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drug-disease pairs
Ingo Vogt1,2, Jeanette Prinz1,2 and Mónica Campillos1,2*
Abstract

Background: The incomplete understanding of disease causes and drug mechanisms of action often leads to
ineffective drug therapies or side effects. Therefore, new approaches are needed to improve treatment decisions
and to elucidate molecular mechanisms underlying pathologies and unwanted drug effects.

Methods: We present here the first analysis of phenotypically related drug-disease pairs. The phenotypic similarity
between 4,869 human diseases and 1,667 drugs was evaluated using an ontology-based semantic similarity approach
to compare disease symptoms with drug side effects. We assessed and visualized the enrichment over random of
clinical and molecular relationships among drug-disease pairs that share phenotypes using lift plots. To determine
the associations between drug and disease classes enriched among phenotypically related pairs we employed a
network-based approach combined with Fisher's exact test.

Results: We observed that molecularly and clinically related (for example, indication or contraindication) drugs
and diseases are likely to share phenotypes. An analysis of the relations between drug mechanisms of action
(MoAs) and disease classes among highly similar pairs revealed known and suspected MoA-disease relationships.
Interestingly, we found that contraindications associated with high phenotypic similarity often involve diseases
that have been reported as side effects of the drug, probably due to common mechanisms. Based on this, we
propose a list of 752 precautions or potential contraindications for 486 drugs.

Conclusions: Phenotypic similarity between drugs and diseases facilitates the proposal of contraindications and
the mechanistic understanding of diseases and drug side effects.
Background
Therapeutic drug intervention is widely used to treat
diseases or their symptoms. However, drug therapy is
often inefficient due to the poor understanding of the
molecular causes of diseases or is associated with
unwanted side effects. Therefore, new approaches aiming
at improving drug treatment decisions and unveiling mo-
lecular mechanisms underlying diseases and drug actions
are needed. In this regard, several computational methods
that integrate experimentally and theoretically inferred
molecular information of drugs and diseases, such as their
associated gene expression profiles [1], drug targets,
disease genes, and protein and compound structure
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[2], have been proposed. As a result, novel associations
between drug and diseases, such as new indications and
drug side effects [3], have been recognized. However, these
approaches are limited to pre-existing and often incom-
plete molecular information and suffer from bias inherent
to the experimental models [4].
As a consequence, alternative integrative approaches that

rely on organismal phenotypes are emerging as valuable
sources of information aiding the understanding of human
pathologies. These methods avoid the aforementioned
disadvantages of utilizing experimental molecular data
as they deal with in vivo physiological information of the
whole organism. For example, genome-wide association
studies have identified multiple molecular determinants of
diseases [5] and the analysis of disease symptoms from
medical patient records has been shown to be able to
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capture disease comorbidities, predict disease progression
and, most interestingly, molecular causes of diseases [6,7].
Furthermore, the observation that organismal phenotypes

also carry information about molecular changes induced by
system perturbations in mammals has been confirmed by
numerous integrative analyses of phenotypic and molecular
information. In particular, drugs sharing side effects tend to
bind to common protein targets [8] and mouse models of
functionally related genes often show similar phenotypes
[9]. Likewise, genes associated with diseases that share
symptoms are often functionally related [10,11]. In add-
ition, comparative analyses of phenotypic information
across species and perturbations have been successful in
capturing novel disease-related molecular information.
For example, the comparison of phenotypes between
mouse models and human diseases has been shown to be
an alternative to classical molecular integration methods
for gene prioritization in diseases [12-14]. Moreover,
an analysis of phenotype resemblance between drugs
and mouse models has suggested that phenotype com-
parison between species could be used to predict novel
drug-target interactions [15]. All these pieces of evidence
demonstrate that approaches exploiting phenotypic in-
formation show considerable promise in assisting in the
discovery of novel molecular mechanisms of diseases and
drug action.
In this study we investigated if diseases and drugs

related by similarity of symptoms and side effects are
also mechanistically related and whether this phenotypic
similarity can be exploited to improve our understanding
of disease etiology, drug side effects, and current clinical
indications and contraindications. We show that the com-
parative analysis of a comprehensive data set of phenotype
information from drugs and diseases can yield insights
into the molecular mechanisms involved in these perturba-
tions and help to provide a rational guide for therapeutic
drug treatment decisions. Based on our findings, we pro-
vide a list of 752 precautions or potential contraindications
for 486 drugs.

Methods
Data resources
Thesauri and ontologies
Below we describe the construction of the thesauri we used
to identify diseases, drugs, and phenotypic features within
electronic documents. These thesauri group synonymous
medical or chemical terms into concepts. For instance, in
our phenotypic feature thesaurus the terms calcinosis, calci-
noses, tissue calcification, pathologic calcification, and calci-
fication, pathologic form the concept calcinosis. In addition,
we describe how we obtained a phenotypic feature ontology
that provides the required hierarchical relationships to cal-
culate the semantic similarity between drugs and diseases
based on their side effects and symptoms, respectively.
Disease thesaurus
We created a disease thesaurus for the recognition of
human disease terms from text sources by collecting
several existing medical thesauri integrated in the UMLS
Metathesaurus (US National Library of Medicine, 2011).
Our disease thesaurus includes concepts that are linked
to MeSH (Medical Subject Headings, 2011), Online
Mendelian Inheritance in Man (OMIM®, 2011), or ICD-
9-CM (International Classification of Diseases, Ninth
Revision, Clinical Modification, 2010) and are classified
as pathologic function in the UMLS Metathesaurus. In
addition, it contains all English synonyms provided by
all vocabularies included in the Metathesaurus that do not
require an additional license beyond the UMLS license.
We provide a list of these vocabularies as supporting
information (Additional file 1).

Drug thesaurus
In order to recognize drug names from electronic docu-
ments, we created a drug thesaurus by integrating differ-
ent sources of drug names. It consists of a collection of
records each of which contains all synonyms for a given
drug. Our drug thesaurus is mainly based on the chemical
aliases from STITCH 2 [16], which provides an extensive
source of names for drugs and other chemicals and their
synonyms mapped to PubChem compound identifiers
(CIDs). Each CID in STITCH thus represents a distinct
record grouping the different names of a chemical. We
complemented the STITCH 2 chemical name data with
additional drug names and their synonyms from PubChem
[17], Drugbank [18], KEGG DRUG [19], Anatomical
Therapeutic Chemical (ATC) classification system, and
Unique Ingredient Identifiers (UNII; from the FDA
Substance Registration System [20]) (versions 2011).
To map the additional sources to the STITCH data we
preferentially used PubChem CIDs. If these identifiers
were not available, we used other existing chemical
identifiers from ChEBI (Chemical Entities of Biological
Interest) and KEGG ID. If none of these identifiers
matched to STITCH synonyms, we tried to match first
the preferred name of the additional name source to
our thesaurus. If this was not successful, we tried to
match one of its synonyms (see Table S1 in Additional
file 2 for details). For each record from the additional
name sources that could not be matched in this way,
we created a new record in our chemical name thesaurus.
After this, we selected and kept only those records corre-
sponding to therapeutically active molecules. To that aim,
we collected all active ingredients listed by the US Food
and Drug Administration (FDA), the European Medicines
Agency (EMA), ATC classification system, RXNORM, and
the electronic Medicines Compendium (eMC [21]). By
matching the list of 6,653 active ingredient names to our
chemical names thesaurus we obtained 3,943 records that
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correspond to therapeutically active molecules. These
records constitute our final drug thesaurus, with 832
of them representing newly created drug records not
contained in STITCH. In total, this thesaurus contains
157,930 distinct names of drugs. As reported in Table S1
in Additional file 2, 77.65% of these names are provided
by STITCH; 1.89% more were mapped via chemical iden-
tifiers from PubChem, ChEBI, and KEGG. The remaining
drug names were assigned based on preferred names
(17.50%), other synonyms (2.86%) or manually (0.1%). By
mapping the drug thesaurus to drug labels we extracted
the therapeutic agents described in these labels. We then
selected those drug labels with only one therapeutic agent.
Throughout this manuscript we use the term 'drug' to
refer to such a therapeutic agent and consider drug
products that contain multiple active ingredients as drug
combinations.
As stated in the Methods subsection 'Extraction of

