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Abstract

Background: There has been considerable progress in the management of acute lymphoblastic leukemia (ALL) but
further improvement is needed to increase long-term survival. The thiopurine agent 6-mercaptopurine (6-MP) used
for ALL maintenance therapy has a key influence on clinical outcomes and relapse prevention. Genetic inheritance
in thiopurine metabolism plays a major role in interindividual clinical response variability to thiopurines; however,
most cases of thiopurine resistance remain unexplained.

Methods: We used lymphoblastoid cell lines (LCLs) from healthy donors, selected for their extreme thiopurine
susceptibility. Thiopurine metabolism was characterized by the determination of TPMT and HPRT activity. We
performed genome-wide expression profiling in resistant and sensitive cell lines with the goal of elucidating the
mechanisms of thiopurine resistance.

Results: We determined a higher TPMT activity (+44%; P = 0.024) in resistant compared to sensitive cell lines,
although there was no difference in HPRT activity. We identified a 32-gene transcriptomic signature that predicts
thiopurine resistance. This signature includes the GTPBP4 gene coding for a GTP-binding protein that interacts with
p53. A comprehensive pathway analysis of the genes differentially expressed between resistant and sensitive cell
lines indicated a role for cell cycle and DNA mismatch repair system in thiopurine resistance. It also revealed
overexpression of the ATM/p53/p21 pathway, which is activated in response to DNA damage and induces cell
cycle arrest in thiopurine resistant LCLs. Furthermore, overexpression of the p53 target gene TNFRSF10D or the
negative cell cycle regulator CCNG2 induces cell cycle arrest and may also contribute to thiopurine resistance.
ARHGDIA under-expression in resistant cell lines may constitute a novel molecular mechanism contributing to thiopurine
resistance based on Rac1 inhibition induced apoptosis and in relation with thiopurine pharmacodynamics.

Conclusion: Our study provides new insights into the molecular mechanisms underlying thiopurine resistance and
suggests a potential research focus for developing tailored medicine.
Background
Approximately 6,000 patients are diagnosed with acute
lymphoblastic leukemia (ALL) each year in the USA, in-
cluding about two-thirds who are younger than 20 years,
making ALL the most common malignancy in children
and adolescents [1]. Clinical outcomes of childhood ALL
have improved considerably over time, and the overall
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5-year event-free survival rate now reaches 80%, and
even 90% when treatment strategies are selected based
on the biological features of the leukemic cells and the
pharmacodynamic and pharmacogenomic characteris-
tics of the patient [1-3]. Nevertheless, this leaves
about 20% of patients who experience relapses with
far lower survival rates that decrease with each re-
lapse [4]. Furthermore, the outcomes are less favor-
able in adults, whose complete recovery rates rarely
exceed 40% and who exhibit greater resistance to,
and poorer tolerance of, therapeutic agents compared
to children [2].
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The treatment of ALL relies on combination chemo-
therapy. One of the cornerstone drugs for both intensifi-
cation and maintenance therapy is the thiopurine agent
6-mercaptopurine (6-MP) [2]. Effective maintenance
therapy is essential for stabilizing the remission by sup-
pressing the re-emergence of drug-resistant clones via a
continuous reduction in the burden of residual leukemic
cells. Recent studies have shown that, even when mul-
tiple drugs are used, the response to single drugs exerts
a major influence on the relapse risk and that 6-MP is
among the drugs with the greatest influence on remis-
sion maintenance [5]. Therefore, elucidating the molecu-
lar basis of 6-MP resistance is crucial to relapse
prediction, which allows optimization of the treatment
strategy [6].
Genetic inheritance in thiopurine metabolism plays a

major role in the interindividual variability that charac-
terizes the clinical response to thiopurine agents [7,8].
Extensive pharmacogenetic studies have focused on the
enzymes involved in thiopurine metabolism, such as
thiopurine S-methyltransferase (TPMT), hypoxanthine
phosphoribosyltransferase (HPRT), and inosine triphos-
phate pyrophosphatase (ITPA). These studies have shed
light on the toxicity of thiopurine agents but have pro-
vided little information on thiopurine resistance [7-10].
To date, except rare cases of HPRT-deficiency or ultra-
high TPMT activity, which impair the production of
active thiopurine metabolites, most cases of thiopurine
resistance remain unexplained [11-16].
Transcriptomic analysis is a powerful tool for charac-

terizing susceptibility and resistance to drugs [17,18].
This approach can uncover previously unrecognized
mechanisms of drug response and provides information
on the associated biological pathways. Lymphoblastoid
cell lines (LCLs) constitute a well-established pharmaco-
genomic model for genome-wide expression profiling
[18,19]. Although there has been some debate about bio-
logical noise related to confounding factors, LCLs have
been used to assess gene sets involved in responses to
anticancer drugs such as bleomycin, gemcitabine, cyto-
sine arabinoside, and 5-fluorouracil [20-24]. A gene set
analysis of a vast panel of LCLs from different ethnic
groups was conducted to assess associations between
basal gene expression and thiopurine susceptibility [22].
The 3′,5′-cyclic-AMP phosphodiesterase activity and
the γ-aminobutyric acid catabolic process were found to
be involved in the thiopurine response [22]. However,
this study was designed to evaluate gene expression pro-
files associated with a broad range of thiopurine suscep-
tibility levels rather than with thiopurine resistance.
Here, we investigated the molecular basis of thiopurine

resistance by exploring the whole-genome basal tran-
scriptomic profiles involved in 6-MP resistant and sensi-
tive phenotypes of LCLs originating from unrelated
healthy individuals and selected by in vitro growth inhib-
ition assays. We then used these transcriptomic profiles
to identify genes predicting thiopurine resistance and
relevant 6-MP metabolic pathways.

