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Abstract

Tumor heterogeneity is of growing importance in the treatment of cancers. Mutational hot spots are prime locations
for determining number and proportions of low variant allele frequency (VAF) tumor subclones by next generation
sequencing. Low VAF detection is complicated by poor mapping efficiency in regions with high mutation density.
Our Deep-Drilling with iterative Mapping (DDIMAP) method retains variant allele patterns to aid in single nucleotide
variation detection and generation of additional reference alleles, with remapping increasing coverage of highly
mutated regions to capture data critical to heterogeneity analysis and enhancing sensitivity. DDIMAP outputs variant
patterns with frequencies, enabling rapid phylogenetic analysis of ongoing mutation.

Background

Next generation sequencing (NGS) techniques are widely
used to explore diverse areas in the study of cancer, in-
cluding identification of driver mutations, measurement
of tumor heterogeneity, investigation of genetic suscepti-
bility, and characterization of mutational motifs to better
understand underlying mutational processes. Though can-
cer has long been considered a monoclonal process, re-
cent studies show that ongoing mutagenesis generates
subclonal populations whose numbers wax and wane de-
pending on the variant’s relative evolutionary fitness [1-5].
Tumor subpopulations possessing driver mutations con-
ferring a selective advantage are the proposed source
of tumor progression and acquired chemo-resistance
[4,6-11]. In addition to rare driver mutations of obvious
importance, there are numerous passenger mutations
found at low allelic frequency within the tumor popula-
tion, presumably due to ongoing genetic stress within the
tumor that results in tumor heterogeneity [5,7,12,13]. Sev-
eral studies have suggested that the level of tumor hetero-
geneity itself may serve as a prognostic indicator [14-16].
Thus, sequencing and analysis methods designed to iden-
tify and characterize tumor diversity and evidence of on-
going mutation may provide a relative measure of the
mutagenic stress and/or inadequacy of the DNA repair
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systems within a given tumor with the potential to inform
clinical care.

Follicular lymphoma (FL), a B-cell lymphocytic cancer,
is particularly well-suited for development of an ap-
proach to measure tumor heterogeneity. First, it pro-
vides a positive control for genetic heterogeneity in the
form of the uniquely rearranged /GH loci which encodes
for immunoglobulins, a tumor-specific marker known to
be subjected to ongoing somatic hypermutation (SHM)
[17-20]. Second, the activation induced cytidine deami-
nase (AID)-mediated mutagenic process responsible for
SHM is well characterized with regard to sequence motif
and substrate specificity [21-23], providing a mechanism
to evaluate the validity of SNV calls, especially those at
low frequencies. Third, there are reported genes outside
the IGH loci that may be subjected to AID-mediated
aberrant somatic hypermutation (aSHM) in B-cell lymph-
omas [24-30], providing selected regions with a high likeli-
hood of significant mutational events for our targeted
re-sequencing approach.

The most productive regions to look for signs of on-
going mutagenesis are mutagenic hot spots. Close link-
age to tumor specific mutation patterns is necessary to
unambiguously identify low frequency passenger muta-
tions as evidence of ongoing mutation within shifting
dominant tumor subclones. The specific challenge here
is accurate identification and quantification of mutations
with low variant allele frequency (VAF <1%) in genomic
regions with high density of variation from reference
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[31]. We found this is a two-part problem: the well de-
scribed issue of distinguishing true single nucleotide
variations (SNVs) at low frequencies that represent on-
going mutagenesis from process errors and the less well
publicized problem of accurately mapping reads from
highly divergent genomic regions representative of aSHM/
kataegis, compounding the problem of identifying add-
itional low frequency events in these regions. Our solu-
tion, which we call Deep Drilling with iterative Mapping
(DDIMAP), is a multi-pronged approach that includes the
use of sufficient numbers of tumor cells to adequately
sample rare events, ultra-deep sequencing (>10,000x) of
regions of aSHM/kataegis, and maintaining subclonal
specific sequences throughout the entire process for mul-
tiple uses. The core of DDIMAP takes mapped reads and
analyzes them in groups (regions of analysis (ROA)) to de-
tect patterns in the read data (‘words’) arising from allelic
variants in the presence of instrumental noise. It main-
tains these word patterns to assist in both iterative re-
mapping and low frequency variant calling (Figure 1).
Other programs, such as SRMA [32], IMR [33], and
iCORN [34], use data-driven alternate reference sequences
followed by remapping to identify a consensus genomic
sequence. In contrast, DDIMAP specifically maintains
ROA-based collections of these diverse sequence pat-
terns in ‘dictionaries’ to identify and quantify subclones
within a tumor population, polyploidal organisms, or
other mixed populations. We developed this approach
with empirical data from a PCR-based targeted re-
sequencing study of follicular lymphoma (FL) using
SOLiDv4, and also applied it to a PCR-based IGH se-
quencing study from Hodgkin lymphoma (HL) using
[llumina MiSeq data. We evaluated its technical per-
formance using synthetic combinations of empirical
data as well as simulation data of ongoing mutation
in a genetic region with high density of mutation in-
corporating simulated Illumina HiSeq process errors.

Methods

DDIMAP is designed to search through relatively small
regions of the genome at a very high level of sequencing
coverage to identify and quantify genetic subpopulations.
The software developed for the analysis step of this
process (Figure 1A) can accept output from any aligner
that generates bam files, even allowing use of different
aligners for each iterative run. Primary components of
DDIiMAP analysis include: (1) dividing the reference se-
quence into computational units (ROAs) and uniquely
assigning mapped reads to these ROAs (Figure 1B); (2)
for each ROA, generating the collection (dictionary)
of unique read sequences (words) along with associated
frequency statistics for both threshold and cross-verification
filtering to remove false variant calls (Figure 1C); (3) using
partial assembly of high confidence words to generate
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additional alternate reference sequence fragments for it-
erative remapping, typically repeating the process until
no novel high confidence variants are found (Figure 1D);
and (4) compiling dictionaries containing verified words
for identification of variants with associated frequen-
cies at individual reference locations. In this way, thou-
sands of reads that are assigned to any given ROA are
reduced to a dictionary of words and their associated
strand tallies.

