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Abstract

Background: Connectivity map data and associated methodologies have become a valuable tool in understanding
drug mechanism of action (MOA) and discovering new indications for drugs. One of the key ideas of connectivity
map (CMAP) is to measure the connectivity between disease gene expression signatures and compound-induced
gene expression profiles. Despite multiple impressive anecdotal validations, only a few systematic evaluations have
assessed the accuracy of this aspect of CMAP, and most of these utilize drug-to-drug matching to transfer
indications across the two drugs.

Methods: To assess CMAP methodologies in a more direct setting, namely the power of classifying known
drug-disease relationships, we evaluated three CMAP-based methods on their prediction performance against a curated
dataset of 890 true drug-indication pairs. The disease signatures were generated using Gene Logic BioExpress™
system and the compound profiles were derived from the Connectivity Map database (CMAP, build 02, http://www.
broadinstitute.org/CMAP/).

Results: The similarity scoring algorithm called eXtreme Sum (XSum) performs better than the standard
Kolmogorov-Smirnov (KS) statistic in terms of the area under curve and can achieve a four-fold enrichment at 0.01
false positive rate level, with AUC = 2.2E-4, P value = 0.0035.

Conclusion: Connectivity map can significantly enrich true positive drug-indication pairs given an effective
matching algorithm.
Background
Identifying the correct indications for a drug is import-
ant as it is often a surrogate for deciding which patients
to treat with the drug, and several computational
methods have been described in the literature to aid in
this process [1]. Transcriptomic data have been used to
build disease-disease [2] or disease-drug relationships
that could lead to new drug repositioning hypotheses
[3,4]. The problem for any practitioner, however, is to
assess the precision of these methods. The desired
method should provide relatively high confidence that
the first few indications that are predicted for a drug
contain at least one that will be validated in clinical trials
and make a positive impact on patients.
One of the most important techniques in the space of

drug repositioning is connectivity map (CMAP) [5].
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CMAP is a database of genome wide transcriptional ex-
pression profiles of bioactive small molecules from cul-
tured human cell lines and pattern-matching algorithms
that taken together enables the discovery of drug-disease
relationships as well as drug mechanism of action [5,6].
Several hypotheses that match therapeutic compounds
to new disease indications have been experimentally vali-
dated using this approach [7-12].
However, despite numerous impressive anecdotal vali-

dations, very few systematic evaluations have been done
to estimate the prediction performance of drug-disease
relationship. This is because a lot of effort is needed to
compile true drug-disease associations and generate
large numbers of disease gene signatures across these
different disease areas. Most of the earlier research was
largely focused on evaluating CMAP methodologies to
predict drug-drug relationships [13]. This approach was
taken with the implicit hope that methods which predict
drug classes well will also do better at predicting disease
indications for drugs.
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Iskar et al. [14] presented the first quantitative evalu-
ation of CMAP methods for identifying similar com-
pounds. They used compound chemical similarity and
Anatomical Therapeutic Chemical (ATC) classification
as the true positives in their benchmark sets. Using the
benchmark sets, Iskar et al. computed the early retrieval
performance of their approach and showed that their pro-
posed approach performs better than previous methods
[15]. Early retrieval performance was measured using the
partial area under the receiver operator characteristic
(ROC) curve (AUC0.1) at false positive rate 0.1 (FPR = 0.1),
which is important from a drug repositioning perspective
as it is only practical to investigate a small number of top
hypotheses.
Cheng et al. [16] also utilized the ATC classification as

the benchmark to compare similarity metrics using two
data processing methods: the batch DMSO control and
the mean centering normalization. The results from
these studies show that a simple eXtreme cosine (XCos;
see Methods section) similarity metric outperforms
the standard KS similarity metric; and the batch
DMSO control preprocessing outperforms mean cen-
tering normalization preprocessing in terms of early
retrieval accuracy. Another important finding from
this study is that drug-drug relationships can be pre-
dicted more reliably when the corresponding com-
pounds have large treatment effect on the treated cell
lines. Cheng et al. [17] further extended the aforemen-
tioned work by evaluating various CMAP similarity
metrics across different feature sizes by using only
those compound profiles that have large treatment
effect.
The current study is based on the conclusions drawn