Methods
Cell lines
We screened 53 LCLs originating from consenting unre-
lated healthy adults and obtained via a collaboration
program with the National Laboratory for the Genetics
of Israeli Populations (NLGIP), Tel-Aviv University,
Israel [25,26]. Six additional LCLs from male patients
with the recessive genetic disease Lesch-Nyhan syndrome
were obtained from the biobank of the Biochemistry and
Molecular Biology Department of the Cochin University
Hospital, Paris, France. They served as positive phenotypic
controls for thiopurine resistance, as Lesch-Nyhan syn-
drome is characterized by HPRT deficiency. Cells were
cultured as described elsewhere [25].

Ethical conduct of research
The authors state that they have obtained appropriate
institutional review board approval for the collection of
these samples in accordance with local legislation, or
have followed the ethical principles outlined in the
Declaration of Helsinki for experimental investigations.
In addition, informed written consent has been obtained
from the healthy donors and patients, or their guardians,
involved in this study.

Material
Roswell Park Memorial Institute medium, L-glutamine,
and antibiotics for cell culture were purchased from Life
Technologies (Carlsbad, CA, USA), fetal bovine serum
from GE Healthcare (Little Chalfont, UK), and Falcon
cell culture materials from Fisher Scientific (Waltham,
MA, USA). Drugs (6-MP, azathioprine and 6-thioguanine
[6-TG]) were purchased from Sigma-Aldrich (St. Louis,
MO, USA). Stock solutions (concentration, 5 mM) were
prepared in 0.1 N sodium hydroxide and diluted in
phosphate-buffered saline (PBS) to working solutions con-
taining at least 25-fold the final tested concentrations.

Cell proliferation assay
Drug concentrations for assessing growth inhibition
were 2 μM for 6-MP, 5 μM for azathioprine, and 0.5 μM
for 6-TG. These concentrations were close to the
mean half-maximal inhibitory concentration (IC50)
and allowed optimal LCL classification [25]. The cells
were diluted to 200,000 /mL then incubated in Falcon
96-well plates (Waltham, MA, USA) in a volume of
200 μL (40,000 cells/well) for 3 days, with drug working
solutions added as needed in three replicates, and six
replicates for the controls (cells treated with 20 μL PBS).
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After 72 h, the tetrazolium derivative MTS reagent
(CellTiter 96® AQueous One Solution Cell Proliferation
Assay, Promega, Madison, WI, USA) was added (volume,
40 μL) to each well, including blank wells containing only
PBS solution. After further incubation for 4 h, absorption
at 490 nm was measured using a microplate reader spec-
trophotometer (Safir™ Tecan, Männedorf, Switzerland),
which is ascribable to the living cells present in the
medium. Growth inhibition relative to control was
assessed for each cell line at least twice on two dif-
ferent batches from different cell vials thawed from
the liquid nitrogen stock. Reproducibility of drug sus-
ceptibility for repeated thawing cycles was high, as previ-
ously reported [25].

Basal cell growth rate
Basal cell growth rates were estimated for each cell line
during phenotyping experiments. After 72 h of the pro-
liferation assay, cell density (Nt) was estimated in PBS
control wells using MTS reagent, as described above,
and calibration curve. The basal cell growth rate (r) was
calculated using the following formula appropriate for
the usual exponential kinetics of cell growth after a
defined time (t): Nt =N0.2

tr.

Nucleic acid extraction and quantification
Nucleic acids were extracted from cells incubated under
optimal growth conditions with no added drugs. DNA
and total RNA were extracted from cell pellets using
QiAmp® DNA miniKit and miRNeasy® miniKit (Qiagen,
Venlo, The Netherlands), respectively, according to the
manufacturer’s instructions. DNA was quantified using an
ND-1000 spectrophotometer (Nanodrop technologies,
Wilmington, DE, USA). RNA quality and quantity were
assessed using the 2100-Bioanalyzer (Agilent Technologies,
Santa Clara, CA, USA).