Generating computational units: region of analysis (ROA)
ROAs are obtained by partitioning a reference sequence
into two tracks of overlapping segments, generated by
choosing an analysis start location on the reference se-
quence and selecting an ROA length, with the ROA
overlap defined as one-half the ROA length. We define a
‘collection of ROAs’ as two tracks of abutting segments
of the reference sequence with the starts of the two
tracks offset by the overlap length (Figure 1D). Mapped
reads are uniquely assigned to an ROA based on their
start position and CIGAR string information to deter-
mine which bases in the reference sequence, and thereby
which ROAC(s), are covered by the read (Figure 1B). If
more than one ROA is covered, we assign the read to
the ROA closest to the start of the read according to its
read direction. The read is trimmed to fit the ROA un-
less the read is sufficiently long to span adjacent, non-
overlapping ROAs, then the read is split among them
and trimmed. Currently, reads containing indels are han-
dled by eliminating inserted sections that do not corres-
pond to bases in the reference sequence and by inserting
a missing data symbol (-) in deleted segments for each
base deleted.

Multistep filtering process

We designed a multistep procedure to selectively retain
words that are more likely to contain true sequence vari-
ations. This procedure includes a threshold filter to
eliminate random procedural errors followed by partial
sequence assembly to cross-validate observed patterns of
variation in words.

Threshold filtering

Threshold filtering only retains word sequence patterns
that are observed on both strands above a minimum
count threshold; eliminating most words containing false
variants arising from random instrumental or low fre-
quency PCR-based errors (strand bias). The threshold is
coverage dependent with an absolute minimum count
used in regions with relatively low coverage and a relative
minimum count based on a proportion of the coverage
used in regions with higher coverage. This threshold can
be set at a higher level to provide more stringent filtering
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Figure 1 (See legend on next page.)
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Figure 1 Deep-Drilling iterative Mapping (DDiMAP) flowchart. (A) This overview schematic illustrates the novel components in a DDIMAP
pipeline. Key points include partitioning of reference sequence into computational units called regions of analysis (ROAs), with mapped reads uniquely
assigned to ROAs using alignment information within bam files. Variant sequence patterns are collected in each ROA, forming a ‘dictionary’ of
unique ‘words’ which are retained based on frequency thresholds. Retained words are partially assembled with words from overlapping
ROAs in a cross-verification process. Partially assembled sequences containing variant sequence patterns may be used as additional reference
sequences for the optional remapping of reads, a process that is repeated until no new variants above a coverage dependent threshold are observed.
For variant identification, data from all ROAs are tallied at each location from the verified dictionary-based sequences. (B) Reference sequence is
partitioned into abutting ROAs. Reads are assigned to an ROA based on their ability to completely cover the ROA, maintaining the contained
read segments (blue letters) while discarding excess (gray letters). (C) ROA analysis includes counting all read segments matching observed word
sequence patterns. This compresses all read data from each ROA into a listing of unique words with count of occurrences in each read
direction. (D) An ROA collection is a pair of tracks of abutting ROAs that overlap by half, with reads assigned to one and only one track.
Overlapping dictionaries facilitate partial assembly of sequences to form longer sequence fragments containing observed variation from
the initial reference sequence that are added to enhance mapping of reads that contain a high density of variation. Additionally, comparison
of overlapping dictionary entries formed using independent sets of overlapping variant sequences provides an independent cross-validation of variant

sequences for SNV identification. See text and Additional file 1 for complete details.

for generation of alternate reference fragments or at a
lower level for use in final variant candidate identification.

Sequence verification through partial assembly

The second step utilizes partial assembly of words from
dictionaries from overlapping ROAs to validate sequence
patterns as a cross-verification process (Figure 1). This
step leverages the unique assignment of a read to a sin-
gle ROA track which guarantees that sequence data
from two overlapping ROAs within the same collection
come from independent sets of reads. To perform se-
quence cross-verification, each unique word in an ROA
dictionary is split, and the half words are compared to
the corresponding half words from their overlapping
ROAs (Figure 1D). Words that have matching half se-
quences from both overlapping ROAs are ‘fully verified’,
words that only match on one side are ‘partially verified’,
while words that have no match with either overlapping
ROA are ‘unverified. The outcome of this process is
the generation of read segments with categorized
levels of confidence in sequence patterns that will be
used both in the iterative remapping process and to
identify final candidate SNVs after completing the last
round of remapping.

Iterative remapping

Alternate reference fragments are constructed from se-
quence and assembly information generated during the
partial assembly step for cross-verification as shown in
Figure 1D. For each ROA, words in its dictionary (red
text) that are tagged as fully verified are extended in both
directions by assembling all combinations of matching
verifier words from overlapping ROA dictionaries (green
and blue text), resulting in a fragment that is twice the
ROA size. Alternate reference fragments may also be gen-
erated from words that are not fully verified. In our as-
sembly process, words that are partially verified may be
extended in their verified direction using matching verifier

word(s) (green and blue text) and in the other direction by
appending reference sequence (black text) and words that
are non-verified may be extended in both directions using
reference sequence (black text). Provisional acceptance of
non-verified words for the purpose of providing alternate
allele fragments permits extension into regions with low
mapping coverage due to alignment failure. The assembly
process may of course be implemented using alternate as-
semblers starting from the words in the dictionaries.

Since mapping algorithms are capable of aligning reads
containing variation, it is not necessary to introduce all
the variants that might be present in a sample to enhance
mapping sensitivity. Typically we use a stringent iterative
threshold filter setting for generating additional reference
fragments to limit introduction of false discovery events.
Alternate reference fragments are introduced into the en-
hanced reference sequence collection for the next map-
ping iteration by choosing all extended fragments built
around fully verified words and optionally choosing ex-
tended fragments built around partially verified or unveri-
fied words only if the central word accounts for a high
proportion of its ROA coverage.

This process of generating additional reference frag-
ments and mapping using the enriched reference se-
quence collection is repeated until no new words are
observed above the iterative threshold setting. Once it-
erative mapping has converged, it is necessary to collect
all the mapped read data from the multiple reference
fragments into a common ROA dictionary based on ref-
erence location, summing variant words and coverage
data from all reference fragments. The final analysis is
performed at a more permissive threshold setting in dic-
tionary formation to allow discovery of rare variants,
capitalizing on the enhanced mapping sensitivity pro-
vided by the enriched reference sequence collection. See
Additional file 1 for an in-depth discussion for selection
of ROA length and other adjustable parameters within
DDiMAP.
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DDiMAP sample software

We have posted sample source code implementing the
DDiMAP methodology online [35]. This code accepts an
input bam file and the reference sequence file used for
its creation and several command line parameters for
ROA size and thresholds and produces several files as
output. The dictionary file, which is csv formatted, con-
tains the word patterns with strand counts and verifica-
tion status for all ROAs and reference sequences. The
identified variant csv file lists the variants with frequency
and local coverage. The coverage csv file contains total
coverage at each position represented in the dictionary.
The allele fragment file is in fasta format with an identi-
fier for each fragment indicating its reference sequence
and location. Sample Python scripts and shell scripts
that employ the DDIMAP sample code to perform iter-
ation are also included that illustrate how to implement
an iterative scheme using other mappers. See Additional
file 2 for a complete DDiMAP user guide.

