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Widespread intron retention diversifies
most cancer transcriptomes
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Abstract

Background: Somatic mutations affecting components of the RNA splicing machinery occur with high frequencies
across many tumor types. These mutations give rise to distinct alterations in normal splice site and exon
recognition, such as unusual 3′ splice site preferences, that likely contribute to tumorigenesis.

Methods: We analyzed genome-wide patterns of RNA splicing across 805 matched tumor and normal control
samples from 16 distinct cancer types to identify signals of abnormal cancer-associated splicing.

Results: We found that abnormal RNA splicing, typified by widespread intron retention, is common across cancers
even in the absence of mutations directly affecting the RNA splicing machinery. Almost all liquid and solid cancer
types exhibited frequent retention of both alternative and constitutive introns relative to control normal tissues. The
sole exception was breast cancer, where intron retention typified adjacent normal rather than cancer tissue.
Different introns were preferentially retained in specific cancer types, although a small subset of introns enriched for
genes encoding RNA splicing and export factors exhibited frequent retention across diverse cancers. The extent of
intron retention correlated with the presence of IDH1 and IDH2 mutations in acute myeloid leukemia and across
molecular subtypes in breast cancer. Many introns that were preferentially retained in primary cancers were present
at high levels in the cytoplasmic mRNA pools of cancer cell lines.

Conclusions: Our data indicate that abnormal RNA splicing is a common characteristic of cancers even in the
absence of mutational insults to the splicing machinery, and suggest that intron-containing mRNAs contribute to
the transcriptional diversity of many cancers.
Background
The discovery of high-frequency mutations affecting
components of the RNA splicing machinery is one of
the most unexpected results of cancer genome sequen-
cing. ‘Spliceosomal mutations’ are enriched in diverse
diseases, including myelodysplastic syndromes, lymphoid
leukemias, and solid tumors of the lung, breast, pan-
creas, and eye, and most commonly cause specific mis-
sense changes to the SF3B1, SRSF2, and U2AF1 proteins
[1–10]. Mechanistic studies revealed that U2AF1 muta-
tions alter the preferred 3′ splice site sequence both
in vivo and in vitro, thereby influencing genome-wide
recognition of alternative and constitutive 3′ splice sites
[11–13]. SRSF2 mutations similarly alter interactions
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between SRSF2 and pre-mRNA, resulting in altered exon
recognition that promotes dysplastic hematopoiesis [14].
In addition to the direct genetic link between abnor-

mal RNA splicing and tumorigenesis provided by point
mutations affecting the spliceosome, indirect evidence
suggests that important differences distinguish RNA
splicing in normal versus cancerous cells even in the ab-
sence of these mutations. Small molecules that inhibit
splicing have antitumor activity [15, 16]; the SF3b com-
ponent PHF5A is differentially required for constitutive
splicing in glioblastoma versus normal neural stem cells
[17]; RNA splicing is reportedly noisier in cancers than
normal cells [18]; increased intron retention is associ-
ated with SETD2 mutations in kidney cancer [19] and
castration resistance in prostate cancer [20]. These and
other studies together suggest that common RNA pro-
cessing differences may distinguish cancer and normal
cells irrespective of tissue of origin. However, this
hypothesis has not been systematically tested.
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Here, we took advantage of the comprehensive tran-
scriptome data produced by The Cancer Genome Atlas
(TCGA) to identify large-scale differences in RNA spli-
cing between tumor and normal control samples across
16 distinct cancer types. While we observed no obvious
biases in cassette exon recognition or 5′ or 3′ splice site
recognition, almost all analyzed cancer types exhibited
increased levels of intron retention relative to normal
controls. The sole exception was breast cancer, for which
intron retention characterized normal breast rather than
cancer samples. Our results indicate that intron reten-
tion is a common correlate of tumorigenesis, and
suggest that an abundance of intron-containing mRNAs
in cancer cells may increase the diversity of many cancer
transcriptomes.
Methods
RNA-sequencing data
Unprocessed RNA-seq reads from TCGA were down-
loaded from CGHub, using all solid tumors with patient-
matched samples from the adjacent normal tissue, as
well as unmatched acute myeloid leukemia (AML) and
breast cancer samples (the unmatched breast cancer
samples were only used for the subgroup analysis involv-
ing all 1,080 cancer patients). Samples were identified
using cgquery v2.1, with ‘state = live’, ‘library_strategy =
RNA-Seq’, and ‘sample_type = 0*’ or ‘sample_type = 1*’
for cancer and normal samples, respectively, and the
sequence data were downloaded with the GeneTorrent
client software. For samples extracted from CGHub
prior to November 2013, the raw reads were extracted in
BAM format and converted to FASTQ format using
sam2fastq v1.2 from UNC Bioinformatics Utilities. For
samples extracted after November 2013, the reads were
available directly in FASTQ format. All samples were se-
quenced using the Illumina Genome Analyzer or HiSeq,
and reads were from unstranded paired-end libraries,
with the exception of a subset of the uterine corpus
endometrial carcinoma samples, which were single-end.
Samples where the sequencing protocol was ‘TotalRNA-
SeqV2’ were excluded, in order to include only poly(A)-
selected RNA-seq libraries.
RNA-seq reads from four healthy bone marrow donors