from the previous studies. Instead of predicting drug-
drug relationships, we evaluate the CMAP performance
in a more direct drug repurposing setting: predicting
drug-disease relationships. We compiled a set of 890
true drug-disease pairs from two different sources (see
Methods) as a benchmarking standard. The goal of this
study is to evaluate CMAP methodology (focusing
primarily on early retrieval performance) in a realistic
setting using a large set of disease gene signatures that
have reasonable overall predictive power.

Methods
Data sources and data processing
We downloaded the Connectivity Map (CMAP, build 02,
[18]) data, which comprises 6,100 gene expression in-
stances (treatment vs. vehicle control pairs) from pri-
marily three human cultured cell lines (MCF7, PC3, and
HL60) treated with 1,309 bioactive small chemical mole-
cules at varying concentrations.
In our previous work [16], we evaluated two methods to

preprocess probe level intensities - the mean centering
method and the batch DMSO control method and found
the batch DMSO control method appears to perform bet-
ter than mean centering method. Based on this evaluation,
we incorporated the batch DMSO control method in this
study for the data preprocessing step.
Probe level data (CEL files) from CMAP were proc-

essed using Array Studio (Omicsoft Corporation, Re-
search Triangle Park, NC, USA). Briefly, microarray
datasets were grouped based on the cell line. For each
microarray dataset, the probe set intensities were nor-
malized using Robust Multi-array Average (RMA) pro-
cedure. Next, all scaled probe sets with values less than
primary threshold values (set to 128) for all treatments
and control samples were set to that threshold value
(128). The intensity values for each probe set are then
log2 transformed. Finally, the log2 intensities of each
probe set from all vehicle control samples within the
same batch and cell line are averaged and subtracted
from the treatment sample to generate the correspond-
ing treatment-to-control values. These treatment-to-
control values are referred as expression values in this
paper.
The preprocessing step resulted in 6,100 gene expres-

sion instances. Multiple instances for the same com-
pound in a particular cell line were averaged to generate
cell line specific compound profiles. There are 1,294,
1,182, and 1,078 compound profiles for MCF7, PC3, and
HL60 cell lines, respectively.

Compound expression profile filtering by expression
signal strength
Cheng et al. [16] show that the majority of the com-
pounds do not have large enough treatment effect on
the cell lines to obtain reliable ATC group prediction.
We follow the compound filtering procedure described
by Cheng et al. [17] and use expression signal strength
(ESS) to filter the cell line specific compound profiles.
The ESS is defined as the sum of the absolute values of
the log2 of the fold changes of the top and bottom N
features of a gene expression profile (N is set to 50 in
this study). The cell line specific threshold for com-
pound profile filtering is defined as following.

ESS Threshold ¼ median ESS þ 2
�median absolute deviation

An example of ESS histogram of compound profiles
and the ESS threshold is shown in Additional file 1:
Figure S1. After the filtering step, we kept 297, 222, and
246 compound profiles for MCF7, PC3 and HL60,
respectively.
In the final step, we merged the cell-line-specific

compound profiles into the compound level profiles
by averaging the expression values across cell lines.
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This step resulted in 496 compound expression pro-
files, which were used to calculate different expression
similarity metrics (see Additional file 1: Table S1). The
overall work flow of our system is shown in Figure 1.