Methods and Materials associated with generation and
processing of PCR amplicons for targeted re-sequencing
is presented in Additional file 1.

The data from this study have been uploaded to the
Sequence Read Archive (NCBI) and are available for
download under accession SRP055160. The specific
reference sequences for these data can be found in
Additional file 3.

Results and discussion

DDIMAP increases the sensitivity of SNV calls while
maintaining precision through two synergistic processes
of filtering and remapping. The filtering phase uses se-
quence frequency thresholding and a cross-verification
procedure to eliminate signal noise inherent in massively
parallel sequencing. The iterative remapping stage uses
successively identified high confidence variant sequences
as additional reference allele fragments to enhance align-
ment of reads to highly mutated regions of the genome.
Key to both processes is maintaining variant data infor-
mation within word sequence patterns.

Effect of filters

The primary filters include a threshold for minimum ob-
served frequencies for each word in both sequencing di-
rections and a cross-verification of the sequence through
partial assembly of words from independent sets of reads.
The empirical source of the thresholds and their efficacy
when combined with cross-verification is evident from
data using a plasmid fragment with no expected variation
as a negative control and /GH sequence from FL speci-
mens containing a high number of read variants repre-
senting ongoing SHM. The two primary filters removed
the large number of low frequency variants typically asso-
ciated with process ‘noise’ while retaining the higher
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frequency variants associated with true mutation patterns
(Figure 2). Each filter process alone removed >90% from
the plasmid negative control (pBluescript II KS fragment)
and combined removed >99.5% of variant patterns while
retaining 92% of IGH variants at frequencies >10%, 61%
between 1.0 and 10%, and 15% between 0.15 and 1%, with
nothing reported below 0.15% frequency.

Multiple observations support the validity of variants
identified by DDIMAP within the FL/SOLIiD dataset.
First, Sanger sequencing confirmed >92% of variants that
were identified and quantified by DDIMAP at frequen-
cies >15%. Second, DDiMAP did not generate significant
numbers of spurious variants, even at low frequencies,
as evidenced by the complete lack of calls in some gen-
etic regions while other regions from the same specimen
show mutation rates >10% (see Additional file 4: Table
AF1), demonstrating the ability of the filtering algo-
rithms to remove low level process noise while retaining
true signal. Third, analysis of the tumor specific variants
in BCL2 regions from FL specimens, at both high
(215%) and low (<1%) frequencies identified a consistent
and highly significant bias towards the AID mutation
patterns expected to be found in aSHM (see Additional
file 4: Figure AF1: WRCY motif P <0.0001, WA/TW motif
P <0.0012 by one-tailed Fisher’s exact test [36]), strongly
indicating that the identified variants at both high and low
frequencies are due to a common biological process and
are not a computational artifact.

Iterative remapping enhances read capture from regions
with dense mutations

Read coverage irregularities are common in NGS, often
due to issues associated with poor cluster formation from
genetic regions with problematic sequence for polymerase
amplification. In a heterogeneous population, lack of cover-
age due to poor mapping can overlap common coverage
irregularities, obscuring the identification of subpopula-
tions with significant regional coverage losses due to high
density mutations. Figure 3B shows the irregular coverage
pattern in BCL2 from non-mutated controls (black line)
compared to that observed for initial mapping of a highly
mutated, highly heterogeneous tumor specimen FL-128
(blue circles), in which reduced local coverage corre-
lates with mutational load (Figure 3A). Enriching the
pool of reference sequences by including previously iden-
tified variant allele patterns, followed by remapping, im-
proved mapping efficiency, raising coverage by 50% from
regions with the greatest deviation (Figure 3B, red trian-
gles), resulting in a coverage pattern indistinguishable
from controls.

This enhanced mapping has significant effect on both
total numbers of SNVs and SNV frequency estimations.
The distribution of SNVs from FL-128, shown as SNV fre-
quency versus reference location (Figure 3C), compares
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Figure 2 Threshold and cross-validation filters effectively remove signal noise while retaining true variant calls. (A) Negative control
plasmid fragments (pBluescsript Il KS) were spiked into FL specimen pooled amplicons at 1/10 the concentration of the individual targeted gene
amplicons. Aggregating the aligned read data from the 12 FL specimens after mapping with BFAST, resulted in an average location coverage of
45,000%, in which there were 989 observed raw candidate SNV calls discovered (black line). Application of either the bidirectional minimum word
threshold frequency filter at 750 ppm (red diamonds) or by cross-verification (green squares) alone dropped the candidate SNV call counts to less
than 10% of the raw calls, while application of both filters had a synergistic effect, eliminating >99.5% of the initial calls (4/989 - blue triangles).
(B) The IGH data from the 10 FL specimens was aggregated in a similar manner, resulting in 45,426 raw candidate SNV calls (black line) with a
lesser reduction due to cross-verification (18,684 remaining or 41% - green squares), a similar reduction due to thresholding (4,714 or 10% - red
diamonds) and a combined reduction to 1,948 final SNV calls (>4% - blue triangles) following application of both threshold and cross-verification
filters. Note that the combination of filters retains the vast majority of SNV calls which were present at frequencies >1%. Reads were mapped to

the Sanger-level sequence of the clonal IGH from each FL specimen and represents SHM generated variation around the clonal sequence.

initial mapping (blue circles) with iterated to convergence
results (red triangle) and demonstrates a scattering of low
frequency SNVs between 0.3% and 10% with a clustering
of SN'Vs at approximately 40% frequency, representing the
genotype of the current most frequent clone (MFC) within
this tumor (black arrow). A total of 19 new variants were
identified following iteration (105 SNVs), a 22% increase
over initial mapping (86 SNVs), with frequencies ranging
from 0.17% to 40%, illustrating that even Sanger-level
SNVs in densely mutated regions can be missed due to in-
adequate mapping. Overall, the SNV frequencies tend to
increase with iteration, exemplified by the tightened distri-
bution to the MFC founder genotype between reference
locations 200 and 450 (black circle), corresponding to the
region with the greatest increase of coverage (Figure 3B).
The tightened distribution of the MFC frequencies is
clearly illustrated in the cumulative frequency distribution
plot (Figure 3D), suggesting that identification of subclonal

populations by frequency comparisons may be both more
accurate and precise following iteration.