phenotypic data for diseases and drugs', we observed that
drug names were correctly identified in all drug-related
electronic documents for a random sample of 10 drugs
covering all sources of drug side effect data.

Phenotypic feature thesaurus
Furthermore, we compiled a specific thesaurus for the
extraction of both disease symptoms and drug side
effects from electronic documents. We collected all
UMLS concepts that are linked to the Medical Dictionary
for Regulatory Activities (MedDRA; version 13.0, 2010)
terminology and classified as either 'Anatomical Abnor-
mality', 'Finding', or 'Natural Phenomenon or Process'.
Then, we gathered all terms that were also associated with
these concepts from MedDRA and all vocabularies
included in the Metathesaurus that do not require an
additional license beyond the UMLS license. We provide a
list of these sources in Additional file 3. Finally, terms
were subjected to a set of filters and modification rules to
optimize concept annotation [8,22-24]. This included sup-
pression rules such as removing ambiguous terms or
terms with more than 10 words. We removed terms based
on term types (given by the UMLS Metathesaurus)
suggested to be removed for concept recognition pur-
poses in text [22]. These term types identify, for example,
synonyms inappropriate for recognizing the original con-
cept ('Abdomen' as synonym of 'Malignant neoplasm of
abdomen'), potential ambiguity of abbreviations ('KD',
'KS'), or terms that contain meta-data unsuitable for text
processing ('Agoraphobia [Disease/Finding]') (see section
7.1 in [22]). This step excluded 32,837 terms. Further-
more, to increase computational speed we discarded terms
with many words, such as 'tuberculosis of intestines and
mesenteric glands, bacteriological or histological examin-
ation unknown at present' as it is unlikely to find an exact
match for these terms to free natural language. Overall,
we discarded 11,158 terms that contained more than
10 words. Then, we applied rewrite rules to account
for variability of spelling and phrasing by conversion to
lower case, variation in the possessive case ('crohn's
disease' - 'crohn disease' - 'crohns disease'), and syntactic
uninversion ('pharyngitis, infective' - 'infective pharyngitis').
Both possessive case variations and syntactic uninversion
have already been found to be effective and to not produce
terms not corresponding to the original terms [24]. Such
rewritten terms were added as synonyms in addition to the
original terms. We added a syntactic uninversion of a term
if that term contained one comma followed by a space and
did not contain a preposition or conjunction [24]. In total,
40,228 terms were added by this step. By adding possessive
case variations we further extended the thesaurus by 13,250
terms. All suppression and rewrite rules have been im-
plemented as scripts for automation. In total, our pheno-
typic feature thesaurus contains 33,038 concepts covering
101,672 individual English terms.

Phenotypic feature ontology
The calculation of semantic similarity requires an ontology
that provides hierarchical relationships between terms.
For this purpose, we modified MedDRA's hierarchical
organization that groups terms into four levels of specifi-
city: System Organ Classes (SOCs, 26), High-Level Group
Terms (HLGTs), High-Level Terms (HLTs), and Preferred
Terms (PTs). SOCs represent the most general and PTs
the most specific level. Originally, there is also a fifth level
called Low-Level Terms (LLTs) that contains synonymous
terms of the PT level including the PTs themselves. Be-
cause there is no clear hierarchical relationship between
the PT and the LLT level, we merged the LLT level with
the PT level. Furthermore, the MedDRA ontology links
terms vertically and horizontally, so that terms can be
linked across multiple SOCs. Only the SOC Investigation
is kept separate and thus represents an isolated subtree in
the ontology only connected to the root. This prevents a
meaningful association between, for example, signs as
'blood glucose level increased', a successor of 'Investigations',
with related terms such as 'hyperglycemia'. Interestingly,
MedDRA incorporates Standardized MedDRA Queries
(SMQs), which represent groups of terms across the
entire ontology including the SOC 'Investigations' related
to a defined medical condition (such as 'Hyperglycaemia/
new onset diabetes mellitus'). To overcome the issue of the
isolated 'Investigations' subtree, we thus selected SMQs
linking terms belonging to the 'Investigations' subtree to
terms of other SOCs as additional relationships into our
modified version of the MedDRA ontology. This yielded
61 SMQs from which we manually removed the SMQs
'Lack of efficacy/effect' and 'Haemorrhage terms (excl labora-
tory terms)', which we deemed irrelevant in the given con-
text. We provide a list of the selected SMQs in Additional
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file 4. For the purpose of calculating phenotypic similarity
between drugs and diseases, each concept from our pheno-
typic feature thesaurus is identified by its most specific
MedDRA term. This is possible because we selected only
those concepts from the UMLS Metathesaurus that con-
tained at least one MedDRA term.

Extraction of phenotypic data for diseases and drugs
All phenotypic data were obtained from disease- and
drug-related electronic documents provided by publicly
accessible sources (in 2012) using a two-step semi-
automatic text mining approach. We matched each term
in our thesauri to the appropriate text sections making
use of regular expressions. In addition, as explained in more
detail later in this section, we devised a post-processing step
based on manual inspection of false positives in order to
reduce the number of false positive annotations resulting
from the initial matching step. For diseases we had two
different kinds of documents. OMIM provides a single
text file (omim.txt.Z) that contains structured information
on genes and disease phenotypes from which we extracted
the entry titles for disease identification and the clinical
synopsis sections listing sign and symptom data of dis-
eases. The web resources 'The Merck Manual of Diagnosis
and Therapy' and 'The Merck Manual Home Health
Handbook' [25,26], 'A.D.A.M. Medical Encyclopedia' via
MedlinePlus [27], and 'CureResearch' [28] list available
disease descriptions via tables of contents. The entries in
these tables of content were used for disease identification
while we extracted from each disease description the
section describing signs and symptoms. Afterwards, the
disease thesaurus was employed to identify the disease
names and the phenotypic feature thesaurus was used to
recognize signs and symptoms listed in the corresponding
sections. For this automated annotation step we carefully
designed regular expressions based on repeated manual
analysis of the annotation results.
Drug-side effect information was extracted from public