Microarray experiment
After validation of RNA quality (RIN score ≥8), 50 ng of
total RNA was reverse-transcribed using the Ovation
PicoSL WTA System V2 (NuGEN Technologies, West
Cumbria, UK), according to the manufacturer’s instruc-
tions. Biotin-labelled cDNA was then hybridized to
GeneChip® Human Gene 2.0ST microarrays (Affymetrix,
Santa Clara, CA, USA) at 45°C for 17 h. The microarrays
were washed on the fluidic station FS450 according to
the specific manufacturer’s protocols and scanned using
the GCS3000 7G (Affymetrix). The scans were then ana-
lyzed with Expression Console software (Affymetrix) to
obtain raw data (.cel files) and metrics for quality con-
trols. Examination of these quality-control metrics and
of raw-data distribution showed no outlier samples.
Data were normalized using the Robust Multi-array

Average (RMA) algorithm in R software with the custom
chip description file (CDF) version 17.0.0 [27]. Data are
available on the NCBI Gene Expression Omnibus (GEO)
via the accession number GSE61905 [28].
Differentially expressed gene enrichment analysis was

carried out using the DAVID bioinformatics resources
(NIH), based on gene ontology (GO) biological pro-
cesses, and Ingenuity Pathways Analysis (Ingenuity®
Systems, USA) [29-31]. To identify a transcriptomic sig-
nature predicting thiopurine resistance, we applied the
‘nearest shrunken centroids’ method using the Prediction
Analysis of Microarrays (PAM) R package, which identifies
predictive classifier genes [32].

Microfluidic-based RT-qPCR assay
Microfluidic-based quantitative PCR assay was per-
formed to validate the differential microarray expression
patterns of the molecular signature genes. Transcripts
were quantified for 40 genes of interest and four refer-
ence genes (GUSB/GAPDH/RPL13A/B2M). The RT-
qPCR assay is detailed in the Additional file 1: Data S1
and Table S2.

Intracellular ATP assay
Intracellular ATP was assayed on the day the cell prolif-
eration assay was performed. Cell samples were kept on
ice until the assay, as ATP is unstable. The assay was
performed using the ATP Bioluminescence Assay Kit
HS II (Roche, Germany) according to the manufac-
turer’s instructions. Briefly, luminescence measured in
the microplate wells was related to intracellular ATP
after the addition of luciferase and D-luciferin. Intracel-
lular ATP concentrations were calculated using a cali-
bration curve.

EBV and mtDNA copy number
Copy number variations (CNVs) of Epstein-Barr virus
(EBV) and mitochondrial (mt) DNA were determined in
the LCL DNA samples using TaqMan® CNV Assays (Life
Technologies, Carlsbad, CA, USA). Custom TaqMan®
assays were designed using Primer 3; primer and probe
sequences are reported in Additional file 1: Table S3.
The EBV CNV assay interrogated a 66-bp fragment at
the DNA polymerase locus multiplexed with an 87-bp
fragment assay from RNAse P (RPPH1 gene) as an in-
ternal reference, using the VIC® dye-labeled TAMRA™
probe and sequence-specific forward and reverse
primers (Applied assay ID 4403328). The mtDNA copy
number assay examined a 72-bp fragment at the ND2
locus multiplexed with a 90-bp fragment assay from
NRF1 gene as an internal reference. Final concentrations
for EBV primers, EBV probe, mtDNA primers, mtDNA
probe, NRF1 primers and NRF1 probe were 90 nM,
250 nM, 30 nM, 250 nM, 900 nM, and 250 nM, re-
spectively. RT-qPCR TaqMan® reactions were performed



Figure 1 Growth inhibition by 6-MP (2 μM) in sensitive, resistant,
and HPRT-deficient cell lines. **Mann Whitney test, P <0.01.
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in 384-well plates (reaction volume, 10 μL) using 10 ng
of DNA template (concentration, 5 ng/μL) and 5 μL of
TaqMan® Genotyping Master Mix, according to the man-
ufacturer’s protocol. Equal efficiency of amplification was
observed for each assay in the multiplex reaction.
Gene CNVs were determined using the previously

described 2-ΔΔCt method [33]. The absolute EBV copy
number was related to a calibrator DNA template from
the Burkitt lymphoma-derived Namalwa cell line
(ECACC, UK), which was determined by fluorescence
in-situ hybridization to have integrated EBV copies in
the diploid genome [34]. The relative mtDNA copy
number was related to the sample having the highest Ct
(that is, the lowest copy number).

Intracellular enzymatic activities
TPMT activity
TPMT activity was assessed using the previously described
reverse-phase high-performance liquid chromatography
(HPLC) method therefore adapted for lymphocyte pellets
[35]. The pellets were lysed by two freezing/thaw cy-
cles in 200 μL PBS. Assay results are reported in pmol
of 6-methylmercaptopurine formed per hour and per mg
of total protein.

HPRT activity
HPRT activity was measured as the rate of inosine
monophosphate (IMP) production, using the Precice® kit
(Novocib, Lyon, France). Briefly, as described elsewhere,
the assay is based on the effect of IMP-dehydrogenase,
which catalyzes the irreversible oxidation of IMP to
xanthosine monophosphate while simultaneously redu-
cing NAD to NADH2, whose production is monitored
directly at 340 nm using a microplate reader spectropho-
tometer [36]. Assay results are reported in nmol of IMP
formed per hour and per mg of total protein.