To quantify the improvement in SNV frequency, we
compared the SNP frequency estimates between initial
and fully iterated mapped reads from the 12 FL speci-
mens and 4 controls. The 54 homozygous SNPs showed
frequency calls averaging 93.7% (range, 82.6% to 98.7%)
on first mapping which increased to 98.8% (range, 93.5%
to 99.7%) following iteration to convergence. Similar im-
provements were observed in 49 heterozygous SNP fre-
quency calls averaging 47.0% (range, 30.8% to 54.7%)
initially and rising to 50.8% (range, 44.4% to 56.4%) fol-
lowing iteration (both at P <0.0001, paired t-test [36])
(see Additional file 5). Thus there are two major advan-
tages to iterative remapping: locally, enhanced detection
of variants at both high and low frequencies in areas with
dense mutation rates and globally, significantly better esti-
mates of variant frequencies.
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show a wide range of frequencies and a general increase in detected frequency with iterative mapping, most notable in regions where iteration
increased coverage (circle). Iterative remapping also identified an additional 19 SNVs (22% increase). Note that a large number of mutations
share a common frequency, representing the founder genotype of the current most frequent clone (MFC) in this population (black arrow).
(D) Cumulative frequency distribution data plotted as rank (1 to 86 for initial BFAST, 1 to 105 for converged iterated BFAST, high to low
frequency) versus variant frequency show the increase in the number of variants detected and a tighter distribution of MFC genotype frequencies
upon iteration (black arrow). Two homozygous SNPs are present in this sample.
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Estimating functional capacity of DDiMAP - SOLiDv4
empirical data

To explore the capability of our word-based iterative ap-
proach over a wide range of high density mutation pat-
terns, we used the natural experiment inherent in this FL/
SOLiD dataset employing tumor IGH sequences. The
rearranged and highly mutated /GH sequence is a unique
biomarker for B cell tumors such as FL, and this sequence,
with only minor variations, will be found in each cell
derived from the tumor. To test the limitations of our
DDIMAP process, we evaluated its ability to map reads
derived from the tumor specific IGHV sequence to the ap-
propriately matched non-mutated progenitor IGHV gene.
Doing this allowed us to test DDIMAP’s ability to ‘un-
cover’ the observed Sanger level mutations. We evaluated
the clonal /IGHV segments between functionally defined
regions of the IGHV genes: the highly conserved frame-
work regions (FR1-3) which flank the hypermutated com-
plementarity determining regions (CDR1-2) [37] for four
FL specimens that express varying levels of mutational
loads in their total IGHV sequence (10.3 to 17.9% vari-
ation). We evaluated three different color-space aligners,
BFAST 0.7.0a [38,39], SHRiMP2.2.3 [40,41], and the re-
cently published CUSHAW?3 [42], each individually and
also in combination, alternating BFAST with SHRiMP2
during the iteration process. As a baseline for comparison,

we analyzed single round variant calls made from each
mapping tool using the SNV caller within DDIMAP. We
followed with iterative mapping using CUSHAW?3 alone
or with two sequential rounds of BFAST and SHRiMP2
followed by up to three rounds of iterative BFAST map-
ping (BSBSB,,). Mapped coverage across the IGHV regions
varied with the degree of deviation from the germline ref-
erence, and in all cases, significantly improved with iter-
ation, independent of the aligner used (Figure 4), though
some regions with marked variation remained difficult
(Figure 4D).

However, in this test scenario, we are not identifying
rare events which require high coverage but attempting
to elucidate the predominant clonal IGHV sequence.
Once a suitable level of mapping coverage is obtained,
specific SNV identification is a better indicator of per-
formance, especially with regard to the interpretative
nature of color space NGS data. We used 25% as the
minimum frequency to call any given SNV to allow identi-
fication of ambiguous bases observed in the Sanger se-
quence of the tumor IGH. The older color-space mappers
we evaluated, BFAST and SHRiMP2, have mapping charac-
teristics that led us to evaluate the utility of their sequential
application. BFAST is designed to look for sequence vari-
ation, and allows a high number of mismatches so long as
they do not lead to two or more consecutive base changes
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Figure 4 Iteration greatly increases IGHV read coverage from empirical SOLID data. Coverage versus position within the FR1 to FR3
regions of the identified IGHV in four specimens with varying overall mutation rates. (A) Specimen 128, IGHV1-18, 7.3% mutation. (B) Specimen 134,
IGHV3-48, 15.3% mutation. (C) Specimen 136, IGHV3-15, 17.3% mutation. (D) Specimen 132, IGHV1-46, 17.7% mutation. These plots show differences in
read coverage between BFAST (B x 1), SHRIMP2 (S x 1), and CUSHAW3 (C X 1) mapping to germline sequences as the reference without iteration and
the improvement in coverage obtained using iterative mapping wherein BFAST and SHRIMP2 are alternated twice, followed by additional BFAST
iterations (BSBSBn) or CUSHAWS3 for seven iterations (C x 7). Note how initial mapping coverage is lower in the CDR regions which typically are more
highly mutated, but as the overall mutation rate increases, large regions including FR as well as CDR show severe loss of coverage due to the inability
of the alignment programs to handle the clustered deviations from reference. See text for details.

FR3

[38] while SHRiIMP2 does permit the identification of
pairs or triplets of consecutive base changes within its
overall more conservative mapping allowance [40]. By al-
ternating the mappers, the plan was to allow BFAST to
capture enough isolated variants to enable SHRiIMP2 to
map reads to the alternate allele fragments, and that
SHRIMP2 would add the adjacent base changes to the
allele fragments, providing the necessary density of alter-
ations for continued BFAST iterations. BSBSB,, was super-
ior to both single pass BFAST and SHRiMP2 mapping and
provided 100% recovery of IGHV sequence from specimen
128, with approximately 10% variation from germline
sequence (see Additional file 4: Table AF2). In contrast,
CUSHAW?3 was able to recover the IGHV sequence from
128 without iteration. However, all mapping approaches
failed to varying degrees as the sequences deviated by
more than 15% from germline /GHV, with BSBSB,, identi-
fying 85 SNVs while single round mapping from BFAST
or SHRiMP2 identified 61 to 67 SNVs, respectively (see
Additional file 4: Table AF2). As expected, the best pre-
dictor of BSBSB,, success in identifying a Sanger level base
change was not the total deviation in sequence, but the
pattern of mutation clusters. The lowest BSBSB,, recovery
of Sanger level IGHV sequence was in specimen FL-136,
identifying only 31% of the Sanger calls in a background
of 17.3% IGHV variation, while it recovered 62% of Sanger
calls in specimen FL-132 with an equivalent 17.7% IGHV
variation; FL-136 has 26/48 Sanger identified mutations in

adjacent bases (4 pairs and 6 triplets) while FL-132 has
only 14/51 bases changes in adjacent bases (4 pairs and 2
triplets). Overall, CUSHAW3 had the best performance
with high positive predictive value (PPV) in both the ini-
tial mapping and following iteration (>95%) while the false
negative rate fell from 38% to 15% with iteration, recover-
ing 85% (138/163) of the total SNVs identified by Sanger
sequencing.