electronic document directed at health care professionals
or the general public such as drug labels (FDA), drug
monographs (BC Cancer Agency, Canada), summaries of
product characteristics and assessment reports (eMC, UK,
and EMA), and clinical report data from the MedEffect
database, a health product safety database from Canada.
While the latter contains drug-side effect data directly
coded with MedDRA, the other drug documents contain
specific sections devoted to reporting side effect informa-
tion. We extracted these specific sections and the listed
active ingredients and used our phenotypic feature the-
saurus to identify side effects and the drug thesaurus to
identify drug names from the active ingredient list.
Specifically, we only collected side effect data from labels
containing only one active ingredient, as we were only
interested in the side effects caused by a single drug alone.
The automated annotation step for drugs was conducted
in the same way as for diseases. To further enhance the
annotation results we devised a post-processing step that
uses a different set of regular expressions aimed at identi-
fying problematic or false positive concept annotations.
For example, recognized concepts can actually be negated
such as in 'absence of < concept >', 'will/do/does not cause/
develop < concept >', 'without < concept >', and 'never develop
(s) < concept >'. As our semantic similarity measure is not
designed to take the absence of a given feature into ac-
count, we discarded all negated concepts for the presented
analysis. Similarly, we discarded concept annotations that
would lead to false drug-side effect or disease-symptom as-
sociations such as 'falsely attributed to < concept >', 'for/in
people/patients with < concept >', 'mistaken for < concept >'.
In order to assess our annotation performance, we

manually evaluated the annotation results for 10 randomly
selected drugs and diseases that covered all sources of
phenotypic information. For a given drug, the evaluation
of precision was conducted in the following fashion. First,
we assessed each concept match individually. Then, con-
cept annotations were pooled from all labels of the given
drug and considered true if they were true at least once.
Recall was estimated by manually extracting phenotypic
information from all labels and subsequent comparison to
automatically matched concepts. This evaluation scheme
was also applied to disease annotations. We found that,
on average, precision and recall was 96% and 90.3% for
drugs and 98% and 65.7% for diseases. Within the ran-
domly selected disease annotation data we also studied
the prevalence of annotations that were less specific than
what was stated in the document. Examples of these cases
are 'abdominal cramps' versus 'lower abdominal cramps',
'corneal dystrophy' versus 'central corneal dystrophy', or
'polydactyly' versus 'preaxial polydactyly'. This can be due
to the fact that the more specific term is not present in
our phenotypic feature thesaurus or to misspelled terms.
We found that about 8.3% of all obtained disease annota-
tions represented less specific concepts. As the degree of
specificity loss depends on each case individually, it is not
possible to estimate the overall impact of this issue. In
general, annotation of less specific phenotypic features
might decrease the observed overall similarity between
phenotypes. Finally, we also utilized the randomly selected
examples to assess whether the assignments of the elec-
tronic documents to diseases and drugs in our thesauri
were correct. We found that precision was 100% in both
drugs and diseases. For drugs, we correctly identified only
one active ingredient in each of the considered drug
labels.

Protein-protein interaction network
For the analysis of shortest distances between disease gene
products and drug targets we employed a protein-protein
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interaction (PPI) network of functionally interacting
proteins based on STRING 9 PPI data [29]. Here, a
functional interaction refers to pairs of proteins that
interact physically or belong to the same biological
pathway. To select these interactions, we obtained inter-
action data from experimental or database sources with
a minimum confidence score of 0.7, the suggested score
threshold to identify high confidence protein interac-
tions [30,31]. In total, our PPI network consisted of
8,269 nodes and 256,012 interactions.

Disease genes
Information on disease genes was taken from DisGeNET
[32,33]. We only considered data from OMIM. Overall, we
collected 2,667 disease-gene associations between 1,794
genes and 1,815 diseases. Of these, 642 diseases have asso-
ciated genes whose products are part of our PPI network.

Drug targets
We extracted drug targets from the STITCH 3 database
that have a confidence score higher than 0.7 [34]. After
the exclusion of indirect associations, 10,060 drug-target
pairs remained. These pairs consist of 1,654 unique targets
for 1,636 drugs (98.14%); 939 drugs have targets that are
included in our PPI network (Table 1).

Known associations: adverse drug reaction-disease pairs
We selected those disorders reported at least once as a
drug side effect in our drug-side effect data. Then we
collected all drugs that have at least one of these
selected diseases annotated as a side effect. This yielded a
set of 34,467 drug-side effect relationships composed of
736 diseases and 1,294 drugs. We termed these relation-
ships drug-adverse drug reaction (ADR)-disease pairs or
ADR-disease relationships.
Table 1 Overview of different sets of diseases, drugs, and dru

Diseas

Disease/drug-feature pairs 55,031

With phenotypic features 4,869

With molecular information linked to human PPI 642

Drug-ADR-disease pairs/with PPI 1,294/7

Indications/with PPI 532/57

Contraindications/with PPI 229/23

Clinical trials/with PPI 813/68

In phenotypic similarity network 2,565

In network, with MeSH disease level 1 1,648

In network, with ATC information -

In network, with MeSH disease level 2/drug MoA 939

ADR, adverse drug reaction MoA, mechanisms of action.
Known associations: indications and contraindications
The National Drug File - Reference Terminology (NDF-
RT) is an extended version of the VHA National Drug
File (NDF) and contains information on drugs approved
in the US. We obtained the public version of the NDF-RT
(accessed 2 May 2012) and extracted information on indi-
cations (attributes may_prevent, may_treat, and induces)
and contraindications (attribute CI_with) for drugs and
diseases included in our drug and disease thesaurus,
respectively. In total, we collected 2,230 drug-disease
contraindications and 2,637 indications.

Known associations: clinical trials
We obtained the 2011 version of the database for aggregate
analysis of ClincalTrials.gov (AACT) [35] provided by the
Clinical Trials Transformation Initiative (CTTI). From this
database we extracted 7,744 drug-disease relationships from
phase 3 and 4 trials for a single drug with a primary
purpose of basic science, prevention, supportive care,
or treatment.

