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Abstract
Osteoporosis is a skeletal disorder characterized by compro-
mised bone strength that predisposes a person to an increased 
risk of fracture. Osteoporosis is a complex trait that involves 
multiple genes, environmental factors, and gene-gene and 
gene-environment interactions. Twin and family studies have 
indicated that between 25% and 85% of the variation in bone 
mass and other skeletal phenotypes is heritable, but our know-
ledge of the underlying genes is limited. Bone mineral density is 
the most common assessment for diagnosing osteo porosis and 
is the most often used quantitative value in the design of genetic 
studies. In recent years, our understanding of the patho physio-
logy of osteoporosis has been greatly facilitated by advances 
brought about by the Human Genome Project. Genetic 
approaches ranging from family studies of monogenic traits to 
association studies with candidate genes, to whole-genome 
scans in both humans and animals have identified a small 
number of genes that contribute to the heritability of bone mass. 
Studies with transgenic and knockout mouse models have 
revealed major new insights into the biology of many of these 
identified genes, but much more needs to be learned. Ultimately, 
we hope that by revealing the underlying genetics and biology 
driving the pathophysiology of osteoporosis, new and effective 
treatment can be developed to combat and possibly cure this 
devastating disease. Here we review the rapidly evolving field of 
the genomics of osteoporosis with a focus on important gene 
discoveries, new biological/physiological paradigms that are 
emerging, and many of the unanswered questions and hurdles 
yet to be overcome in the field.

Introduction
The past decade has been witness to one of the greatest 
scientific efforts and achievements in recorded history, the 
Human Genome Project (HGP). The impact of this effort in 
terms of our understanding of the genetic basis of disease 
will be manifest in multiple ways for many decades, even 
centuries, to come. In the field of osteoporosis, as in all 
diseases that have a genetic component, the sequencing 
and cataloguing of the repertoire of genes in the human 
genome and other species, the development of high-

density single nucleotide polymorphism (SNP) maps, high-
throughput sequencing along with other genomic 
technologies, advances in statistical approaches for the 
analysis of the derived genetic information, and the ability 
to generate transgenic and knockout mouse models to 
assess the contribution of individual genes to bone mass 
regulation have propelled research in the field at an 
incredible pace.

As in all genetic studies, the choice of phenotype ultimately 
determines the end-product of the genetic analysis, that is, 
the genes that may eventually be identified. In the simplest 
terms, osteoporosis has been defined by The National 
Institutes of Health (NIH) Consensus Development Panel 
on Osteoporosis Prevention, Diagnosis, and Therapy as a 
‘…skeletal disorder characterized by compromised bone 
strength predisposing a person to an increased risk of 
fracture’ [1]. However, this definition offers little pheno-
typic guidance for the design of studies to dissect out the 
underlying genetics or for identifying the causal genes of 
the disease. The World Health Organization Study Group 
suggested an operational definition for osteoporosis of a 
bone mineral density (BMD) of 2.5 standard deviations 
below the mean for young healthy adult women [2]. This 
definition is widely used today, but does not take into 
account bone microarchitecture and/or bone quality, which 
are much more difficult to define. BMD does provide a 
quantitative variable that can serve as a surrogate for 
‘osteoporosis’ and thus is useful for genetic studies. As such, 
BMD has been one of the primary phenotypes used in 
genetic studies of osteoporosis, although as will be briefly 
referenced in this review there are several other surrogate 
phenotypes that have also been used in this regard.

Lessons from ‘the early days’
In order to fully appreciate how genomics has informed 
our understanding of the pathogenesis of osteoporosis, a 
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short historical review to provide perspective seems war-
ran ted. Osteoporosis is a complex trait involving multiple 
genes, strong environmental influences and, between 
individuals, a variable mix of gene-gene and gene-environ-
ment interactions. Evidence from twin and family studies 
has suggested that the heritability of BMD and other 
skeletal phenotypes ranges between 25% and 85% [3,4]. 
Given the high heritability of some of these bone traits (as 
surrogates for osteoporosis), there is reason to be 
optimistic that the underlying disease-causing genes can 
be identified.