Estimating functional capacity of DDiMAP - lllumina
MiSeq empirical data

A similar analysis, mapping IGHV read data to germline
IGHYV reference, was performed using Illumina MiSeq
data from an HL specimen to determine if the observed
initial mapping failures and restoration by iteration were
platform specific behavior of the color-space mappers.
We evaluated four nucleotide mappers (SHRiMP2, CU-
SHAW3, BWA-MEM [43,44], and Novoalign [45]) at de-
fault settings to map reads from a clonal /GH amplicon to
its germline reference sequence (Figure 5A). All four map-
pers show a dramatic drop in initial coverage (dashed blue
line) corresponding to the hypervariable CDR1 region of
IGHYV (location 218 to 241), with complete coverage re-
stored following iteration to convergence (red line) with
both SHRIMP2 and CUSHAW3, while BWA-MEM and
Novoalign did not restore coverage in the region of high-
est divergence. Convergence occurred in seven iterations
and the independently evolved sequences from both
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Figure 5 MiSeq empirical IGHV read coverage improves with iteration and recapitulates Sanger sequence upon convergence.
(A) Coverage plots demonstrate influence of mapper selection and iteration for MiSeq data (50 base reads) of an IGH amplicon from a
Hodgkin lymphoma specimen to its clonal IGHV region, IGHV1-69-2. The FR1-FR3 regions of this gene starts at location 143 and ends at
430. (B) Sequence alignment of the 100 nt region of highest divergence (21%) of HL-IGHV sequence from its corresponding germline
sequence: IGHV1-69-2, the independently converged sequence from CUSHAW3 and SHRIMP2, along with the Sanger sequence from IGH
amplicon from this specimen. Initial coverage of this region is low in part or all of this region for all four mappers shown and remains
low after iteration in the highest density portion with the default settings for BWA-MEM and Novoalign.

SHRiIMP2 and CUSHAWS3 completely recovered the
Sanger sequence of this amplicon (Figure 5B), which had
21% local deviation (location 143 to 252) and 17.9% over-
all deviation (239/291 nt) to IGHV4-61 [46]. This clearly
shows that mapping inefficiencies are not platform spe-
cific but reflect the capability of the selected mapper to
handle the degree of mismatch between reference and
reads, and stresses the importance of proper mapper selec-
tion and optimization for the experimental goal. DDIMAP
is a highly effective solution to low coverage in mutation
hot-spots using mappers with a more balanced PPV/FPR
while conservative mappers optimized for low false posi-
tive rate fail to map reads from these regions.

Sensitivity of DDIMAP - Synthetic IGHV data

To determine the sensitivity and precision of our DDiMAP
approach, we used the Sanger-level IGH private sequence
information from a highly mutated FL case as a biologically
relevant mutation pattern in a simulation study incorporat-
ing both ongoing mutation from the initial sequence and
simulated Illumina HiSeq error patterns in 100 base pair
single-ended reads [47]. Ten generations of replication
with an accompanying mutation rate of 1/10,000 bases
resulted in 1,024 known allelic patterns containing vari-
ants at frequencies ranging from present in all patterns
(100% frequency) to present in 1/1,024 (0.097% frequency).
Reads were mapped to the I[GHV germline sequence using
SHRiMP2, CUSHAW3, and Novoalign and processed

through DDIMAP to generate additional allele frag-
ments for iterative remapping. Variants were identified
with DDIMAP from both the initial and final converged
mapping at a range of bi-directional acceptance thresh-
olds (100 to 800 ppm) to generate precision-recall plots
(Figure 6). Novoalign suffers from poor mapping efficien-
cies at both the initial and fully iterated runs, with low re-
call levels due to lack of coverage in these highly divergent
regions. Both SHRiMP2 and CUSHAW3 show signifi-
cantly improved sensitivity with iteration, resulting in es-
sentially identical precision-recall curves that also match
the curves obtained when the tumor-specific /GH Sanger
sequence is used as the reference. In the FR1-FR3 region
of IGHV, at the minimum threshold resulting in 100%
PPV (400 ppm), the overall false negative rate is 8.0%, with
100% sensitivity (73/73) for mutations occurring at fre-
quencies at or above 1/512 and 70.4% sensitivity (19/27)
for mutations occurring at the minimal frequency of 1/
1,024 (see Additional file 1 for experimental details).

Sensitivity of DDiIMAP - SOLiDv4 empirical data

To assess the sensitivity of the word based analysis method
based on experimental data, an i silico mixing experiment
was performed by mixing SOLiD reads from two FL speci-
mens at finely graded proportions ranging from 1:31 to
31:1 (see Additional file 1 for experimental details). The
variants present in the pure specimen data were marked as
present/absent at each dilution. A logistic model was fit
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Figure 6 Iteration improves sensitivity of DDiIMAP variant identification and coverage of simulated lllumina HiSeq Data. (A) Precision-Recall
curves were generated by varying DDIMAP primary filter thresholds from 100 to 800 ppm and co-varying variant identification thresholds at 4x primary
filter levels (see Additional file 1 for details). Performance is shown for initial and final iterations. A peak performance F1-score for each case is shown
in matching color. Significant improvement in sensitivity is obtained with iteration for SHRIMP2 and CUSHAWS3, with improvement in precision
for CUSHAWS3 as well. Novoalign, using default settings, had slightly improved sensitivity. DDIMAP attained its peak performance for all three mappers
at a threshold of 300 ppm. (B) Coverage for SHRiIMP2 (S) and CUSHAW3 (C) at the initial iteration, after the third iteration, and at the final iteration are
shown. In these cases the final enhanced reference sequences contained the private founder clone sequence without creating false positive variants at
any frequency. Coverage using Novoalign (N) did not improve with iteration.