Disease gene signature generation and evaluation
Gene expression data containing Affymetrix U133 Gene-
Chip expression profiles (Affymetrix, Santa Clara, CA,
USA; [19]) for over 13,000 samples (9,990 diseased; 3,400
normal) across 124 human tissues were retrieved from the
Gene Logic BioExpress™ system [20]. The BioExpress
System provides gene expression data and associated clin-
ical and pathological information across a wide range of
Gene Logic BioExpress™ database

Preprocessing

238 disease signatures

A disease—compound
similarity score matrix of 238 x
496 based on certain scoring
metric such as Xsum

AUC result based on 145 disease

signatures and 152 compound
profiles with a true positive

Restrict compounds and disease
signatures to those with at least
one true positive from the 890

Figure 1 Work flow of connectivity map performance evaluation.
normal and diseased specimens across major disease areas
including cardiovascular, oncology, central nervous sys-
tem, inflammatory, and metabolic diseases. For each study
conducted at Genelogic, the research protocol was ap-
proved by one or more institutional review boards, and all
participating patients provided written informed consent
consistent with the principles of the Declaration of
Helsinki [20].
All data analyses, including preprocessing and

normalization, and summarization of the AffyBatch
probe level data, were carried out using R package
‘Bioconductor 2.9’ [21]. To generate an individual dis-
ease signature, samples were grouped by the tissue of
CMAP build 02
6100 gene expression instances

Preprocessing

1,294 compound
profiles on MCF7

1,078 compound
profiles on HL60

1,182 compound
profiles on PC3

ESS Filtering

297 compound  
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246 compound
profiles on HL60

222 compound
profiles on PC3

Merging

496 compound profiles
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origin, study ID and disease categorization. Only tis-
sues with at least three normal and three disease
samples were considered for further processing. A
pairwise sample correlation was computed across all
samples using the entire chip data. Then for each sam-
ple, an average correlation coefficient was generated
based on correlation coefficients between the given
sample and all other samples. All samples with an
average correlation of more than five median absolute
deviations (MAD) from the median of all sample cor-
relations were deemed to be an outlier and removed
from further consideration.
A total of 238 disease signatures from human clinical

disease samples were generated. Each disease gene signa-
ture consists of 500 upregulated probe sets and 500
downregulated probe sets selected by fold change be-
tween disease samples and normal samples. Among the
238 diseases, 145 diseases have at least one true positive
compound in our compiled benchmark standard and
were further evaluated (see Additional file 1: Table S2).

Compilation of true drug-indication relationships
(benchmark standard)
We identified the established drug-indication relation-
ships from two data sources: Pharmaprojects pipeline®
[22] and FDA adverse event reporting system (FAERS).
The Pharmaprojects pipeline® is a resource compiling
worldwide drug pipeline data including their disease in-
dications. Each Pharmaprojects disease term was also
mapped to MeSH via manual curation. The disease
names for the signatures used in our study (from
GeneLogic) use SNOMED as a coding system. We
mapped the GeneLogic disease terms to MeSH using
UMLS [23]. The MeSH terms were used as a bridge to
connect GeneLogic diseases with the Pharmaprojects
drug indications.
Drug indication information from the FDA adverse

event reporting system (FAERS) was downloaded from the
FDA website [24], where the indication of a drug were
linked to the drug name via the fields ISR and DRUG_
SEQ The drug names in FAERS were mapped to pipeline®
drug names via drug synonyms field in the pipeline® data-
base. The MedDRA terms from the FAERS data were
mapped to MeSH terms through manual curation. Only
drug-disease relationships that were backed by at least 50
reports were incorporated in this study to insure there are
sufficient use cases of the drug in certain disease indica-
tions. We combined the two drug-indication pairs and
used them as the benchmark standard to perform the
evaluation (see Additional file 1: Table S3).

Pairwise similarity metrics
Different similarity metrics have been used to match
gene signatures (profiles), such as Kolmogorov-Smirnov
(KS) statistic [5] and the weighted signed statistics [25,26].
In this study, we focus on three metrics: XSum, XCos, and
KS metric to predict drug-disease relationships. The focus
of this paper is not to evaluate all metrics, but to show
that at least one metric can work to find disease indica-
tions. These metrics are briefly described as follows.
KS: The initial CMAP approach utilized a non-

parametric, rank-based Kolmogorov-Smirnov (KS) statistic
defined as follows.