Candidate genes
The entrée of the bone field into the identification of 
genes involved in ‘osteoporosis’ was launched by Eisman 
and colleagues in 1992, with their seminal work on 
vitamin D receptor gene (VDR) polymorphisms [5]. This 
report was quickly followed by a number of studies (now 
totaling over 400) on VDR polymorphisms in relation to 
BMD and several other phenotypes. Not surprisingly, 
some studies showed positive associations [6-8], negative 
correlations [9-11] and some positive or negative corre-
lations depend ing on phenotype [12,13]. While on the 
surface this might seem paradoxical, what these studies 
demonstrated with this single candidate gene approach is 
that differences in skeletal site, ethnicity, sex, age, 
menopausal status and diet all have effects that may 
account for why a candidate gene could have a positive 
association in one study and not in another. Even more 
important, these studies illustrated the need for careful 
study design, including the choice of pheno type, con-
sidera tion of sample size, choice of study population and 
statistical methods of analysis, in order to be able to tease 
out the underlying genetic basis of osteoporosis.

Following the first report on VDR gene polymorphisms, 
several other favorite candidate gene studies (estrogen 
receptor (ESR1, ESR2), collagen type 1 (COL1A1), para-
thyroid hormone (PTH), calcitonin (CALCA), transforming 
growth factor-β (TGFB1), and so on) began to appear, again 
with variable positive and negative correlations [14]. These 
studies all began in the pre-HGP later half of the decade of 
the 1990s and mainly used polymerase chain reaction (PCR) 
to amplify gene fragments with known restric tion enzyme-
based polymorphisms in candidate genes that were chosen 
based on their known role in bone biology. As the field 
evolved from a candidate gene focus towards more genome-
wide approaches, the hope remained that the number of 
genes would be limited to a few with a ‘large effect size’, as 
the technology and statistical methods had not yet reached a 
capability of dealing with a large number of genes each 
accounting for less than 5% of the phenotypic variation. As 
we have moved into the post-HGP era, both technology and 
statistical methods of analysis have reached a level of 
sophistication that allows us to begin to identify these small-
effect-size genes.

Monogenic traits
In terms of understanding the pathophysiology of osteo-
porosis, there were major advances during this pre-HGP 
period that came out of studies of human families with 
monogenic traits. Advances in our understanding of 
osteoclast biology were a direct consequence of the identi-
fication of genes causing osteopetrosis [15,16], and osteo-
blast biology was greatly advanced from studies of both 
human kindreds and mouse model systems [17-19]. Another 
major advance in our understanding of bone mass 
regulation resulted from studies of decreased and increased 
bone mass conditions as in the case of osteoporosis pseudo-
glioma syndrome (OPPG) [20] and high bone mass (HBM) 
[21], respectively. Both were initially mapped to human 
chromosome 11q12-13 [22,23] using standard linkage 
mapping approaches. In the case of the HBM family, the 
genome linkage study after the initial definition of the 
linkage interval was accomplished in one month because of 
newly available (at that time) dinucleotide repeat-based 
human linkage mapping panels that used fluorescence-
based detection methods on a DNA sequen cing platform 
[23]. The causal mutations for these two conditions were 
subsequently shown to lie in the low-density lipoprotein 
receptor-related protein 5 (LRP5) gene [24,25]. Subse-
quently, several other groups have found mutations in 
LRP5 that give rise to conditions of low and high bone 
mass [26-28]. LRP5 is a co-receptor along with the frizzled 
family of proteins for Wnt proteins, and this discovery 
introduced the importance of Wnt/β-catenin signaling [29] 
in the regulation of bone mass and, since those initial 
published reports, it has become one of the most heavily 
studied areas in bone biology. The discovery of LRP5 also 
illustrates a major limitation of candidate gene studies; 
they are based on some knowledge for the selection of 
genes tested, and the linkage interval contain ing LRP5 had 
no previous identified genes with a known role in bone 
biology. Similarly, whole-genome scans have produced a 
number of potential regions or quantitative trait loci 
(QTLs); many do not harbor any gene with a known role in 
bone biology. While this makes actual gene identification 
potentially more difficult, it also increases the likelihood of 
revealing unsuspected and dramatic new insights [30-34].