Statistical analysis
Data are described as mean ± standard error (SEM). To
compare 6-MP resistant and sensitive cell lines, we used
the non-parametric Mann–Whitney t test. Correlations
were assessed using the Spearman rs test.
Gene expression values were analyzed using un-

supervised hierarchical clustering and principal com-
ponent analysis (PCA). Then, to identify differentially
expressed genes, we performed the parametric Student
t test and computed fold-changes for the expression of
each gene in thiopurine resistant versus sensitive cell
lines. Genes associated with P values <0.01 were se-
lected for functional bioinformatics analyses using
DAVID and Ingenuity®. Statistical analyses were car-
ried out using Partek® Genomics Suite™ (Partek Inc.,
St. Louis, MO, USA) and Prism 5.0 (GraphPad, San Diego,
CA, USA).
Results
LCL selection and characterization
The relative susceptibility to growth inhibition by thio-
purine drugs was determined for 53 LCLs from healthy
adults. Growth inhibition by 6-MP was closely correlated
to growth inhibition by azathioprine and by 6-TG
(rs = 0.95 and rs = 0.81, respectively; P <0.0001) (Additional
file 2: Figure S1). Growth inhibition by 6-MP was about
18 times greater for the most sensitive than for the
most resistant cell lines (10th to 90th percentile growth
inhibition, 12.4% to 42.6%). We performed a genome-
wide expression analysis of 11 cell lines with an
extreme phenotype in terms of 6-MP susceptibility,
selected among the 53 LCLs: five resistant and six
sensitive, with mean growth inhibition by 6-MP of
11.8 ± 2.1% and 39.8 ± 2.3%, respectively (P = 0.008)
(Figure 1). The LCLs from the six patients with Lesch-
Nyhan syndrome were almost completely resistant to
thiopurines (mean growth inhibition by 6-MP, 1 ± 2%)
(Figure 1). We verified that these cell lines carrying
an inherited HPRT deficiency exhibited undetectable
HPRT activity (mean: 0.2 ± 2 nmol/h/mg protein).
Resistant cell lines showed a trend toward a lower basal

growth rate per day compared to sensitive cell lines
(0.3 ± 0.06 vs. 0.5 ± 0.04, respectively; P = 0.052). Moreover,
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TPMTactivity was about 44% higher in resistant compared
to sensitive cell lines (425 ± 20 vs. 295 ± 24 pmol/h/mg
protein; P = 0.024). None of the other study parameters
(EBV copy number, mtDNA copy number, intracellular
ATP level, and HPRT activity) differed significantly be-
tween 6-MP resistant and sensitive cell lines (Table 1).

Micro-array analysis
PCA graphically discriminated between the 6-MP resist-
ant and sensitive 11 cell lines. The first three compo-
nents explained 37.6% of the total variance (Additional
file 3: Figure S2).
Of the 23,786 genes analyzed in the micro-array, 943 and

210 had different basal expression levels in the two groups
at P values of <0.01 and <0.001, respectively. Of the 210
genes significantly different at the P < 0.001 level, 84 were
upregulated and 126 downregulated in the resistant com-
pared to the sensitive cell lines (Additional file 1: Table S4).

Transcriptomic signature
For identifying the most relevant genes that were differ-
entially expressed in 6-MP resistant compared to sensi-
tive cell lines, we performed PAM. This shrunken
centroid algorithm identified 40 genomic loci that sorted
the cell lines between resistant and sensitive, with a
cross-validation error rate of 0.09 (Additional file 1:
Table S5). To validate the expression signature deter-
mined from the micro-array, we performed RT-qPCR.
Among the 40 genomic loci, seven were related to un-
known transcripts, non-coding RNA, or unknown pro-
teins and were consequently not selected for RT-qPCR.
Furthermore, we were not able to amplify one gene
(CNR1). The remaining 32 genes were validated for the
transcriptomic signature using GUSB as the reference
gene (rs = 0.87; P <0.0001) (Figure 2). These results were
reproducible using the three other reference genes,
GAPDH, RPL13A, and B2M (data not shown).

Comprehensive pathway analysis
The analysis of the GO biological processes involved in
differential gene expression (P <0.01) led to 119 terms
Table 1 Characteristics of lymphoblastoid cell lines

Resistant
(n = 5)

Sensitive
(n = 6)

P

Growth inhibition by 6-MP (%) 11.8 ± 2.1 39.8 ± 2.3 0.008

Basal growth rate per day 0.3 ± 0.06 0.5 ± 0.04 0.052

EBV copy number (absolute) 110 ± 35 47 ± 11 0.17

mtDNA copy number (relative) 1.5 ± 0.2 2.4 ± 0.3 0.08

Intracellular ATP level (μmol/106 cells) 23.9 ± 2.6 19.0 ± 1.8 0.25

TPMT activity (pmol/h/mg protein) 425 ± 20 295 ± 24 0.024

HPRT activity (nmol/h/mg protein) 621 ± 12 576 ± 57 1.0
each containing at least five genes. After a Benjamini
correction adjusted at a significance level (0.01/119), we
found 10 GO terms, including 122 single genes, involved
in the phenotype difference (Table 2; Additional file 1:
Table S6). Half these terms were involved in cell prolifera-
tion functions and the other half chiefly in RNA processes.
Ingenuity® predicted that nine upstream transcriptional
regulators were activated (TP53, CD24, NUPR1, CDKN1A)
or inhibited (FOXM1, FLI1, MYC, CSF2, CCDN1) in resist-
ant cell lines (P <0.01). These regulators targeted 128 of
the differentially expressed genes (Table 3). Furthermore
18 canonical pathways played a significant biological role
in thiopurine resistance (P <0.01) (Figure 3, Additional
file 1: Table S7 and Table S8).