Phenotypic similarity measure
We assess phenotypic similarity by means of a semantic
similarity measure based on the approach introduced by
Resnik, which has been shown to perform well in several
similar biomedical scenarios [36,37]. This approach assigns
an information content (IC) to each ontology term as a
measure of specificity. Then, the similarity between two
terms is determined by the maximum IC of all common
ancestor terms. This common ancestor is termed the most
informative common ancestor (MICA). Commonly, the IC
is derived from the annotation frequencies of ontology
terms within a given corpus [37]. To avoid any annotation
bias we employed an alternative approach that considers
terms with less hyponyms (children in the hierarchy) as
more specific [38]. Thus, all PTs in the MedDRA ontology
g-disease pairs

es Drugs Drug-disease pairs

155,973 -

1,667 8,116,623

939 602,838

6 736/619 34,467/1,442

786/212 2,637/311

948/58 2,230/61

1,022/197 7,744/381

957 7,368

- -

805 -

379 1,352
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obtain the maximum information content of 1, while the
IC gradually decreases while traversing the hierarchy
towards the root node, depending on the number of
hyponyms. The root node subsumes all ontology terms
and therefore is assigned the minimum IC of 0. The
formula for IC calculation is as follows [38]:

ICterm ¼ 1−
log hypo termð Þ þ 1ð Þ

log Nð Þ ð1Þ

where term is a given ontology term, hypo(term) gives
the number of all of its hyponyms, and N is the total
number of terms in the ontology. In order to decrease
the influence of frequent and redundant terms, we intro-
duced weights accounting for annotation frequency and
co-occurrence in both drugs and diseases, respectively.
For example, the frequency weight of a disease symptom
is defined as the negative natural logarithm of the fraction
of diseases the term is annotated to.
For the co-occurrence weight we used the negative

natural logarithm of the Jaccard index:

J A;Bð Þ ¼ A ∩Bj j
A ∪Bj j ð2Þ

where A and B represent the sets of drugs or diseases a
term is annotated to. For a given side effect or symptom
the co-occurrence weight is then calculated as its average
negative natural logarithm of the Jaccard index across all
side effects and symptoms, respectively. This avoids giving
too much weight to terms that commonly occur together.
The similarity score between a side effect and a symptom is
then calculated as the product of the IC of the MICA and
the minimum of the overall weights in order to emphasize
phenotypic effects specific in both diseases and drugs:

sadri ;symptomj ¼ ICMICAadri ;symptomj
�min f adri � cadri ; f symptomj

� csymptomj

� �

ð3Þ
where fadr/symptom and cadr/symptom refer to the aforemen-
tioned frequency and co-occurrence weights of the
annotated side effect and symptom that are compared.
The final overall phenotypic similarity between a drug
and a disease is calculated as follows. For each side effect
the best matching symptom is determined as identified
by the highest similarity score:

bestadri ¼ max sadri;symptom1 ; sadri;symptom2 ;…; sadri;symptomm

� �

ð4Þ
Analogously, for each disease symptom the side effect

yielding the highest similarity score among all side effects
of the drug is considered as best match:

bestsymptomj ¼ max sadr1;symptomj ; sadr2;symptomj ;…; sadrn;symptomj

� �

ð5Þ
The final phenotypic similarity is derived by summing
the individual similarity scores from all best matches
(Equations 4 and 5) and normalizing by the number of
side effects and symptoms:

similarity drug;diseaseð Þ ¼
X

bestadri þ
X

bestsymptomj

nþm
ð6Þ

where n and m denote the number of side effects and
symptoms, respectively.

Phenotypic network analysis
Network generation
We generated a network of phenotypically similar diseases
and drugs consisting of 2,565 diseases and 957 drugs linked
by 7,368 edges. We employed the Pareto functionality
provided by KNIME [39] to obtain a phenotypic similar-
ity score threshold that optimizes the enrichment and
precision for drug-disease pairs with a shortest distance of
0 and 1. For this optimization, we made use of pairs con-
taining drugs and disease with molecular links (602,838
drug-disease pairs). These pairs include clinical drug-
disease associations of all types, that is, indications, clin-
ical trials, contraindications and ADR-disease, however,
not all drug-disease associations are linked to molecular
information. The final score threshold was 2.004.

Identification of communities
For the entire phenotypic drug-disease network a commu-
nity detection was carried out with igraph employing the
multi-level modularity optimization algorithm [40,41]. For
a given partitioning of a network into distinct communi-
ties the modularity quantifies the extent to which there
are more or less edges falling within the given communi-
ties compared to an equivalent network with edges placed
at random [42]. The applied algorithm creates commu-
nities without any pre-defined restrictions on number
or size of possible communities. It does so by iteratively
grouping nodes into communities only if this increases
the overall modularity. We utilize the term community
instead of cluster to distinguish it from a different network
property [43].

Disease and drug class enrichment in network communities
We chose the MeSH disease classification system to
classify the diseases in our dataset. We could map 1,648
out of 2,565 (64.25%) diseases (Table 1) to the 2011
MeSH disease classification system by using information
provided in the UMLS Metathesaurus. The first and thus
most general MeSH disease classification level was used
to determine class enrichment in communities using
Fisher's exact test (Benjamini-Hochberg correction, false
discovery rate (FDR ≤0.01)). Overall, 26 disease classes
were present in the mapping results and subsequently
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considered for the enrichment analysis (diseases of
the MeSH categories C01 to 20, C22 to 26, and F03).
Analogously, we used ATC Anatomical Main Group
classifications to classify drugs. We utilized the ATC
codes-drug associations provided by STITCH, KEGG
DRUG, and additionally we mapped active ingredient
names obtained from the ATC Index [44] to our drug
thesaurus. Out of 957 drugs, 805 (84.1%) could be
annotated with one or more of 13 ATC classes (ATC
group 'Various' was not considered in this analysis).
After mapping, enrichment of ATC classes among the
identified network communities was determined using
Fisher's exact test with Benjamini-Hochberg correction
(FDR ≤0.01) for multiple testing.
Enrichment of disease class-drug class combinations
To allow a more specific analysis of disease classes we
grouped diseases using the second more specific level
of the MeSH disease classifications system. Drugs were
assigned MeSH classes based on the level below 'Molecu-
lar Mechanisms of Pharmacological Action' (D27.505.519).
The MeSH mapping for drugs was obtained via map-
ping first our drug thesaurus to names of chemicals in
the UMLS Metathesaurus and subsequently retrieving
UMLS 'is a' relationships linking the recognized drugs
to MesH. Then, over-representation of disease- and
drug-class combinations within the phenotypic drug-
disease network was assessed compared to the overall
set of drug-disease pairs. Here, over-representation was
established by using Fisher's exact tests followed by
Benjamini-Hochberg correction and applying a threshold
of FDR ≤0.05.
Figure 1 Drug-disease pairs related by molecular mechanism
exhibit similar phenotypes. Enrichment of functional distances
between drug targets and disease proteins of drug-disease pairs
with similar phenotypes. 'Rate of positive prediction' refers to the
list of drug-disease pairs sorted by decreasing phenotypic similarity.
For each measurement all pairs with equal or higher similarity
scores were taken into account. The dashed black line indicates the
performance expected at random. The lift for any given interval
starting at a rate of positive predictions of 0 is calculated by
dividing the precision by the quotient of the total number of
positives and negatives. If the order of the list of drug-disease pairs
were random, the precision would always be equal to the quotient
of the number of positives and negatives. Thus, the lift for random
expectation is always 1.
Results
Phenotypic similarity of disease-drug pairs
To analyze the phenotypic relations between drugs and
diseases we collected phenotypic information for 1,667
drugs and 4,869 human diseases by annotating side effects
and signs and symptoms with a medical ontology based
on the MedDRA (see Methods). In total, we extracted
155,973 drug-side effect and 55,031 disease-symptom
pairs (Table 1).
Next, we assessed the phenotypic similarity between