LRP5 polymorphisms have subsequently been investigated 
for a role in bone mass variation, and the majority of 
studies report positive associations, but on average only 
approximately 2 to 3% of the variance can be explained, 
depending upon the SNPs and phenotypes examined 
[35-38]. Thus, while specific mutations in LRP5 can have a 
dramatic effect on bone mass, more common variants of 
the gene appear to only contribute modestly to changes in 
BMD and consequently the pathophysiology of osteo-
porosis. LRP5 and the Wnt/β-catenin signaling pathway 
have been suggested as major targets for the development 
of new therapies to treat osteoporosis, although this has 
been the subject of some debate in the literature [39-41].
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Another important family-based gene discovery that also 
relates to the Wnt/β-catenin signaling pathway was the 
identification of the SOST gene and its role in the patho-
genesis of sclerosteosis [42-44] and van Buchem’s disease 
[45,46]. The protein product of the Sost gene, sclerostin, 
inhibits Wnt/β-catenin signaling by binding to LRP5 and 
preventing Wnt from binding [47,48]. Sclerostin is thought 
to be exclusively produced by osteocytes [49,50] and func-
tions on osteoblasts to regulate the pathway. Currently, an 
antibody to sclerostin is under development as a bone 
anabolic therapeutic for diseases of low bone mass such as 
osteoporosis [51].

Animal studies
Additional advances have came from mouse mapping 
studies that employed a combination of genetic and genomic 
approaches to identify the Alox15 gene as an important 
negative regulator of bone mass in mice [52]. Subsequent 
studies in humans suggested that variants in ALOX12 but 
not ALOX15 accounted for approximately 3% of the 
variation in human bone mass [53,54]. The 12/15-lipoxy-
genase pathway might therefore be another therapeutic 
target for osteoporosis [52]. Other genes that have 
appeared recently from various mouse mapping studies 
include the Duffy antigen receptor for chemokines (Darc) 
[55], endothelin-converting enzyme 1 (Ece1) [56] and 
secreted frizzled related-protein 4 (sFRP4) [57]. Whether 
these genes will contribute to bone mass variation in 
humans has not yet been fully investigated.

Several QTLs in the mouse have been identified [58-60] 
and it appears that the locations of these loci vary between 
inbred lines of mice. This can partially be explained by the 
known differences in geometry and BMD that is known to 
exist between strains [58]. One advantage of the mouse 
models besides the ability to generate specific breeding 
crosses is the ability to perform functional testing that 
cannot be carried out in humans, and thereby identify a 
different set of genes underlying these phenotypes [56,61,62]. 
Completion of the mouse genome DNA sequence and 
development of dense marker maps will greatly facilitate 
the identification of the genes underlying these mouse QTLs, 
in a similar way to the advances made in human studies.

Mapping studies in other animal model systems such as 
the baboon [63-65], chicken [66] and cow [67] have also 
been reported in the literature. Because of its close genetic 
relatedness to humans, the baboon offers an excellent 
model system and has been used in an integrative approach 
using chromosomal syntenic overlaps to define QTLs that 
are shared between species [63,68].

Recent advances
In recent years, there has been a literal explosion in the 
number of published reports based on SNP-based candi-
date gene studies and whole-genome scans employing 

different phenotypes and study designs [30,31,69-71]. This 
can largely be attributed to the development of physical 
maps, cataloguing of genes and development of high-density 
SNP maps along with high-throughput technology platforms 
and statistical advances that came out of the HGP. A 
comprehensive description of these published reports is not 
within the scope of this review and so we will highlight just a 
few of the studies. What is perhaps the most exciting aspect 
of the more recent studies is that the first genes associated 
with these various traits are beginning to be identified, and 
this holds great promise for advancing our understanding of 
the pathophysiology of osteoporosis.