were obtained from the NCBI Gene Expression Omni-
bus (GEO) under accession number GSE61410 [21]. The
library characteristics of these samples match those of
the AML RNA-seq samples (average read count: 75 M;
paired-end libraries; with read length 2×49 or 50 nt).
Subcellular fractionation RNA-seq reads from MCF-7 and
K562 cells were obtained from GEO under accession
number GSE30567 [22], and restricted to poly(A)-selected
libraries. RNA-seq data from breast cancer cell lines were
obtained from GSE52643 [23] and GSE48213 [24].
Genome annotations
Alternative splicing events were classified as cassette
exons, competing 5′ and 3′ splice sites, and retained in-
trons, using annotations from MISO v2.0 [25]. Constitu-
tive splice junctions and introns were defined as junctions
that were not alternatively spliced in any isoform of the
UCSC knownGene track [26]. RNA annotation files were
created for transcripts and splice junctions individually, to
map the RNA-seq reads to each annotation set separately.
The RNA transcript annotation is a combination of iso-
forms from MISO v2.0 [25], UCSC knownGene [26], and
the Ensembl 71 gene annotation [27]. The RNA splice
junction annotation was created using an enumerating of
all possible combinations of annotated splice sites as
previously described [17].

RNA-seq read mapping
All RNA-seq reads were processed using a standard-
ized pipeline. Step 1: Map all reads to the UCSC hg19
(NCBI GRCh37) human genome assembly using Bow-
tie v1.0.0 [28] and RSEM v.1.2.4 [29] modified to call
Bowtie with the -v 2 mapping strategy and invoked
with the arguments --bowtie-m 100 --bowtie-chunkmbs
500 --calc-ci --output-genome-bam on the gene annotation
file. Step 2: Filter the resulting BAM file to: (1) remove
alignments with mapq scores of 0; and (2) require a mini-
mum splice junction overhang of 6 bp. Step 3: Align all
previously unaligned reads to the splice junction anno-
tation file with TopHat v2.0.8b [30] invoked with the
arguments --bowtie1 --read-mismatches 3 --read-edit-
dist 2 --no-mixed --no-discordant --min-anchor-length
6 --splice-mismatches 0 --min-intron-length 10 --max-
intron-length 1,000,000 --min-isoform-fraction 0.0
--no-novel-juncs --no-novel-indels --raw-juncs. The pa-
rameters --mate-inner-dist and --mate-std-dev were de-
termined by mapping to constitutive coding exons as
determined with MISO’s exon_utils.py script. Step 4: Filter
the resulting alignments as in step 2. Step 5: Merge the
BAM files from TopHat and RSEM to generate a final set
of all read alignments.