Discussion
Using a pharmacogenomic LCL-based model, we per-
formed a comprehensive analysis of molecular resistance
to thiopurines. To our knowledge, we identified for the
first time a 32-gene transcriptomic signature predicting
thiopurine resistance. Of the 32 genes, 22 were upregu-
lated and 10 downregulated. Our transcriptomic analysis
of untreated and phenotypically selected cell lines identi-
fied potential biomarkers for thiopurine resistance and
suggested metabolic pathways that might constitute
therapeutic targets for overcoming thiopurine resistance.

Model validity
Our model based on LCL growth inhibition is of interest
for studying thiopurine resistance, as thiopurines are
used to target lymphoblasts in patients with ALL. More-
over, in autoimmune diseases, in which thiopurine ther-
apy also plays a major role, lymphocytes are the target
cells and lymphocyte apoptosis must be achieved to
induce immunosuppression [37]. Growth inhibition by
6-MP was closely correlated to growth inhibition by aza-
thioprine and by 6-TG. A proof-of-concept study based
on a panel of LCLs showed high goodness-of-fit values
for linear regression plots comparing growth inhibition
profiles of paired drugs acting via a shared pathway [25].
Thus, cell lines resistant to 6-MP were also resistant to
azathioprine and to 6-TG, indicating that our results on
6-MP resistance are likely to be representative of thio-
purine drugs. In addition, LCLs from patients with
Lesch-Nyhan syndrome, which lacked HPRT activity
because of a recessive X-linked gene defect, were com-
pletely resistant to thiopurines. This finding reflects
the inability of HPRT-deficient cells to bioactivate
thiopurines into active cytotoxic metabolites, mainly
6-thioguanine nucleotides [11,13]. The resistance pheno-
type of HPRT-deficient LCLs constitutes an appropriate
positive control for our in vitro model. Altogether, these
findings support the validity of our LCL-based pharmaco-
genomics model for studying thiopurine resistance.



Figure 2 Transcriptomic signature characterizing cell lines resistant to thiopurines. (A) Heatmap of the transcriptomic signature validated by qPCR
for resistant (orange) compared to sensitive (blue) cell lines. Overexpressed genes are in red and underexpressed genes in green. Fold-changes in
the relative expression of each gene are reported in Additional file 1: Table S5. (B) Validation by qPCR of the transcriptomic signature including 32
genes. Fold-changes in the relative expression of each of the 32 genes as determined using qPCR (X axis) and micro-array (Y axis), with GUSB as the
reference gene (rs = 0.87; P <0.0001).

Table 2 Gene ontology terms involved in the phenotypic difference between resistant and sensitive cell lines

GO ref GO term Genes (n) Fold enrichment P value Benjamini corrected
P value

GO:0022613 Ribonucleoprotein complex biogenesis 27 3.53 4.17E-08 9.26E-05

RNA processes

GO:0006396 RNA processing 52 2.24 9.74E-08 1.08E-04

GO:0034660 ncRNA metabolic process 29 2.97 4.99E-07 3.69E-04

GO:0042254 Ribosome biogenesis 20 3.86 8.66E-07 4.81E-04

GO:0034470 ncRNA processing 23 2.89 1.44E-05 3.99E-03

GO:0022402 Cell cycle process 49 2.04 3.45E-06 1.53E-03

Cell cycle

GO:0007049 Cell cycle 60 1.82 8.61E-06 3.18E-03

GO:0000279 M phase 33 2.36 1.08E-05 3.41E-03

GO:0022403 Cell cycle phase 38 2.16 1.54E-05 3.79E-03

GO:0000278 Mitotic cell cycle 35 2.23 1.91E-05 4.24E-03

Significance level Benjamini corrected P value <0.01.
List of genes represented by these terms is presented in Additional file 1: Table S6.
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Table 3 Upstream regulator analysis of the resistant compared to the sensitive cell lines

Symbol Description Regulator type Predicted activation
state

P value of overlap
(<0.01)

Target genes differentially expressed
in micro-array

FOXM1 Forkhead box M1 Transcription regulator Inhibited 4.71E-07 ATF2, BIRC5, BUB1B, CCNA2, CCNB1,
CDC25A, CDKN3, CENPA, CENPB,
FOXM1, GTSE1, MMP2, PLK1

TP53 Tumor protein p53 Transcription regulator Activated 6.41E-05 ACLY, ACTA2, APAF1, ATG10, BIRC5,
BTG1, BUB1B, CCNA2, CCNB1, CCNG2,
CDC25A, CDC25C, CDKN3, CHUK, CLPP,
CYB5A, DDB2, E2F1, EDA2R, EIF4G3,
FASN, FBXW7, GNL3, GTSE1, HBEGF,
HIF1A, HK2, IPO7, JMJD1C, KIF23, KPNA2,
MET, MMP2, NDC80, NPEPPS, NUP153,
OAT, ORAI2, PDK1, PIDD, PLK1, PSMD12,
PSME3, PVT1, RAD50, RAD54B, RBL2,
RFC3, RPS6KB1, SCO2, SFPQ, SGPL1,
SLC19A1, SPC25, SQLE, STARD4, TIMM44,
TLR6, TMEM97, TRIM28, UBE2C, USO1,
USP14, ZFP36L1