FR3

using the logarithm of the product of the pure sample ob-
served SNV frequency and the dilution factor as a pre-
dictor and the presence or absence of the variant as the
dependent variable. The resulting model (Figure 7) indi-
cates that the sensitivity of DDIMAP for the FL/SOLID
data set is 80% for SN'Vs occurring at a frequency of 0.4%,
with a >99% probability of identifying SNVs occurring at
1.0%, obtained with a very conservative threshold setting
of 750 ppm to limit false positive calls in FL specimens.
These sensitivity estimates are consistent with those ob-
tained with synthetic data and demonstrate that DDiMAP
is capable of performing well at low VAF with empirical
data.

SNV identification by DDiMAP
We have already presented data demonstrating the ef-
fectiveness of the simple partial assembly approach to

SNV calling used in DDIMAP; low false discovery rates
in regions with high coverage levels (see Additional
file 4: Table AF1), highly significant skewing of muta-
tions to AID motifs at both high (215%) and low (<1%)
frequencies (see Additional file 4: Figure AF1) and high
rate of validation for SNV calls >215% frequency by Sanger
sequencing. However, we wanted to see how DDiMAP
compared to a widely used, sensitive SNV caller that
does not require matched normal samples. In studies of
B-cell lymphomas, there are no matched normal genomic
DNA for the uniquely rearranged IGH gene, and for
tumor heterogeneity studies, the presence of private
SNPs are not an issue as they simply add to the MFC
genotype and are not misinterpreted as clinically signifi-
cant ‘driver’ mutations. For these reasons, we selected
VarScan2 [48,49] as our representative SNV caller for
comparison purposes.
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Figure 7 DDiMAP shows high sensitivity, estimated with
logistic model of mixed BCL2 reads from SOLiD data. Ten
million reads were randomly selected from two specimens in
proportions ranging from 1:31 to 31:1, mapped using BFAST and
analyzed using the ROA threshold and verify procedure with a
conservative threshold setting of 750 ppm applied in each direction
(see Additional file 1 for experimental details). A set of 71 indicator
mutations from the single specimens that had pure specimen
frequencies ranging from 5% to 40% in BCL2 were selected. The
presence (1) or absence (0) of each of the indicator mutations in the
various blends is plotted against their diluted frequencies on a log
scale (non-informative data above 2% and below 0.05% are not
shown). Also plotted is the logistic model (solid line) and 95%
confidence limits (dashed lines). This model indicates that the
method has 80% +10% sensitivity for mutations occurring at a
frequency of 0.4% indicated by the circle on the model plot. The
data also indicate the method is unlikely to observe SNVs below the
lowest observed indicator mutation frequency recovered from the
blend (0.25%), where a modeled sensitivity of 30% + 14% is marked
by a square.

To evaluate the ability of DDIMAP to identify low fre-
quency SNVs from an empirical data set, we performed
an in silico blending experiment using reads from the 12
FL specimens mapped with BFAST (see Additional file 1
for experimental details). For each specimen, variants in
BCL2 identified by Sanger sequencing and/or VarScan2
analysis at a 1% threshold setting were used to establish
‘gold standard’ results. Each specimen has a readily iden-
tifiable founder genotype/most frequent clone (MFC)
present at individual frequencies of 9% to 60%, generat-
ing a substantial number of variant allele frequencies
(VAF) values from <1% to approximately 5% in the mix-
ture. Additional non-founder level variants were present
in the individual specimens at lower frequencies, leading
to a total of 240 variants identified across the 12 FL speci-
mens. Of these 240 ‘gold standard’ variants, there were 24
locations at which multiple variants were found across the
12 specimens, which required adjusting expectations
within the mixed outcomes as VarScan2 at default settings
only reports the most frequent variant at any given loca-
tion. Of these 24 locations, 21 had two alternate base calls
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at a single location and three had three alternate bases at
a single location, resulting in a maximum of 213 expected
variants reported by VarScan2 from the mixture.

We analyzed this mixture with both VarScan2 and
DDIiMAP to identify variants at a range of thresholds
(0.1% to 1% for VarScan2, 100 to 1,000 ppm for DDIMAP)
to evaluate sensitivity and PPV. The resultant precision-
recall curves (Figure 8A) show that the DDIMAP variant
identification procedure that leverages the filtered words
through partial assembly has highly similar overall per-
formance outcomes to VarScan2. Based on their re-
spective thresholds that yield 100% PPV, VarScan2 at
0.5% threshold has a false negative rate of 16.4% while
DDIiMAP at 400 ppm has a false negative rate of 15.5%
when restricted to the calls reportable by VarScan2.
Logistic models of the sensitivity dependence of DDiMAP
on variant frequency at 400 and 800 ppm thresholds show
that DDIMAP (blue) can identify low frequency variants
below the VarScan2 hard threshold (green) with an ac-
ceptable trade-off between lower frequency true positive
calls and higher frequency false negative calls (Figure 8B).
It should be noted that the frequency distribution of
detectable variants in this blended dataset is not re-
flective of an expected distribution for variants arising
from ongoing mutation in FL, which would be domi-
nated by lower frequency variants with a VAF <1% [31],
dependent on the relative rates of mutation to growth. In
such a case, DDIMAP would be expected to outperform
VarScan2 because of its sensitivity below the VarScan2
threshold.

Subclone identification

DDIiMAP greatly simplifies subpopulation identification
by providing a complete set of ROA dictionaries con-
taining all verified words with associated frequency data
(Figure 1C), provided in a dictionary.csv output file (see
Additional file 2). Each ROA dictionary can be examined
to identify the ROA with the largest number of verified
words, representing the region of highest genetic diversity
within a specimen. Using this approach on the 12-fold
blended BCL2 data, we found BCL2 ROA 477 to 510 con-
tained 14 verified words at VAF in the range of 0.17% to
5.78% (Figure 9A). While the 14 words imply the presence
of 14 subclones, sequence comparison showed patterns
of common mutations, suggestive of evolving clones.
Molecular phylogenetic analysis by maximum likelihood
method was performed on the DDIMAP dictionary output
using MEGAG6 [50], based on the Tamura-Nei model
[51]. The tree with the highest log likelihood (-142.06),
shown in Figure 9C, indicates 10 independent clones aris-
ing from the reference sequence. Sequences on lines 2 to
4 (Figure 9A), identified as clone 2, show a base sequence
with four common mutations while lines 3 and 4 each
have a single additional change; both are present at a
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Figure 8 Direct SNV candidate identification from DDiMAP filtered sequences compares favorably with VarScan2. Mapped BCL2 reads
from the 12 FL specimens were individually analyzed by VarScan2 (1% threshold) and compared to Sanger sequencing of amplicons to identify
founder clone genotypes for use as gold-standard SNV data (see Additional file 1 for details). Mapped SOLID read data were pooled to generate
a collection of variants at a wide range of low frequencies, with 24/240 at levels below 0.2% and 120/240 at frequencies below 2.1%.