UpInDisease ¼ a set of N up‐regulated features from

disease genomic data

DownInDisease ¼ a set of N down‐regulated features

from disease genomic data

KSup ¼ the KS score betweenUpInDiseaseand

complete compound profile

KSdown ¼ the KS score betweenDownInDisease and

complete compound profile

If KSup andKSdown have different signs thenConnectivity score

¼ KSup− KSdown else Connectivity score ¼ 0

For this study, N is set to 500 in all metrics.
XSum: The eXtreme Sum score is calculated as follows.

UpInDiseaseandDownInDisease are defined as above

ChangedByCompound ¼ top N up‐regulated and

N down‐regulated features

by fold change values

between compound treated

samples and control samples

XUpInDisease ¼ UpInDisease∩ChangedByCompound

XDownInDisease ¼ DownInDisease∩

ChangedByCompound

sum XUpInDiseaseð Þ ¼ sum of compound gene

expression fold change values

in the setXUpInDisease

sum XDownInDiseaseð Þ ¼ sum of compound gene

expression fold

change values in the set

XDownInDisease

XSum ¼ sum XUpInDiseaseð Þ−sum XDownInDiseaseð Þ
XSum has some similarity with KS - they both use two

gene lists (UpInDisease and DownInDisease) to query
compound profiles and then measure the difference
between the two corresponding scores. Instead of using
KS score to check whether the queried genes are



Table 1 Partial AUC performance and random permutation P value for three metrics using 152 filtered compound
profiles

Method FPR = 0.01 (Specificity = 0.99) FPR = 0.1 (Specificity = 0.9)

Fold enrichment OneAUC0.01 Fold enrichment OneAUC0.1 AvgAUC0.1

KS 0.7 3.17e-5 (P = 0.94) 0.9 0.005 (P = 0.81) 0.003 (P = 0.90)

XSum 3.8 2.17e-4 (P = 0.0035) 1.4 0.0086 (P = 0.014) 0.011 (P = 0.035)

XCos 2.3 1.82e-4 (P = 0.056) 1.2 0.006 (P = 0.16) 0.006 (P = 0.37)

AvgAUC0.01 is not calculated because of limited sample size. Fold enrichment is calculated as the ratio between true positive rate and false positive rate.

Table 2 Complete AUC performance and random
permutation P value for three metrics using 152 filtered
compound profiles

Method AvgAUC OneAUC

KS 0.48 (P = 0.75) 0.48 (P = 0.83)

XSum 0.56 (P = 0.031) 0.54 (P = 0.025)

XCos 0.56 (P = 0.049) 0.54 (P = 0.039)

Cheng et al. Genome Medicine 2014, 6:95 Page 5 of 8
http://genomemedicine.com/content/6/12/95
concentrated at the top or bottom of the sorted com-
pound profile, XSum simply sums up the compound
gene expression values of the queried genes.
XCos: The eXtreme cosine similarity score is calcu-

lated as follows.

XSet ¼ UpInDisease∪DownInDiseaseð Þ ∩
ChangedByCompoundð Þ

XCos ¼ the cosine similarity of the disease fold change

vector and compound profile vector using

features of XSet

AUCs and permutation P values
We use multiple areas under the curve (AUC) of the
receiver operator characteristic (ROC) measures to
evaluate CMAP performance, focusing on early retrieval
performance where the false positive rate is low: FPR =
0.01 and FPR = 0.1 (specificity 0.99 and 0.9, respectively).
The rationale for using this approach is we desire high
specificity because we can only pursue a limited number
of drug-disease indication hypotheses in a drug reposi-
tioning exercise. We calculate two types of AUC num-
bers: AvgAUC is the AUC averaged (unweighted) across
all disease signatures, and OneAUC is calculated by
combining the prediction scores across all the disease
signatures and then calculating a single overall AUC.
To determine the statistical significance of the AUC

results, we calculate non-parametric P values by per-
forming 10,000 runs with random permutations of the
890 disease mappings of the compounds.