all 8,116,623 pairwise drug-disease combinations. We
used an approach that evaluates the average semantic
similarity between all best matching pairs of side effects
and symptoms, thus avoiding the bias towards drugs and
diseases with many phenotypic features on the highest
ranking drug-disease pairs (Figure S2 in Additional file 2).
The semantic similarity measurement has been adapted
from the method introduced by Resnik [45] combined
with a weighting scheme to downweight frequent and
correlated terms [8] (see Methods for details).
Enrichment of short functional distances
Based on recent findings confirming that phenotypic
information of drugs and diseases conveys molecular
information [8,10], we first explored whether similarity
of drug and disease phenotypes can be explained by
common or related molecular mechanisms. We col-
lected all pairs formed by the combination of 939 drugs
and 642 diseases (Table 1) for which associated proteins
in a human PPI network were available. Then, we calcu-
lated the shortest distance in this PPI network between
the known drug targets and disease-associated proteins
(see Methods). Next, we defined five distance categories,
namely 0, 1, 2, 3, and >3, and measured the enrichment
of each distance category over random expectation (lift;
Figure 1) for increasing values of phenotypic similarity.
As shown in Figure 1, drug-disease pairs associated with
the same protein (distance 0) or with interacting pro-
teins (distance 1) are strongly enriched among pairs with
high phenotypic similarity. Notably, the enrichment
diminishes with increasing distance between drug targets
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and disease-related gene products. Thus, we conclude
that molecularly related diseases and drugs tend to share
phenotypes and that the functional distance of affected
proteins in the human PPI network influences the observed
phenotypic similarity.

Phenotypic disease-drug network
In order to analyze drugs and diseases with high phenotypic
similarity in more detail, we constructed a phenotypic
disease-drug network containing the pairs with high
semantic similarity. For that, we employed a similarity
score threshold that optimized the enrichment and
precision for drug-disease pairs with common or related
molecular mechanisms (distance 0 or 1) by means of
Pareto optimization [46]. For this optimization, we only
considered drugs and diseases with molecular information
that could be linked to the PPI network, yielding 602,838
drug-disease pairs in total (Table 1). This network consists
of 7,368 edges linking 2,565 diseases to 957 drugs, covers
52.7% and 57.4% of all diseases and drugs in our set,
respectively, and contains the top 0.1% disease-drug pairs
with highest phenotypic similarity.

Enrichment of disease and drug classes in network
communities
In a first step, we sought to acquire a global view of the
connections between disease areas and drug therapeutic
classes driven by similar phenotypes. To that aim, we
conducted a network community analysis to detect groups
of nodes that are more densely connected with each
other than to any other nodes in the network. In total,
we identified 65 communities (Figure 2); 24 form the
largest component and 41 represent distinct and much
smaller components. Afterwards, we annotated disease
and drug nodes with anatomical organ system categories
using the MeSH and drug ATC classification sys-
tems, respectively. Then, we tested the over-representation
of these classes within the communities compared to the
rest of the network using Fisher's exact test (see Methods).
We found that 19 disease classes are enriched in 21 com-
munities and 8 drug classes in 6 communities (Table 2).

Evaluation of the enrichment of disease and drug classes
within communities
Some disease classes, such as 'Nutritional and metabolic
diseases' are enriched in several communities. This is
likely due to the diversity of drugs causing metabolic
effects. Overall, enrichment of drug ATC classes mirrors
the enrichment of disease classes within the communities
strikingly well. Seven out of 13 ATC classes are co-enriched
with 9 clearly related disease classes (Table 2), such as the
ATC class 'Nervous system' with the MeSH class 'Nervous
system diseases'. This shows that, at least for these drug
classes, the side effects tend to be related to the anatomical
disease area of drugs' indications.
We also observed that in 11 communities several classes

are co-enriched. Related molecular mechanisms underlying
diseases and drug targets seem to drive the co-enrichment
of disease and drug classes in these communities. For ex-
ample, in community 28 the co-enrichment of endocrine,
urogenital, and pregnancy disorders reflects the role of
hormone regulation within these disease classes (Table 2).
This is further substantiated by the drug ATC class en-
richment of 'sex and non-sex hormones' within this com-
munity. In the same line, co-enrichment of endocrine and
musculoskeletal disorders agrees with the involvement of
the endocrine system in musculoskeletal development
[47,48]. Consistent with the adverse metabolic impact of
typical and atypical antipsychotics [49,50], nutritional and
metabolic disorders are found to be co-enriched with
nervous system and mental disorders in community 32.
Concerning atypical antipsychotics, this effect has
recently been attributed to their antagonistic effect on
the muscarinic M3 receptor, which is involved in the
regulation of insulin secretion [51]. These examples
indicate that related molecular mechanisms drive the
associations between drug and disease classes.

Connections between drug mechanisms of action and
disease classes
Motivated by our findings that drugs and diseases sharing
molecular mechanisms exhibit high phenotypic similarity
(Figure 1), we analyzed the phenotypic similarity network
with respect to the enrichment of specific combinations of
molecular drug mechanisms and disease classes. For this,
we utilized Fisher's exact test to determine significantly
overrepresented combinations of disease classes and
therapeutic mechanisms of action (MoAs) of drugs within
the network compared to all possible drug-disease pairs.
We found 133 overrepresented combinations that cover
701 (9.5%) disease-drug associations within the pheno-
typic similarity network. Figure 3 visualizes the results as a
network connecting 26 drug MoAs to 55 disease classes.
Below we highlight interesting connections between

drug mechanisms of action and disease classes found in
this analysis.

Connections between drug MoAs and multiple disease
classes
In this network, several drug MoAs are associated with
multiple distinct disorder classes, such as 'nucleic acid
synthesis inhibitors', 'antimetabolites, antineoplastic' and
'antimitotic agents', consistent with the impact of these
mechanisms on cell cycle regulation. For example, nucleic
acid synthesis inhibitors are linked to many different
organ-specific disease classes due to the widespread effect
of non-specific inhibition of DNA and RNA synthesis. In



Figure 2 Enrichment of disease and drug indication classes within communities of the phenotypic similarity network. The modular
organization of the phenotypic similarity network is shown. The communities with significantly interconnected diseases (circles) and drugs
(triangles) are highlighted. The communities with enriched disease or drug classes are numbered. The enriched disease classes within the
communities are marked by increased size and different colors, while the enrichment of drug classes is reported in the lower right corner.