Classification of primary breast cancer samples into the
intrinsic subtypes
RNA transcript levels from the 50 genes included in the
PAM50 classifier [31] were normalized using the trimmed
mean of M values (TMM) method [32] with the scaling
factors calculated based on protein-coding transcripts
only. The scaled centroids from pam50.robust in the ‘gen-
efu’ R package were used to cluster all tumor samples into
the five intrinsic molecular subtypes using intrinsic.clus-
ter.predict with parameter do.prediction.strength = TRUE.
The resulting subtype probabilities were assessed to con-
firm that less than 5 % of samples had a maximum prob-
ability below 0.5.
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Identification of differentially spliced isoforms
MISO v2.0 [25] was used to quantify isoform ratios for
all annotated alternative splicing events (cassette exons,
competing 5′ and 3′ splice sites, and retained introns).
For constitutive junctions and retention of constitutive in-
trons the isoform ratios were estimated using junction-
spanning reads, as previously described [17]. Individual
tumor samples were analyzed by comparing them directly
to the patient-matched normal sample (solid tumors) or
to the median across normal bone marrow samples
(AML). For each sample pair we restricted the analysis to
splicing events that had at least 20 reads supporting either
or both isoforms, and that were alternatively spliced in
our data. Events were defined as differentially spliced
within a sample pair if they satisfied the following criteria:
(1) at least 20 relevant reads in both samples; (2) a change
in isoform ratio of at least 10 %; and (3) a Bayes factor
greater than or equal to 1 for differences in isoform ratios,
calculated using Wagenmakers’s framework [33]. Sets of
tumor or normal samples were analyzed using a two-sided
Wilcoxon rank-sum test with the total number of isoform
reads from the test versus the reference set of samples
(this method was only used for the mutation/subgroup
analyses of AML and breast cancer). Events were differen-
tially spliced if they had: (1) a total of at least 20 reads in
both sample sets; (2) a change in isoform ratio of at least
10 %; and (3) a P value below 0.01.

Gene Ontology enrichment analysis
For each cancer type, we identified the parent genes of
introns that were differentially retained in at least 20 %
of samples. These genes were compared against all
protein-coding genes using the R package goseq [34] to
test for enrichment of gene ontology (GO) Biological
Process terms. The ‘Wallenius’ method was used, the
results were corrected for gene length bias, and the
resulting false discovery rates were corrected using the
Benjamini-Hochberg approach. Only terms with at least
two ancestors were tested, and only the most detailed
terms were returned by the analysis, to eliminate parent
terms associated with generic biological processes.

Effect of cis-acting features
All 5′ and 3′ splice site scores were calculated using the
maximum entropy modeling method [35]. Intron lengths
and GC content were calculated using the hg19 human
genome assembly, and the GC content was averaged
across each individual intron.

Effect of trans-acting factors
To calculate the proportion of the variation in intron re-
tention that could be explained by mRNA levels, we
used a generalized additive model (GAM) from the R-
package mgcv [36] v1.8.3. For each cancer type, we
selected the most variable introns, defined as having a
standard deviation of changes in intron retention for
tumor-normal pairs across all patient samples exceed-
ing 0.1 (AML: 852 introns, breast cancer: 621 introns,
colon cancer: 740 introns). We extracted all genes as-
sociated with the gene ontology terms ‘mRNA cata-
bolic process’ (GO:0006402), ‘mRNA splicing, via
spliceosome’ (GO:0000398) and ‘mRNA transport’
(GO:0051028), and used the log2 fold-change of TMM
normalized gene expression of the matched tumor-normal
pairs. GAM models for all individual intron/mRNA com-
binations were calculated using a Gaussian distribution
with ‘identity’ as the link function, and the method
‘GCV.Cp’ was used for estimating the smoothing parame-
ters of the log2 fold-changes for the mRNAs.