Results
In total, 145 of the 238 diseases have at least one true
positive compound in our compiled benchmark standard
and thus can be evaluated (see Figure 1 and Additional
file 1: Table S2). Likewise, 152 of the 496 compounds
had at least one signature for an indicated disease. The
experimental result using compounds filtered using Ex-
pression Signal Strength (ESS) is shown in Tables 1 and
2. The AUCs for XSum are significantly different than
random at false positive rates of 0.01 and 0.1, as well as
across the entire ROC. XSum also enriches 3.8-fold for
positives at a false positive rate of 0.01. XCos is only
statistically significant across the entire ROC, while KS
does not show significance. To demonstrate the effect-
iveness of the compound filtering process, we reported
the experimental result on all unfiltered compounds in
Additional file 1: Table S4, where none of the AUC
measure is statistically significant.
The AUC performance of the three different metrics

in predicting drug-disease relationships is consistent
with our earlier finding [16], which is based on predict-
ing drug-drug relationships. XSum is a robust metric for
CMAP as it has statistically significant P values in all five
AUC measures, which demonstrates that the CMAP
approach can achieve better than random performance
in predicting drug-disease relationships. The top 20 disease-
drug pairs ranked by XSum are shown in Additional
file 1: Table S5.
All partial and full ROC curves using XSum as the

classifier are plotted in Additional file 1: Figure S2.
We also grouped the disease signatures into two

categories: neoplastic (65 disease signatures) and non-
neoplastic (80 disease signatures) and evaluated the
AUC performance of XSum for each category (see
Table 3). The result shows that XSum gives better
performance for neoplastic signatures, especially in
term of early retrieval performance (OneAUC0.1 and
OneAUC0.01), where the neoplastic diseases achieve
much significant P values (0.006 and 0.001, respect-
ively). In fact, the performance for non-neoplastic dis-
ease does not achieve significance; this suggests that
perhaps better samples or methods might be needed
for the non-neoplastic diseases.
To illustrate how the quality of disease gene signature

can affect the CMAP performance, we compared a vali-
dated breast cancer prognostic signature [27] with one
of the breast cancer gene signatures in our 145 disease



Table 3 AUC performance and random permutation P value for XSum using 152 filtered compound profiles on
neoplastic and non-neoplastic disease signatures

Disease signature group AvgAUC OneAUC OneAUC0.1 OneAUC0.01

Neoplastic 0.61 (P = 0.05) 0.6 (P = 0.06) 0.016 (P = 0.006) 6e-4 (P = 0.001)

Non-neoplastic 0.52 (P = 0.16) 0.53 (P = 0.09) 0.0057 (P = 0.44) 3e-5 (P = 0.78)
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signature list, by querying the 496 filtered compounds
using XSum (see Table 4). For the validated breast can-
cer prognosis signature, the top three compounds are
anti-cancer drugs and fifth ranked compound MG-262
is also known for its anti-cancer effect; while for the
Gene Logic signature, none of the five compounds are
anti-cancer drugs. It suggests that the CMAP perform-
ance may be greatly improved by using higher quality
disease gene signatures. However, this is just one case
study. In future work, it is worth evaluating higher qual-
ity signatures from multiple diseases and re-assessing
their CMAP performance.
We also used the same breast cancer prognostic signa-

ture to query the standard CMAP tool (build 02) from
Broad Institute (available online at [18]). The results
shown in Table 5 are consistent with our findings indi-
cating XSum is more effective than KS in early retrieval
performance.

Discussion
We systematically evaluated multiple CMAP methodolo-
gies by assessing their performance on 152 drug profiles
across a curated dataset consisting of 145 disease gene
signatures. This large comprehensive study can serve as
a benchmark to assess any new methodologies in the fu-
ture. The results from this study show that by using a
simple scoring algorithm called eXtreme Sum (XSum)
we were able to achieve a significantly improved metric
with the AUC around 0.57 and having a significant
permutation P value (P = 0.03). In an earlier study and
on a smaller set of the drugs and diseases (19 disease
Table 4 Top five compounds matched to a breast cancer
gene signature from Gene Logic (Breast: Intraductal
carcinoma: Primary malignant neoplasm of female
breast) and top five compounds matched to a validated
breast cancer prognostic gene signature