(A) Precision-recall curves were obtained using a threshold series in VarScan2 (0.1% to 1%) and DDIMAP (100 ppm to 800 ppm) to demonstrate their
well-matched overall performance. VarScan2 requires a threshold of 0.5% to achieve 100% PPV with a corresponding sensitivity of 85.4% (F1-score =
0.92). Matching performance is obtained using DDIMAP with a threshold setting of 400 ppm. Peak F1-scores occur at lower threshold values of 0.2%
for VarScan2 and 300 ppm for DDIMAP, reflecting different P-R trade-offs, with DDIMAP better for precision and VarScan2 better for recall and nearly
matched to the 200 ppm position of DDIMAP. (B) DDIMAP logistic sensitivity models were obtained using two conservative thresholds that generate
100% PPV (400 ppm for upper plot, 800 ppm for lower plot) but different recall for the BCL2 variants. At 400 ppm, 50% of variants at 0.33% and 80% of
variants at 0.8% are detected while at the more conservative setting of 800 ppm, 50% of variants at approximately 0.5% and 80% of variants
at approximately 0.9% are detected. VarScan2 thresholds of 0.5% and 0.75% provide matching overall performance, shown as vertical
green dashed lines. Note how DDIMAP has increased sensitivity of low frequency variants with a reduced sensitivity at higher frequencies
compared to theVarScan2 single hard threshold.

lower frequency than the progenitor clone, consistent with
ongoing divergent evolution of clone 2. Similar sequence
relationships can be seen on lines 5 to 6 (clone 3) and
13 to 14 (clone 10) except here the ancestral clone pro-
portion appears to be declining, consistent with the ‘clonal

sweep’ pattern observed in other B-cell tumors [52]. Thus
DDIiMAP identifies 10 populations within this mixture,
some showing ongoing mutation, which is the expected
number based on gold standard SNV calls of the individ-
ual specimens in this ROA.
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e. 487 T>C 2.71
f. 491 A>G 2.66
g. 495 A>T 1.69
h. 498 A>G 6.60
i. 499 T>G 4.62
J. 500 A>T 3.33
k. 501 C>T 2.2
1. 503 T>G 3.47
m. 505 C>G 1.06
n. 508 A>G 4.99
o. 510 A>G 5.02
Figure 9 Variant sequence patterns allow identification of 10/10 FL tumor populations from pooled BCL2 reads. (A) Reference sequence
for BCL2 ROA 447 to 510 and dictionary with associated frequencies (word occurrence/total coverage) are shown for the 12x blended BCL2
analysis. Red letters in the reference sequence show 15 locations with identified base changes (a-0). The dictionary of verified words
indicates reference identity with dots and changed bases with letters. Circled bases represent validated SNV calls not reported by
VarScan2 due to presence of higher frequency variants occurring at identical locations. An inferred evolutionary interpretation of each
word, based on phylogenetic analysis by maximum likelihood method (see 9C), precedes the word sequence, identifying 10 out of 10
known subpopulations within the mixture at this location, with three subpopulations showing additional mutations (clones 2, 3, and 10).
(B) VarScan2 BCL2 results at 0.5% threshold for locations covered by BCL2 ROA 447 to 510, indicating reference location (a-0), associated base change
and frequencies in the range of 1.06% to 6.60%. Note how ancestral or coincidental mutations are aggregated in the frequency determination,
confounding the use of similar frequencies to identify subclonal specific mutation patterns. (C) This dendrogram was generated from
DDIMAP dictionary: BCL2 ROA 477 to 510 using MEGA6 [50], a freely-available online tool for evaluating evolutionary relationships based
on sequence analysis. The evolutionary history was inferred by using the Maximum Likelihood method based on the Tamura-Nei model [51]. The tree
with the highest log likelihood (-142.0600) is shown. Initial tree(s) for the heuristic search were obtained automatically by applying Neighbor-Join and
BioNJ algorithms to a matrix of pairwise distances estimated using the Maximum Composite Likelihood (MCL) approach, and then selecting the
topology with superior log likelihood value. The tree is drawn to scale, with branch lengths measured in the number of substitutions per site.

VarScan2 report for this same region of BCL2 (Figure 9B)
identifies most of the same base changes found by
DDiMAP except for the two locations that have two dif-
ferent mutations at one site (Figure 9A, blue circled
letters). Frequency-based determination of variant alleles
is difficult due to the elimination of allele specific SNV
correlation by mpileup [53] and similar analyses which

consider SNV calls at each location independently. Add-
itionally, evolutionary relationships are confounded by
aggregation of frequencies from all identical SNV calls
at a single location, as seen with the C > G mutation at
location ‘K, called by VarScan2 as 1.06% frequency but
identified as part of two separate clones by DDiMAP
(clones 2a and 6), each at 0.51%. These clones are not
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related, as the C > G is the sole mutation in clone 6 (line
9) but is the ongoing fifth mutation in clone 2 (line 3).
This C at position ‘K is the targeted C of the AID motif,
WRCY, and is thus more likely to be identically mutated
in independent clones. Maintenance of SNVs in read se-
quence context is a powerful tool for VAF analysis, as the
frequency of alleles is not obscured by aggregation of site-
based frequencies, related alleles are cleanly delineated so
their relationship can be readily observed, and determin-
ation of ongoing mutational activity on the current dom-
inant clone can be clearly documented.
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Visualizing development of diversity

Phylogenic analysis of regional sequence variation ob-
tained from ROA dictionary output, coupled with word
frequency data, provide an historical perspective on
tumor subclone development, as well as a minimal estimate
of tumor heterogeneity. Both iteration and use of alternate
mapping algorithms bring clarity and enrich the complexity
of dendrograms from a region with significant muta-
tions, as seen in FL-128 BCL2 ROA 171 to 204 (Figure 10).
DDIMAP analysis of single round BFAST mapping, fully
iterated BFAST mapping and alternating mapping with

Reference
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Figure 10 High resolution dendrograms generated from iterated ROA dictionaries provide historical perspective on tumor subclone
development. These dendrograms from verified words in FL-128 BCL2 ROA 171 to 204 dictionary depict an inferred developmental relationship
between putative tumor subclones, with nodes depicting observed verified word sequences and lines representing mutational differences
between words. The relative population fraction is reflected by node circle area and genetic distance from the normal reference sequence by
horizontal displacement. Mutations are noted by position and called SNV. (A) Seven clones are found in specimen 128 using BFAST mapping
without iteration in which an ambiguous developmental history of the most frequent clone (MFC) is seen along with a single descendant.