Genome scans identify numerous QTLs
A recent review by Ferrari [4] summarizes the location of 
BMD-related QTLs that have been reported for the human 
genome and those that have been confirmed by meta-
analysis. Interestingly, QTLs have been found on every 
human autosome, but only a subset has been confirmed by 
meta-analysis. The first of the genes to be identified from a 
whole-genome scan was BMP2, which came out of an 
analysis of extended osteoporotic families in Iceland and a 
subsequent follow-up association analysis [33]. Other genes 
that have been associated with BMD and/or frac tures 
include VDR, estrogen receptor alpha (ESR1) and beta 
(ESR2), collagen type 1α (COL1A1), LRP5, TGF-β (TGFB1), 
interleukin-6 (IL6), osteoprotegerin or OPG (TNFRSF11b) 
and receptor activator of nuclear factor κB ligand or RANKL 
(TNFSF11). Recently LTBP2 [72] and signal transducer 
and activator of transcription (STAT1) [73] have also been 
proposed to be genes involved in osteo porotic phenotypes. 
STAT1 is an interesting candidate, as the Stat1-/- mouse 
has increased bone mass and has been shown to function 
as an attenuator of Runx2-mediated osteoblast differen-
tiation [74]. Given the large number of candidate intervals 
identified from the whole-genome scan studies, and the 
potential large number of genes within those intervals, the 
next step towards underlying gene identification will be 
refinement of the mapped intervals. Based on the Icelandic 
population study [75], refinement of established genome-
wide significant loci resulted in the identification of prime 
candidate genes MAP/microtubule affinity-regulating 
kinase 3 (MARK3) and SOST. Another approach is to com-
bine data from multiple genome-wide studies and perform 
meta-analysis [4] to focus initial efforts for fine mapping of 
intervals. Interestingly, new intervals have appeared from 
this type of analysis [76], likely due to the sample size and 
power to detect small effect loci that is often the case with 
any one study. Added into this mix is a consideration of the 
relative contribution that one particular gene may have in 
one ethnic group versus another population. Also, in 
addition to choice of phenotype, which can yield different 
QTLs and genes, overlapping and different QTLs in males 
versus females have been identified in several of the 
published studies [30,34,69,71,76,77]. Clearly the gene 
discovery process is far from over at this point.
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Mouse genomic/genetic approaches
While the identification of an underlying trait gene within 
one of the QTLs is an important first step, understanding 
how this gene relates to pathophysiology of osteoporosis is 
even more important. In this regard, advances in genomics 
have played another critical role. Bacterial artificial 
chromosome (BAC) recombineering [78,79] has become a 
mainline approach in the bone field, and the pace with 
which these genetic mouse models can be generated is no 
longer a rate-limiting step for understanding gene func-
tion. The ability to create transgenic and knockout mice to 
explore the gene function has become a main investigative 
tool for bone biologists. The development of various Cre 
recombinase lines of mice in which Cre expression is 
driven by bone cell-specific promoter elements has 
propelled the field forward rapidly in the past few years. 
Crossing these mice with a mouse line containing floxed 
alleles of the particular gene of interest has provided us 
with the means to examine the role of any gene in just 
about any tissue or cell type for a role in bone biology. 
These conditional knockout mice represent an alternative 
approach to overcome the lethality of gene deletion that 
can be encountered in a traditional global knockout 
approach. In the bone field, mice such as the human 
osteocalcin-Cre [80], rat 3.6 kb Col1-Cre and 2.3 kb Col1-
Cre [81] and the mouse α1(I)-Col-Cre [82] are commonly 
used for selective deletion of genes in osteoblastic cells; the 
DMP-1 Cre mouse is used for deletion of genes in 
osteocytes [83] and the Trap-Cre and Cathepsin-Cre [84] 
mice can be used for deletion of genes in osteoclasts. A 
common refinement of these Cre approaches is to include 
an inducible control element in the promoter construct 
[85] to overcome lethality problems that can sometimes be 
encountered even with conditional knockout crosses. 
However, all of these Cre approaches are not without 
limitations. As different promoters are used to drive Cre, 
the cell/tissue specificity and extent of gene deletion in 
each model system/cross needs to be carefully determined, 
especially with respect to the developmental pattern and 
timing of expression as well as the extent to which potential 
cells downstream in a differentiation pathway are affected, 
in order to fully interpret the results.