Top 5 ranked compounds from
a validated breast cancer
prognostic signature

Top 5 ranked compounds
from a Gene Logic breast
cancer signature

Irinotecan Mesalazine

Methotrexate Ambroxol

Etoposide Alclometasone

5109870 Verteporfin

MG-262 Beclometasone

XSum is used for matching. Known anti-cancer drugs are in bold.
signatures and 69 drugs), the best metric obtained had
an AUC of 0.45. The result of this study confirms two
factors identified in our earlier work [16,17] which are
crucial to the successful application of CMAP - an ef-
fective similarity metric such as XSum and a proper pro-
cedure for filtering the compound data. Using XSum
and the compound filtering procedure, we show CMAP
can give better than random performance on a relatively
large number of gene signatures, which were generated
from a single source using a simplistic protocol. XSum
has a promising early retrieval performance when FPR =
0.01, which is most relevant for CMAP-based drug
repositioning, as we normally can only afford to experi-
mentally investigate a small number of top hypotheses.
However, the overall AUC performance is rather weak.
There are several possible reasons. First, not all disease
gene signatures are of high quality. Some of the disease
signatures may have random or worse than random per-
formance. Moreover, many diseases may not be repre-
sented accurately by the transcriptional response in the
current signatures. Second, the drug-disease benchmark
standard may not necessarily capture all known drug-
disease association as it may contain both false negatives
(drugs could treat the disease but have not been tested
yet), and false positives (drugs that may only provide
symptomatic relief and thus may not be able to revers-
ibly match to the disease signature). Third, we did not
try to optimize the CMAP performance, as that process
can be prone to over fitting and bias. Rather, our goal
was to evaluate CMAP in a simple and easy-to-follow
procedure. Future work may include fine tuning the pa-
rameters of XSum, such as the number of features to be
included in disease signature and compound profiles.
Last but not least, current compound cellular profiles
Table 5 Top five compounds matched to a validated
breast cancer prognostic gene signature using our
approach and the standard CMAP approach

Top 5 ranked compounds
based on XSum score

Top 5 ranked compounds (by P value)
from CMAP online tool

Irinotecan Chlorpromazine

Methotrexate Resveratrol

Etoposide Luteolin

5109870 Morantel

MG-262 Antimycin A

Known anti-cancer drugs are in bold.
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are limited to compound treatment of three cancer cell
lines, which is possibly one of the reasons that neoplastic
disease signatures perform better than non-neoplastic
disease signatures (see Table 3). The availability of more
cell types, drug treatments, gene knockout data, and
gene over expression data from the LINCS project
should enable much larger and more thorough analysis
in the near future [28].

Conclusions
Connectivity map can significantly enrich true positive
drug-indication pairs given an effective matching algo-
rithm especially for neoplastic diseases. In combination
with the numerous anecdotal examples of successful
experimental validation of CMAP hypotheses, this in-
creases confidence in the use of CMAP for drug repur-
posing. With better methods and stronger validation
datasets, it is our belief that CMAP will prove to be an
effective method to repurpose drugs across a broad
range of diseases.

Additional file

Additional file 1: Figure S1. Expression signal strength of 1,294
compound expression profiles on MCF7 cell line. Top 290 profiles are
kept (ESS threshold = 44). (a) ESS value sorted from large to small;
(b) Histogram of ESS value. Figure S2. ROC curves of classifying drugs
across different disease signatures using Xsum for the FPR = 0.01 (A) and
FPR = 0.1 (B) and the full ROC curve (C). Table S1. The list of 496
compounds that passed the expression signal strength filtering. Table S2.
The list of 145 disease signatures and their XSum performance
(sorted by lower bound of AUC with 95% confidence interval). Table S3.
Drug-indication relationships (benchmark standard). Table S4. AUC
performance and random permutation P value for three metrics using
all (unfiltered) compound profiles. Table S5. Top 20 disease-drug pairs
by XSum.
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