Mapped coverage is 14,623 reads. (B) Five clones are found in specimen 128 by iterating BFAST to convergence (4 mapping iterations) in which
the most frequent clone has two low frequency descendants. Mapped coverage is 15,492 reads. (C) Seven clones are found in specimen 128 by
mapping first with BFAST, followed by SHRIMP2, and then iterating BFAST to convergence (BSBn method, 4 mapping iterations) in which a 5.7% clone
and its 0.3% descendant containing mutations at two adjacent positions (202 and 203) were revealed by SHRIMP2. Mapped coverage is 15,594 reads.
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both BFAST and SHRiMP2, followed by BFAST to conver-
gence all found three base changes between human gen-
ome reference sequence and the MFC in this region,
along with continued evolution from the MFC. The dic-
tionary from a single round of BFAST mapping generated
an ambiguous dendrogram for this population, as four dif-
ferent ‘putative ancestral’ word sequences to the most fre-
quent clone were observed, denoted as nodes connected
by lines identified by the mutational difference between
words (Figure 10A). Iteration to convergence using BEAST
alone allowed these apparently parallel mutation pathways
to coalesce into a single ancestral tree, bringing clarity to
the developmental pathway (Figure 10B). Equally striking
is the effect of BSB,,, through the recognition of a mutation
doublet by SHRiMP2 in the second iteration, identifying a
new descendant branch off the MFC that occurs at a much
higher proportion than the other descendants, suggesting
either an earlier occurrence or a relatively faster growth
rate of this subclone (Figure 10C). While word sequence
and frequency analysis provide an inferred development
pathway, it is important to note that not all mutational
events may be observed, as reversion to reference sequence
is possible in mutational hot-spots, and if a specific base
change generates a mutational motif, the probability of
additional mutations at that location will be increased.

Conclusions

The design goal for DDIMAP is to evaluate tumor hetero-
geneity in follicular lymphoma, a cancer of B-lymphocytes
that is well characterized with regard to ongoing AID-
mediated somatic hypermutation of IGH, with the long-
term objective of classifying FL based on their mutational
patterns. We found that BCL2, followed by BCL6, showed
the most consistent and differential aSHM signal in FL
specimens, with SN'Vs in 12/12 FL cases and 0/3 in the re-
active LN controls. The range of SNVs in BCL2 varied
widely, from 2 to 101 per patient; raising the possibility
that overall BCL2 aSHM rate might be clinically inform-
ative through risk stratification [54]. BCL6 shows a similar
pattern, but with a much lower overall aSHM rate, in the
range of 2 to 39 SNV per patient. No other genetic regions
evaluated had either the consistency or differentiation po-
tential of these two gene regions (see Additional file 4:
Table AF1). We evaluated the SNV patterns in BCL2 to
investigate the distribution of SNV frequencies relative to
the MFC. The frequencies associated with MFC varied
from 10% to 45% (median of 20%) and in all but one case
(FL-134) the majority of SNVs in any given tumor had fre-
quencies consistent with their current MFC. Several FL
specimens (5/12) had no SNVs outside the MFC; three
with a low overall mutation rate (<0.7%) and two with a
different type of FL (Grade 3 vs. Grades 1 and 2), suggest-
ive of a possible biological aspect to this finding [54]. Of
the remaining FL specimens, the vast majority (over 80%)
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of the SNVs outside the MFC were found at <3%, while
over half were <1% (see Additional file 4: Table AF1). This
emphasizes the need for robust identification of SNVs at
these levels to detect tumor heterogeneity, and that previ-
ous estimations of diversity may be artificially low due to
technical limitations [48].

Maintaining the variant calls as words is the key com-
ponent enabling many aspects of DDiMAP. First, it can
be used as an alternate approach to model-free filtering
of instrumental noise by taking advantage of the correl-
ation of true mutations along an allele while eliminating
the high level of uncorrelated noise typical of massively
parallel sequence data. Second, these regional allele spe-
cific words can be used to objectively identify and quantify
tumor subpopulations, enabling regional genetic sequence
assembly to describe the development of tumor subpopu-
lations on a fine scale, an illuminating view of subpopula-
tion dynamics. Additionally, assembled overlapping words
can be used to augment reference sequence files for itera-
tive remapping.

While iterative remapping is not an essential compo-
nent of DDIMAD, it is critical to achieve adequate map-
ping of reads from regions with dense mutation loads. A
major concern with iteration was the possibility of gen-
erating false SNV calls, especially at low frequencies. We
have several lines of evidence this did not occur, including
multiple genetic regions from all patient samples that were
found to be free of SNV calls following multiple rounds of
iteration and a consistent bias in both high and low fre-
quency SNVs to occur at an AID motif, indicating that both
represent a biological process. Additionally, in the vast ma-
jority of cases, the SNV calls made within a ROA were in-
ternally consistent with an evolutionary progression of
mutations, allowing the development of dendrograms util-
izing all verified reads. This would not be the case if low
level mutations were randomly generated false calls.

Mutational hot spots, due to aSHM or other causes of
katageis, are prime regions for analysis of tumor hetero-
geneity and determination of ongoing mutation. We
identified problems with aligning reads to these regions as
a significant limiting factor in SNV analysis of these areas
and that mapping failure was found in both SOLIiD and
[lumina platforms using multiple aligners. Additionally,
the majority of subpopulations are defined by SNVs
present at low frequencies (<3% in FL) requiring highly
sensitive variant detection in these problematic areas.
DDIiMAP, based on analysis of variant sequence patterns,
provides the necessary tools overcome both these prob-
lems: partial sequence assembly for both noise reduction
and SNV calling, and generation of additional allele frag-
ments for iterative remapping. While we have evaluated
this approach for its utility in cancer research, it readily
applicable in any mixed population analysis distinguished
by clustered changes in genomes.
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Additional files

Additional file 1: Enhanced Methodology: is an enhanced
methodology section which includes details on DDiMAP adjustable
parameters, SNV calling, simulated data generation, and sample
preparation information.

Additional file 2: DDIMAP User Guide: is a User Guide for the
sample software [35].

Additional file 3: Reference sequences: contains the reference
sequences, including Sanger sequence of the specimen specific IGH.
Additional file 4: Supplemental Data: contains supplemental data
tables and figures.

Additional file 5: SNP analysis: contains worksheets listing all SNPs
detected in the FL-SOLID data.
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