Vogt et al. Genome Medicine 2014, 6:52 Page 9 of 17
http://genomemedicine.com/content/6/8/52
the same line, antineoplastic antimetabolites are highly
connected in the network to diseases affecting cells and
tissues with proliferative capacity such as the gastrointes-
tinal tract (biliary system, pancreas, liver), bone marrow,
lung, skin and connective tissues, reflecting the adverse
impact of these therapeutics on these organ systems [52].
Other drug classes such as histamine and adrenergic
agents and 5-alpha reductase and aromatase inhibitors
are linked to multiple disorder classes affecting the same
organ system, such as numerous eye disorders and various
endocrine disorders, respectively. While the localized ef-
fects in the eye of histaminergic and adrenergic agents



Table 2 Enrichment of disease and drug classes in network communities

Community Drug ATC Anatomical main group Disease MeSH class

7 - Parasitic diseases

16 - Digestive system diseases

17 Antineoplastic and immunomodulating agents Immune system diseases

Musculo-skeletal system Bacterial infections and mycoses

18 Sensory organs Eye diseases

Virus diseases

25 - Stomatognathic diseases

28 Genito urinary system and sex hormones Endocrine system diseases

Systemic hormonal preparations excluding sex hormones Female urogenital diseases and pregnancy complications

Male urogenital diseases

32 Nervous system Nervous system diseases

Mental disorders

Nutritional and metabolic diseases

37 Blood and blood forming organs Hemic and lymphatic diseases

Female urogenital diseases and pregnancy complications

Male urogenital diseases

38 - Respiratory tract infections

39 - Mental disorders

41 - Nervous system diseases

51 - Endocrine system diseases

52 - Neoplasms

53 - Nutritional and metabolic diseases

56 - Nutritional and metabolic diseases

Digestive system diseases

57 - Skin and connective tissue diseases

59 - Endocrine system diseases

Musculoskeletal diseases

60 - Stomatognathic diseases

Musculoskeletal diseases

62 - Nutritional and metabolic diseases

Respiratory tract diseases

Bacterial infections and mycoses

63 - Otorhinolaryngologic diseases

Eye diseases

64 Dermatologicals Skin and connective tissue diseases

Entries in italics denote drug and disease classes of the same anatomical area enriched in the same community.
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echo the topical application of these drugs on the eyes,
the endocrine effects of the latter agents are clearly
related to mechanistic drug effects. The association of
5-alpha reductase inhibitors with gonadal disorders
mimics the association of antiandrogenic effects of these
inhibitors and phenotypes such as eunuchoidism and
Reifenstein syndrome. Similarly, the link of 5-alpha
reductase inhibitors with pituitary disorders is in line
with the observed role of 5-alpha reductase within the
feedback control of the hypothalamic-pituitary-gonadal
axis [53,54].

MoAs-disease connections that reflect on-target as well as
off-target drug MoAs
The connections of pharmacological agents with disease
areas outside their main indication area appear to be
related to the expression and activity of their drug targets
within these organ systems. For example, in addition to



Figure 3 Phenotypic relationships between therapeutic molecular mechanisms of drugs and disease classes. Combinations of disease classes
(colored circles) and molecular mechanisms of pharmacological action of drugs (triangles) statistically enriched in the phenotypic disease-drug network.
The colors of disease nodes represent organ systems and general disorder classes. Node sizes are proportional to the number of links to other classes.
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the expected connections of gamma-aminobutyric acid
(GABA) agents with nervous system-related disease
classes [50,55,56], the recently recognized function of
the GABAergic system in autonomic function [57] and
metabolic diseases [58] is captured in our network.
Likewise, serotonin agents are linked to neurodegenerative
diseases affecting the central nervous system (Figure 3) as
well as to autonomic nervous system diseases. The latter
connection is supported by the presence of serotonin
outside of the central nervous system and the regulatory
role of the serotonergic system on many autonomic pro-
cesses such as heart rate, respiration, and gastrointestinal
functions [59].

MoAs-disease connections that reflect side effect of drugs
This network also reinforces the suspected relationship of
certain drug MoAs and side effect reactions such as the
association between purinergic and fibrinolytic agents with
cancer, which has been established only recently [60,61].

Connections between autoimmune and pancreatic
disorders and multiple drug MoAs
Interestingly, autoimmune and pancreatic disorders are
disease classes with connections to several drug MoA
classes, reflecting the multiplicity of molecular mechanisms
affecting these disorders. Autoimmune disorders are linked
to different mechanistic classes such as fibrinolytic and
antineoplastic agents as well as protease, kinase, and
cycloxygenease inhibitors. Curiously, four tyrosine kin-
ase inhibitors and systemic lupus erythematosus (SLE)
underline the phenotypic similarity between protein
kinase inhibitors and autoimmune diseases in the net-
work. Three of these four drugs inhibit mast cell growth
factor receptor tyrosine kinase KIT, suggesting that
impaired KIT signaling might play a role in both drug-
induced as well as systemic lupus erythematosus.

Enrichment of clinical disease-drug associations
The previous observation of co-enrichment of disease
classes with drugs indicated to treat disorders affecting
the same organ systems raised the question of whether
drugs and diseases with similar phenotypes are enriched
in known drug-disease associations such as indications
and contraindications. To tackle this question, we col-
lected information on several types of drug-disease associ-
ations and mapped these to our entire set of disease-drug
pairs. This resulted in 2,637 and 2,230 pairs of drugs indi-
cated and contraindicated for diseases, respectively, and



Vogt et al. Genome Medicine 2014, 6:52 Page 12 of 17
http://genomemedicine.com/content/6/8/52
34,467 pairs where the disease has been reported as a
side effect of the drug. We termed these associations
indications, contraindications and ADR-disease rela-
tionships, respectively (see Methods). As a subtype of
indication relationships we also collected 7,774 pairs
of drugs and diseases tested in clinical trials (phases
3 and 4, when efficacy has already been established).
Then, we employed the lift measurement to quantify
the enrichment of known drug-disease associations
over random expectation for drug-disease pairs sorted
by decreasing values of phenotypic similarity. We ob-
served an enrichment of more than 2.5-fold with
maximum enrichment of 5.9-fold among the 10% of
drug-disease pairs with highest phenotypic similarity
score (Figure 4A, all). This shows that clinically related
drugs and diseases tend to cause similar phenotypic
effects.
Next, we investigated if the different types of known