FLI1 Fli-1 proto-oncogene, ETS
transcription factor

Transcription regulator Inhibited 6.18E-04 DDX21, NIP7, NOL6, NOLC1, SNRPB, TCP1

MYC v-myc avian myelocytomatosis
viral oncogene homolog

Transcription regulator Inhibited 7.33E-04 ASNS, BIRC2, BUB1B, CCNA2, CCNB1,
CCNG2, CDC25A, CNBP, DCTPP1, DDB2,
DKC1, E2F1, FASN, FOXM1, FTH1, GOT1,
GTF2B, HIF1A, HK2, IPO7, ITGA6, MAT2A,
NOLC1, OAT, PDK1, PHF21A, PLK1,
SHMT2, SLC1A5, SLC3A2, SLC7A5,
SNRPD1, SPRR2G, TIMM23, TMEM126A,
TXNRD1, UBE2C

CD24 CD24 molecule Other Activated 8.97E-04 CHAC1, DNAJC13, JMJD1C, MBNL1,
RAD50, SCAF11, SFPQ, SPG11, USO1,
VPS13B, VPS13C

NUPR1 Nuclear protein, transcriptional
regulator, 1

Transcription regulator Activated 2.14E-03 BTG1, BUB1B, CCNA2, CDC25C, CDCA2,
CDCA8, CHUK, EGLN1, FUT11, GINS1,
GPCPD1, GTSE1, HBEGF, HILPDA,
HIST1H2AB/HIST1H2AE, HIST1H3A,
HK2, KDM3A, KIF23, MAT2A, MTFMT,
MTFR2, PDK1, PLK1, RAB7L1, RIMKLA,
RNU11, SPC25, UBIAD1, ZFP36L1, ZNF259

CDKN1A Cyclin-dependent kinase
inhibitor 1A (p21, Cip1)

Kinase Activated 2.36E-03 ACTA2, BIRC5, CCNA2, CCNB1, CDC25A,
CDC25C, FOXM1, PLK1, RBL2

CSF2 Colony stimulating factor 2
(granulocyte-macrophage)

Cytokine Inhibited 4.34E-03 BIRC5, BUB1B, CCNA2, CDC123, CDCA2,
CDCA8, CEACAM1, FOXM1, ITGAX,
MAT2A, PLK1, PPIF, SKA1, SLC1A5,
SPC25, TRIP13, UBE2C

CCND1 Cyclin D1 Other Inhibited 5.45E-03 BIRC5, BRWD1, CCNA2, CDCA2, CDCA8,
CENPN, E2F1, FOXM1, MTFR2, PLK1,
SPC25, STARD4, TBCK, TOR3A, TRIP13

Ingenuity® Pathway Analysis was used to determine the most relevant upstream regulators, according to target gene expressions in the micro-array. Changes are
expressed in resistant cell lines, using sensitive cell lines as reference.
The P value of overlap was used to rank the significance associated for each upstream regulator. The P value indicates the significance of the overlap between the
genes targeted by the upstream regulator in the database and the data from micro-arrays, without taking into account the regulation direction. The activation
state makes predictions about potential regulators by using information about the direction of gene regulation and can be used to infer the activation state of a
putative regulator. Results with a P value <0.01 are presented in this table.
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Targeted analysis of thiopurine metabolizing enzymes
The antiproliferative effects of the purine analogue 6-MP
are due to metabolites that have three mechanisms of
action: inhibition of de novo purine synthesis; cell cycle
arrest due to metabolite incorporation into DNA; and,
particularly in lymphocytes, increased apoptosis due to
Rac1 inhibition [8]. We first studied variations in the
main thiopurine-metabolizing enzymes known to influ-
ence the pharmacological response to thiopurine drugs.
We did not study xanthine oxidase, which is not present
in lymphocytes. HPRT activity was not significantly
different between resistant and sensitive cell lines.
Variations in HPRT activity have been reported to be
associated with thiopurine resistance and hematological



Figure 3 Top Ingenuity® canonical pathways enriched by genes that were significantly differentially expressed in resistant cell lines. The
Ingenuity® canonical pathway analysis associates the 943 gene dataset with the canonical pathways in Ingenuity’s Knowledge Base and returns
two measures of association: (1) a ratio of the number of genes from the list that maps to the pathway divided by the total number of genes
that map to the same pathway, and (2) a P value of the Fisher’s exact test for each pathway. Ingenuity® canonical pathways associated with a
P value <0.01 are presented.
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toxicity [13,38]. However, HPRT activity does not vary
widely within the general population and probably has lit-
tle influence on clinical outcomes [39]. By contrast, the
considerable interindividual variations in TPMT activity in
the general population, which are related to genetic poly-
morphisms, affect both the toxicity and the efficacy of
thiopurine agents [8]. Higher ALL remission rates have
been reported in patients with a decreased TPMT activity
[7]. Interestingly, TPMT activity was slightly higher in the
resistant than in the sensitive cell lines in our study. This
finding confirms the association between drug metabolism
and thiopurine susceptibility found in our LCLs, in keep-
ing with data from treated patients [7]. However, TPMT
expression levels were not significantly different between
6-MP resistant and sensitive LCLs, probably because
TPMT regulation is mainly post-translational [40,41].