Nonetheless, considerable advances in our understanding 
of bone biology have resulted from the use of these mouse 
genetic approaches. For example, we now appreciate that 
bone plays a key role in several endocrine loops. Recent 
studies have suggested that bone mass is partially 
regulated by a fat-brain-bone axis involving leptin and the 
sympathetic nervous system [86,87]. Also, a key role for 
the skeleton in the regulation of energy metabolism 
involving osteoblast-produced osteocalcin has been shown 
[88]. Finally, bone mass regulation by a gut-brain-bone 
axis involving serotonin [89] has been proposed. The 
serotonin story is also interesting from the perspective that 
Lrp5 expression in the gut rather than the osteoblast has 

been proposed to be the critical site for Lrp5-mediated 
bone mass regulation. While this finding will require 
independent confirmation, it potentially adds another level 
of complexity to bone mass regulation and raises an 
important question of what tissue key genes need to be 
expressed in. Obviously these proposed endocrine loop 
systems are complicated and there are published data to 
suggest that there may be different effects on trabecular 
versus cortical bone [90,91], which adds an additional level 
of complexity. Regardless of how these evolving stories 
ultimately turn out, what they clearly illustrate is that bone 
mass regulation is also dependent on other organ systems 
besides the classical parathyroid-kidney-gut level of 
regulation that controls calcium and phosphate homeo-
stasis. These new endocrine loop systems point out the 
complex nature of the regulation of bone mass and the 
need to not restrict genomic and functional study efforts 
solely to genes expressed in bone.

Other approaches and advances
Gene-expression studies in the bone field have yet to be 
fully integrated into the genomic effort. There are many 
reasons for this lack of integration, mainly relating to the 
difficulty of obtaining appropriate human bone or other 
tissue samples (besides blood) for conducting expression 
profiling. One success in this regard was the combination 
of mapping and gene expression microarray analysis to 
identify Alox15 as an important regulator of bone mass in 
mice [52]. A recent report combined gene expression 
profil ing in isolated human peripheral monocytes with a 
genome-wide association study to identify the STAT1 gene 
[73], but human expression profiling relating to osteo-
porosis has lagged far behind other diseases.

Another important recent development is related to our 
understanding of the multifaceted roles played by the 
osteocyte. This cell is the most abundant cell type in bone. It 
is embedded within the mineralized matrix and through the 
lacunar canalicular system forms a communication network 
via its dendritic processes with other osteocytes and cells on 
the bone surfaces and within the vascular beds of bone. The 
osteocyte has long been thought to be the mechanosensory 
cell within bone, and as such plays a central role in 
controlling bone mass in response to changes in load 
environment. Recent studies have now shown that the 
osteocyte also plays a key role in regulating phosphate 
metabolism and mineral homeostasis, and orchestrating the 
activity of the bone-forming osteoblasts and bone-resorbing 
osteoclasts through autocrine, para crine and endocrine 
mechanisms [92]. Osteocytes also appear to be the only cells 
producing sclerostin, the product of the SOST gene, which 
modulates the activity of Lrp5/6 and the Wnt signaling 
pathway. What all of these recent findings illustrate is that 
bone and bone cells do not exist in their own sequestered 
environment. Bone mass regulation over an individual’s 
lifetime is finely tuned by a number of factors produced 
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from both outside and within bone. As such, there is still a 
great amount of bone biology that we do not yet know, and a 
combination of genomic, proteomic and other approaches 
will be needed to fully understand the pathophysiology of 
bone diseases like osteoporosis.