drug-disease relationships differ in the level of enrichment
by evaluating each relation type separately. We observed
that indications and clinical trial pairs had a slightly stron-
ger tendency to exhibit high phenotypic similarity (lift
of 4.3 and 4.6 at 0.01 rate of positive prediction),
followed by ADR-disease pairs (3.5-fold) and contraindi-
cated drug-disease (2.2-fold) (see Table S2 in Additional
file 2 for details).
Figure 4 Phenotypic similarity and clinical disease-drug association
treatment of patients affected by this disease with this drug is indicated
represents a case where the disease has been reported as a side effect o
'All' refers to the combined set of the four relation types. Here, each typ
path lengths among ADR-disease associations (B), contraindications (C)
of known clinical associations in each distance category is given in pare
random expectation.
The high phenotypic similarity of contraindications and
ADR-disease pairs are likely due to common molecular
mechanisms
In order to examine whether common or related
molecular mechanisms are associated with phenotypic
similarity among clinical relationships, we evaluated the
enrichment of related molecular mechanisms individually
for 311 indications, 381 clinical trials, 61 contraindica-
tions, and 1,442 ADR-disease relationships. Interestingly,
for ADR-disease and contraindication pairs we observe
a clear enrichment of drugs targeting disease-associated
proteins (Figure 4B,C), revealing that the high pheno-
typic similarity exhibited by contraindications and ADR
drug-disease relationships is linked to shared molecular
mechanisms. Surprisingly, for phenotypically related in-
dication pairs we observe a weak enrichment only for
shortest distances of 3 or higher (Figure 4D,E). The nar-
row peak for distance 0 for clinical trials represents two
exceptions of pairs that share molecular mechanism and
phenotypes, namely quetiapine and Parkinson's disease
and methylphenidate (ritalin) and bipolar disorder.
Overall, we conclude that the similar phenotypes exhib-
ited by drugs and diseases related by indication are
unlikely to be due to common molecular mechanisms.
This agrees with previous findings that the majority of
current drug treatments represent palliative therapeutic
s. A disease-drug pair is considered a known clinical association if
, contraindicated, has been tested in phase 3 and 4 clinical trials, or
f the drug (ADR-diseases). (A) Enrichment of clinical relationships.
e represents a separate benchmark set. (B-E) Enrichment of shortest
, clinical trial associations (D) and indications (E). The number
ntheses. The dashed black lines reflect performance at
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interventions aimed at treating disease symptoms rather
than their causes [62].

Drugs with their contraindicated diseases are associated
with highest phenotypic similarity
Another interesting observation is that drugs and their
contraindicated diseases tend to have higher similarity
scores than the other clinical relation types (Benjamini-
Hochberg adjusted P-values of Wilcoxon tests: 1.5e-21
for contraindication versus indication, 1.5e-02 for contra-
indication versus clinical trial, and 3.0e-136 for contraindi-
cation versus ADR-disease relationships; see also Figure S1
in Additional file 2). This result implies that certain contra-
indications, that is, those with high semantic similarity
score, can be recognized by the great resemblance of the
drug's side effects to the symptoms of the contraindicated
disease. The drugs in these pairs are thus likely to have a
high propensity to cause the disease or to considerably
aggravate its symptoms. Indeed, this is confirmed by the
rising fraction of ADR-disease relationships observed with
increasing semantic similarity values among contraindica-
tion relationships. This fraction reaches its highest value
(45%) on the top 2% (score ≥1.64) (Figure 5) of contraindi-
cations. For example, the contraindication connecting the
disease fibrosis and the drug tioguanine is one of these
relationships. This disease-drug pair shares specific
phenotypic features (Table S3 in Additional file 2) and
also represents an ADR-disease connection as the drug
is known to cause fibrosis [63]. Interestingly, we found
Figure 5 Fraction of contraindications and indications classified
as drug-ADR-disease pairs. Enrichment among high-scoring
disease-drug pairs of the fraction of indications and contraindication
also classified as drug-ADR-disease pairs. Each relation type represents
a separate benchmark set.
752 ADR-disease pairs within the top 2% of pairs that
have not been recognized as contraindications yet
(Additional files 5 and 6). Our results suggest that phy-
sicians and drug regulatory agencies should consider
these pairs carefully as administration of these drugs to
patients suffering from the corresponding disease condi-
tions is potentially inadvisable. In conclusion, we observed
that clinically related pairs of diseases and drugs tend to ex-
hibit similar phenotypes, and that drugs with their contra-
indicated diseases are associated with highest phenotypic
similarity. For ADR-disease pairs and contraindications this
is likely due to common molecular mechanisms while
drugs indicated for diseases tend to be more distantly
related on the molecular level.

Main findings
In summary, the analysis of phenotypic relationships
between drugs and diseases have revealed the following
scientific findings. First, molecularly or clinically related
drugs and diseases tend to exhibit high phenotypic simi-
larity. Second, many drugs and diseases linked to the same
organ class are enriched among phenotypically associated
disease-drug pairs like the drug class 'Nervous system' and
the class 'Nervous system diseases' or 'Sensory organs' and
'Eye diseases'. Third, specific combinations of molecular
drug mechanisms and disease classes are phenotypically
connected, reflecting, for example, on-target as well as
off-target drug MoAs. For example, GABA agents are not
only associated with nervous system-related disease
classes, but also to autonomic function and metabolic
diseases, a function of the GABAergic system that was
only recently recognized. Fourth, drugs with their contra-
indicated diseases are associated with highest phenotypic
similarity, which is likely due to common molecular
mechanisms.
Taken together, these results contribute to the under-

standing of drug effects and suggest that phenotypic simi-
larity of drug-disease pairs might be used to propose
mechanisms for diseases with yet unknown causes. More-
over, as immediate clinical translation of our analysis, we
provide a list of disease-drug pairs where the diseases
should be carefully considered as a precaution or potential
contraindication for administration of the drugs.

Discussion
In this work we have used a semantic similarity approach
to systematically analyze phenotypic similarity between
drugs and diseases. We find that drugs and diseases associ-
ated with similar molecular mechanisms, especially those
affecting the same protein or interacting proteins, exhibit
similar phenotypes. The same observation was made for
known drug-disease associations, such as indications, con-
traindications and drugs that cause the disease as a side
effect. The phenotypic similarity of contraindications and
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ADR-disease relationships clearly originates from shared
or very similar perturbed molecular mechanisms. Thus,
the assessment of phenotypic similarity of drugs and dis-
eases represents a novel approach to detect mechanistic
causes of diseases and side effects.
The analysis of overrepresented combinations of disease

classes and molecular mechanisms of drugs shows that
the phenotypic impact of certain drug classes is linked
either to their therapeutic action (on-targets) or to closely
related off-targets. For example, our approach captures
the on-target effects of serotonin agents, aromatase and
5-alpha reductase inhibitors and the link between off-
target effects of protein kinase inhibitors and SLE. In
relation to the latter connection, it has been speculated
that unintended modulation of cytoplasmic Src-family
tyrosine kinases by certain inhibitors of protein kinases
might be responsible for drug-induced lupus erythemato-
sus [64]. In contrast, our analysis suggests that impaired
KIT signaling plays a role in both drug-induced as well as
SLE. This hypothesis is supported by the significantly
lower levels of soluble KIT found in SLE patients com-
pared to controls [65].
This analysis also supports the suspected associations