Comprehensive pathway analysis
Transcriptomic analysis identified 210 genes that were
significantly upregulated or downregulated in resistant
cell lines. Our GO analysis of these genes showed that
10 GO terms were enriched in these genes, including
five related with the cell cycle, most notably the M
phase. Ingenuity® pathway analysis predicted CDKN1A
activation in resistant cell lines. CDKN1A encodes a po-
tent cyclin-dependent kinase (CDK) inhibitor, also called
p21WAF1/CIP1, which binds to and inhibits the cyclin-
CDK2 or -CDK4 complexes, preventing the phosphoryl-
ation of critical CDK substrates and blocking cell cycle
progression [42]. Thus, CDKN1A acts as a negative
regulator of cell cycle progression at G1. More specific-
ally, when located in the nucleus, p21WAF1/CIP1 controls
the cell cycle and DNA replication, whereas cytoplasmic
p21WAF1/CIP1 has been implicated in apoptosis inhibition
[42]. A study of human cancer cells showed that
increased p21WAF1/CIP1 levels, related to phos-
phatidylinositol 3-kinase (PI3K) pathway inhibition,
induced chemoresistance by causing a cell cycle delay
[43]. Moreover, resistance to another anticancer drug,
taxol, has been reported in breast-cancer cells exhibiting
upregulation of p21WAF1/CIP1 [44]. A recent study also
identified p21WAF1/CIP1 expression as a major factor in



Figure 4 Molecular insight into thiopurine resistance. Proposal
mechanisms and candidate biomarkers contributing to thiopurine
cellular resistance phenotype in lymphoblastoid cell lines.
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resistance to promising anticancer drugs acting within
the cell cycle [45]. The tumor-suppressor protein p53
tightly controls p21WAF1/CIP1, through which it mediates
the p53-dependent cell cycle G1-phase arrest in response
to a variety of stress stimuli. We found upregulation of
p53 target genes and of ATM, a p53 upstream regulator,
which is activated in response to DNA damage, to be re-
lated with thiopurine resistance. Moreover, p21WAF1/CIP1

mediates NUPR1-induced chemoresistance, and our
analysis predicted NUPR1 activation in resistant cell
lines [46].
Another p53 target gene is TNFRSF10D, which en-

codes tumor necrosis factor-related apoptosis-inducing
ligand receptor 4 (TRAILR4) and whose overexpression
was a component of the transcriptomic signature identi-
fied in our study. Increased TNFRSF10D expression has
been found to be associated with chemoresistance [47].
Taken in concert, these results suggest upregulation of
the ATM/p53/p21 DNA damage response pathway in
resistant cell lines, with resulting inhibition of the
cyclin-CDK2 or -CDK4 complexes and cell cycle arrest
(Additional file 4: Figure S3).
Furthermore, a study of the genome-scale protein-

interaction profile of p53 showed that GTPBP4 was a
p53 interactor involved in 60S ribosome biogenesis [48].
This nucleolar GTP-binding protein, whose downregula-
tion was a component of our transcriptomic signature in
resistant cell lines, has been reported to activate p53
when silenced [48]. Finally, in keeping with p53 activa-
tion, MYC inhibition, associated with cell cycle repres-
sion, was predicted in resistant cell lines [49].
Our canonical pathway analysis identified 18 signifi-

cant processes that were differentially expressed between
6-MP resistant and sensitive cell lines, among which at
least five were related to DNA repair in response to
damage, including ‘Role of CHK proteins in cell cycle
checkpoint control’ and ‘cell cycle: G2/M DNA damage
checkpoint regulation’. Many anticancer drugs acting as
antimetabolites require involvement of the DNA mis-
match repair (MMR) system to exert their cellular
responses [50]. The primary function of the MMR sys-
tem is to edit and repair DNA replication errors and
DNA damage [50]. Loss of MMR has been observed in a
variety of human cancers and is associated with resist-
ance to several anticancer agents such as etoposide,
cisplatin, carboplatin, and 5-fluorouracil [50]. Human
cancer cell lines lacking the MMR system were resistant
to high doses of 6-TG compared to MMR-proficient cell
lines [51]. A study established that cell cycle arrest in
G2-M after thiopurine treatment was mediated by
single-strand breaks in MMR-proficient cells [52]. In
keeping with these findings, a recent study showed that
high expression of PKCζ, a protein kinase believed
to stabilize the MMR protein MSH2, increased the
response to thiopurine therapy in pediatric patients with
ALL [53]. A characteristic of resistant cell lines demon-
strated by our transcriptomic analysis was a significantly
decreased expression of RFC3 and POLDIP2, both
known to interact with the MMR system and cell repli-
cation. Thus, MMR deficiency and, possibly, the expres-
sion levels of RFC3 and POLDIP2, may help to predict
thiopurine resistance. Furthermore, a study based on
MOLT-4 cell lines also suspected the role of alterations
in the MMR system in the resistance phenotype to
6-MP [54]. Moreover, an increase in induced muta-
tions after 6-TG treatment has been reported in
MMR-deficient cell lines [51]. In a study of 228 children
with ALL previously treated with anticancer agents in-
cluding thiopurines, CCNG2 under-expression was a risk
factor for treatment-related myeloid leukemia (t-ML)
[55]. CCNG2, a negative regulator of cell cycle progres-
sion independent from p53, is induced in cell cycle arrest
in response to DNA damage [56]. Alterations in CCNG2
expression may enhance cell cycle progression and con-
tribute to failure of the cells to respond to DNA-damage
stimuli that would otherwise promote exit from the cell
cycle; subsequently, the proliferation of cells carrying
misrepaired DNA may lead to leukemic transformation
[55]. Conversely, our resistant cell lines exhibited a high
level of CCNG2 expression that might stop the cell cycle
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at the G1/S phase, preventing the MMR system from
promoting thiopurine susceptibility and thereby contrib-
uting to thiopurine resistance.
Finally, we found under-expression of ARHGDIA,