Conclusions
Advances in genomics have propelled discovery in the bone 
field forward at an ever-accelerating pace, but there is still 
much to be learned. How many genes will ultimately be 
involved in explaining variation in BMD or other bone 
phenotypes is clearly an open question at this time. Given 
the new insights recently achieved regarding the complex-
ities of bone mass regulation, it seems likely that many of 
the genes that will be discovered in the near future will be 
expressed in tissues other than bone, and understanding 
this will be an important aspect of future genomic efforts.

Given the pace of research, it seems almost certain that we 
will eventually catalogue the entire repertoire of genes that 
contribute to the pathophysiology of osteoporosis. It is not 
unreasonable to believe that in the near future, technology 
platforms will evolve to the point where sequencing one’s 
entire genome will become feasible. New approaches to 
high-throughput sequencing are currently being developed, 
with real potential to make this a reality [93-95]. This 
implies that individual whole-genome analysis is not that 
far away. However, one major lesson from previous 
research is that within individuals, or groups of individuals, 
only a subset of genes may play a predominant role. 
Furthermore, in the case of osteoporosis, which is mainly a 
disease of older age and involves not only genetic, but also 
environmental, gene-gene and gene-environment inter-
actions, determining lifetime risk will be much more 
complicated. One of the great challenges going forward will 
be not only identifying the genes, but also understanding 
how these genes are influenced by other factors.

Ultimately we hope to fully understand the pathophysiology 
of osteoporosis so that effective treatment can be achieved. 
As shown in Table 1, several genes have now been identi-
fied that contribute to the variation in bone density or 
other phenotypes. Three of the strongest candidate genes 
that have currently been identified are components of the 
Wnt/β-catenin signaling pathway. An antibody to scleros-
tin is already being developed; it is an anabolic agent and 
initial studies in rats have demonstrated a significant 
increase in BMD and show great promise [51]. Also, a 
series of sulfonamide derivatives have been shown to 
modulate Wnt signaling through inhibition of sFRP-1 [96], 
suggesting another class of compounds that might be 
developed into a therapeutic agent to increase bone mass. 
Other targets such as GSK-3β [97,98] and Dickkopf-1 
[99,100] have been described in the literature. A major 
concern with targeting the Wnt pathway is its known role 
in tumor formation and whether manipulating the pathway 
in bone will increase the risk of tumor formation in other 
tissues [39,41,101-106]. Manipulating sclerostin appears to 
circumvent this concern because it is produced by osteo-
cytes and therefore potentially restricts the target to bone, 
although the extent to which sclerostin circulates could be 
a potential unknown issue that will need to be resolved. 
While it appears that a new generation of anabolic agents 
is now on the horizon, clearly our understanding of the 
underlying genetics of osteoporosis has yet to reveal all 
there is to be discovered. Looking further ahead as new 
agents for treating osteoporosis are developed, studies will be 
needed to understand how any given individual’s response to 
different therapeutic approaches may vary as a function of 
their specific genetic background. Clearly, advances in 
genomics will also play a major role in addressing and solving 
these and many other future questions.
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Table 1

List of the most prominent genes associated with osteoporosis phenotypes confirmed by multiple study designs

Gene Signaling pathway Study design References

LRP5 Wnt/β-catenin Human family linkage, GWAS, CGS, mouse genetics [25-27,70,77,107-109]

SOST Wnt/β-catenin Human family linkage, GWAS [43,44,46,75]

sFRP4 Wnt/β-catenin GWAS, CGS, mouse genomics and genetics [57,110,111]

ALOX 12/15 Arachidonic acid metabolism Mouse genomics and genetics, GWAS, CGS [52-54]

BMP2 Bone morphogenetic protein signaling GWAS, CGS, mouse genomics and genetics [33,112,113]

VDR Transcriptional regulation CGS, GWAS [5,32,107]

ESR1/ESR2 Transcriptional regulation CGS, GWAS [4,72,107]

STAT1 Transcriptional regulation GEP, CGS, mouse genetics [73,74]

Col1A1 Extracellular matrix CGS, GWAS  [3,32]

CGS, candidate gene study; GEP, gene expression profiling; GWAS, genome-wide association study. For additional references see article and reviews 
cited therein.
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