between certain MoAs and diseases, such as the link
between fibrinolytic and purinergic agents with cancer.
Cancer is connected to several fibrinolytic drugs, in-
cluding recombinant forms of tissue-type plasminogen
activator (t-PA). Consistent with this link, the t-PA
serine protease has been shown to promote tumor cell
invasion [60] and fibrinolysis has been identified as a
risk factor in tumor invasion [66]. Similarly, the purinergic
receptors P2Y1 and P2Y2 have been found to exert prolifer-
ative as well as antiproliferative effects [67]. These effects
are in accordance with the suspected cancer promoter
activity of the purinergic drug prasugrel [68]. In agreement
with several lines of evidence involving the purinergic
adenosine A2a receptor in immune evasion of tumor
cells [69-71], we find that regadenoson, an A2a receptor
agonist, shares phenotypic features with heart neoplasms.
This suggests careful consideration of regadenoson treat-
ment in heart cancer patients.
For other drug classes, the occurrence of certain side

effects seems to be linked to the application sites of drug
treatments as observed clearly for eye and ophthalmo-
logic agents. The analysis of the phenotypic similarity
network reveals that certain diseases and drugs related by
indication tend to share phenotypes of disease-associated
organs (Table 2). Although we cannot fully explain the
resemblance of phenotypic features between drugs and
their indicated diseases, possible explanations include the
potential bias of reported side effects towards disease
symptoms of clinical trial participants or the occurrence
of organ- but not disease-specific effects. These organ-
specific effects can be captured by the intrinsic property
of our semantic similarity approach to measure phenotypic
resemblance beyond the detection of identical traits. For
example, 'Hypersexuality' is a symptom of bipolar disorder
that is semantically similar to the side effect 'Libido de-
creased' of the drug topiramate that is used to treat this
disease. These terms represent two opposing yet related
concepts subsumed under 'Sexual desire disorders', thereby
contributing to the phenotypic similarity score between
bipolar disorder and topiramate. The organ-specific effects
might as well reflect a distant but functional relationship
between drug targets and disease genes as it is well known
that certain diseases such as genetic or chronic disorders
like diabetes mellitus require lifelong symptomatic and
supportive treatments [72], which do not necessarily
target the dysfunctional genes, but can lead to side effects
in disease-associated organs.
Although all clinically related drug-disease pairs tend to

show high phenotypic similarity, only contraindications
and ADR-disease pairs have a propensity to share molecu-
lar mechanisms (Figure 4A,B). This clearly suggests a
causative connection between molecular perturbation and
observed phenotypic similarity in these relationships. Only
two pairs investigated in clinical trials show an association
between common molecular mechanisms and shared
phenotypes. The first pair is quetiapine and Parkinson's
disease studied in a phase 4 clinical study [73]. This clin-
ical trial investigated the safety, tolerability, and efficacy of
quetiapine in the treatment of psychosis in patients with
Parkinson's disease [74,75]. The Parkinson-like effects of
quetiapine are likely related to its antagonistic activity on
several members of the dopamine receptor family [76-78]
as some of these receptors have been associated with
Parkinson's disease [79-81]. The second case is formed by
the psychostimulant methylphenidate (ritalin) and bipolar
disorder. Ritalin is actively studied as a treatment of
bipolar disorder or its main symptoms, including mania
[82-84]. Ritalin inhibits, amongst other proteins, the
same serotonin and dopamine transporters SLC6A4 and
SLC6A3 that have been implicated in bipolar disorder
[85,86]. In agreement with the phenotypic similarity of
this pair, several case reports indicate that ritalin can ag-
gravate bipolar disorder symptoms [87,88]. Besides, ritalin
treatment has been associated with younger age of onset
of bipolar disorder in predisposed children [89]. This evi-
dence combined with our observation of highly similar
phenotypes raise doubts regarding the long-term safety of
ritalin in bipolar disorder therapy. The presented exam-
ples support the notion that drug-disease pairs with high
phenotypic similarity sharing MoAs are likely to corres-
pond to pairs where the administration of the drug to
patients diagnosed with the corresponding disease should
be avoided.
Another interesting observation concerning contrain-

dications is that these pairs exhibit higher phenotypic
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similarity than other clinical relationships. This suggests
that a drug with high phenotypic similarity to its contra-
indicated disease is likely to worsen or even to cause the
disease condition. We have confirmed this hypothesis by
the high proportions of ADR-disease pairs among contra-
indications with high phenotypic similarity. For example,
the ophthalmologic agent medrysone causes uveitis as a
side reaction and, consequently, it is contraindicated for
this disorder. Another example is the pair formed by halo-
peridol and Parkinson's disease. Haloperidol, a drug used
to treat patients with schizophrenia or related illnesses,
might cause parkinsonism [90], a neurological syndrome
characterized by Parkinson-like symptoms. Indeed, we ob-
serve that 40% of the parkinsonism symptoms, including
bradykinesia, cogwheel rigidity, and masked facies, have
been reported as side effects of haloperidol. Although
many current contraindications might have been proposed
based on the recognition of similar clinical phenotypes of
drugs and diseases, the systematic comparison of drug
and disease phenotypes allows confirmation of this clinical
observation and the systematic proposition of many more
contraindications.
Unsurprisingly, contraindicated drug-disease pairs with

low phenotypic similarity also tend to be highly associated
with the risk of causing or worsening the disease as the
overall fraction of pairs where the drug is known to cause
the disease as a side effect (16.2%) is four times higher
than for indications (4.4%). We observed this, for example,
for drugs that should not be administered to patients with
kidney-related diseases. These contraindications are likely
attributable to the kidneys' role in drug metabolism [91]
and cannot be anticipated by a semantic similarity ap-
proach such as the one presented here.
Curiously, the few indications (113) that are also

ADR-disease relationships tend to show high pheno-
typic similarity as well. Among the top 24 pairs we find
6 beta blockers and 6 other antihypertensive agents
linked to heart failure. In 2009, the European Society
of Cardiology recommended the use of beta blockers
to treat patients undergoing non-cardiac surgery to
protect the heart from surgery-related stress. However,
there is an ongoing debate whether their antihypertensive
effect increases the risk of heart failure [92]. Thus, even
for indications, a high drug-disease phenotypic similarity
might alert for potential drug-induced aggravation of the
disease condition.

Conclusions
We have systematically analyzed an extensive set of
human phenotypes from diseases and drugs and found
that molecularly or clinically related drugs and diseases
tend to cause similar phenotypes. Specifically, known
ADR-disease and contraindication relationships sharing
molecular mechanisms exhibit high phenotypic similarity.
The analysis of therapeutic molecular mechanisms shows
the relationship between certain therapeutic mechanisms
and characteristic drug side effects and illustrates that
some of these effects are related to the distribution of
therapeutic targets across human organ systems. Our
results contribute to the understanding of drug effects
and suggest that phenotypic similarity of drug-disease
pairs might be used to propose mechanisms for diseases
with yet unknown causes. Furthermore, identifying disor-
ders that have been reported as potential side effects of a
drug and that exhibit high phenotypic similarity to the
drug's side effect profile helps to avoid drug treatments
that potentially aggravate disease conditions of patients.
To facilitate the clinical translation of this finding, we
provide a list of disease-drug pairs where the diseases
should be carefully considered as a precaution or poten-
tial contraindication for administration of the drugs.
Overall, the work presented here has important implica-
tions in the therapy of diseases as well as in rationalizing
drug prescription.
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