encoding for Rho-GDP dissociation inhibitor alpha
(RhoGDIα) in resistant cell lines. RhoGDIα regulates
and sequesters in cytoplasm inactive GDP-bound forms
of RhoGTPase, including Rac1, a molecular target inhib-
ited by thiopurine nucleotides [57]. Thus, RhoGDIα pre-
vents RhoGTPase from being recruited at the cellular
membrane where it can be activated. Decreased ARHG-
DIA expression may therefore increase the amount of
potentially active Rac1, preventing effective Rac1 inhibition
by the thiopurine nucleotide 6-thioguanosine triphosphate
(6-TGTP). RhoGDIα thinly regulates RhoGTPase activa-
tion, involved in cellular processes and contributing to
tumor invasion and metastasis [57,58]. Moreover, loss of
RhoGDIα has been previously associated with tamoxifene
resistance [59]. This mechanism, related to thiopurine
pharmacodynamics, may contribute to thiopurine resist-
ance by reducing 6-TGTP induced apoptosis via Rac1 in-
hibition in lymphocytes [8]. It may represent an original
biomarker of thiopurine resistance.

Study limitations
The transcriptomic content of LCLs includes many
genes from diverse cellular pathways and has proven
valuable for studying genome-wide individual differences
in alternative mRNA splicing [60]. The reliability of the
association between genomic analysis results and drug
response phenotypes in LCL-based models deserves dis-
cussion. In vitro biological noise may limit the usefulness
of LCLs as a pharmacogenomics research tool [61]. Sev-
eral parameters measured in our study, including EBV
and mtDNA copy numbers, intracellular ATP level, and
basal cell growth rate, have been described as potential
confounding factors influencing the LCL drug response
phenotype [20,25,61,62]. These non-genetic variables
unrelated to the genomic status of the cell line can alter
growth inhibition. They are of major concern when
using LCLs produced from different EBV strains and
generated by different laboratories [25]. In our study,
however, all the LCLs came from a single biobank
(NLGIP) and were generated by a single lab using the
same stock of B-95 EBV-expressing marmoset cell line
[25]. Furthermore, our resistant and sensitive cell lines
exhibited no significant differences regarding the EBV
and mtDNA copy numbers or intracellular ATP levels
measured during growth inhibition experiments. These
parameters are thus unlikely to have affected our
transcriptomic analysis. However, we observed a trend
toward a lower basal cell growth rate in thiopurine-
resistant compared to thiopurine-sensitive cell lines.
Thus, thiopurine susceptibility may be, at least in part,
associated with the basal cell growth rate. This finding
has been previously observed in a mechanistic mathem-
atical modelling of 6-MP resistance [54]. As discussed
above, some of the 210 genes identified in our study
may be related to the cell growth rate and cell cycle.
When Elion and Hitchings synthesized 6-MP as a drug
for treating ALL, their goal was to selectively inhibit nu-
cleic acid synthesis in rapidly dividing cells such as
leukemic cells [63]. Thus, our study unveils molecular
pathways associated with the mechanisms of action of
thiopurines such as cell cycle arrest upon incorporation
of thioguanine nucleotides.

Conclusion
In conclusion, our study using an LCL-based model
identified a transcriptomic signature of thiopurine resist-
ance. We used a well-established pharmacogenomics
approach involving transcriptomic profiling of basal
mRNA in a cell-line model, taking advantage of the extra
power afforded by analyzing extreme phenotype cell
lines [64,65]. Thus, genome-wide transcriptomic analysis
of LCLs coupled with drug susceptibility phenotyping
can identify novel candidate genes and pathways that
may help to explain individual response to thiopurine
drugs (Figure 4). Our study provides new insights into
the molecular mechanisms underlying thiopurine resist-
ance suggesting potential research focus for developing
tailored medicine.
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Additional file 2: Figure S1. Correlations between growth inhibitions
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