccuracy
in the allele frequencies generated by MPS, as the frequen-
cies are an approximation, which is influenced by multiple
PCR steps and capture efficiency. However, all of the
samples and call sets used will have been influenced by
these factors. Additionally, as this was a discovery dataset
and the full set of true somatic mutations in our samples
is unknown, the true sensitivity and specificity rates
cannot be determined and the reported TP rate is a
function of the somatic mutation detection programs
used. Furthermore, we could not assess the usefulness
of our consensus approach for rare somatic variations, as
detection by Sanger sequencing is limited to variants with
allele frequencies of greater than 20% [32].
Our results are most directly relevant to exome cap-

ture sequence data. The expected number, overlap, and
reliability of somatic predictions may vary in situations
with much higher average coverage (such as targeted
resequencing of selected regions) or lower average coverage
(such as whole-genome sequencing). However, we an-
ticipate that even in the aforementioned situations,
confidence would still be increased by the inclusion of
multiple prediction algorithms.
Although we did not explore the validation rates of

variants with allele frequencies less than 0.2, because of
the technical limitations of the chosen validation method
[32], these variants are of interest to many researchers
[11]. It is possible that a simple consensus process may
also work well to enrich for true somatic variants in
this more difficult area. The characteristics and inbuilt
thresholds of the individual program(s) used for variant
calling can differ significantly, and need to be matched to
the variants of interest.

Conclusions
Taking the consensus of somatic SNV detection programs
was found to be a powerful method for increasing the valid-
ation rate while maintaining maximum sensitivity. Although
each program aims to identify true somatic variants and
thus they have overlapping strategies, each has also been
designed using independent methods resulting in program-
specific limitations. The consensus approach compensates
for this to some degree, allowing each program to reaffirm
the predictions made by the others, and improving confi-
dence by removing many of the false predictions generated
by data artifacts. Similar effects are likely to influence other
bioinformatics classification problems, and thus, while this
approach is somewhat simplistic, it may prove effective
for a variety of genomics and bioinformatics analyses.
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