Mutation analysis
Somatic mutations from each AML tumor sample were
extracted from cBioPortal using the CGDS-R package.
For all genes mutated in more than five samples, intron
retention was analyzed in the mutated sample set com-
pared to all wild-type tumor samples.

Results
Genome-wide identification of differential splicing
To identify systematic differences in splicing between
cancer and normal cells, we analyzed the transcriptomes
of 16 solid and liquid tumor types that were sequenced
as part of TCGA (Table 1). For the solid tumors, we re-
stricted to samples for which patient-matched adjacent
normal tissue was available in order to control for po-
tential genetic differences in splicing, as well as reduce
artifacts arising from different handling of unmatched
samples [21, 37]. For the acute myeloid leukemia (AML)
samples, we used four bone marrow samples from
healthy donors as normal controls, as patient-matched
controls were not available due to the circulating nature
of leukemic cells. To help ensure that we studied the
mature mRNA pool rather than pre-mRNA or RNA
degradation products, we restricted to samples for which
both the cancer and adjacent normal samples were se-
quenced as poly(A)-selected libraries. A total of 805
matched samples were available for solid cancers origin-
ating from the bladder, breast, colon, head and neck,
kidney, liver, lung, prostate, rectum, stomach, thyroid,
and endometrium, as well as for acute myeloid leukemia
(Table 1). We quantified global patterns of splicing across
these cancer and normal samples, which were sequenced
to an average coverage of 74 million paired-end reads (+/-
22 million), using a database of approximately 125,000 an-
notated alternative splicing events and approximately
160,000 constitutive splice junctions (see Methods).
We first identified annotated alternative splicing events

that were differentially spliced in cancer versus normal



Table 1 Summary of differential splicing across cancer types

Patients (n) Coverage
(106 reads)

Cassette
exons

Competing 5′
splice sites

Competing 3′
splice sites

Retained
introns

Constitutive
introns

Constitutive
junctions

Retained
intron ratio

Acute myeloid leukemia 169 75 (8) 1,219 326 377 973 6,239 841 4.74 (1.2)

Bladder 18 56 (14) 894 170 211 296 552 456 1.83 (2.2)

Breast 104 72 (17) 1,052 210 268 266 612 569 -2.01 (2.1)

Colon 37 58 (18) 597 165 200 307 376 291 3.44 (2.6)

Endometrium 21 35 (16) 619 171 180 296 370 312 0.48 (2.4)

Head and neck 40 81 (26) 829 153 202 115 290 418 0.82 (1.7)

Kidney (chromophobe) 25 82 (12) 941 184 228 207 481 484 1.65 (1.4)

Kidney (renal clear cell) 71 80 (16) 729 149 194 143 380 380 1.42 (1.7)

Kidney (renal papillary cell) 30 85 (20) 730 155 220 184 440 408 1.51 (2.1)

Liver 50 70 (15) 413 90 117 106 200 206 0.82 (2.1)

Lung (adenocarcinoma) 51 43 (28) 517 115 141 176 277 233 0.20 (2.6)

Lung (squamous cell) 50 83 (31) 1,068 190 252 236 609 547 0.44 (2.0)

Prostate 43 75 (11) 607 133 185 130 358 337 1.44 (2.4)

Stomach 30 105 (21) 1,048 200 302 206 886 884 0.99 (1.7)

Rectum 8 53 (14) 680 123 172 310 390 314 4.30 (2.3)

Thyroid 58 83 (11) 533 132 177 174 488 332 0.66 (2.4)

Read coverage, number of differentially spliced isoforms, and bias between intron retention in tumor samples compared to patient-matched normal controls
Numbers are medians (standard deviation) across all samples
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cells. We defined differentially spliced events as those
exhibiting a difference in isoform ratio of ≥10 % between a
solid tumor sample and its matched normal, or alternately
between an acute myeloid leukemia sample and the me-
dian across four normal bone marrow samples. The rela-
tive frequency of differential splicing between cancer and
normal tissues differed substantially between cancer types,
with AML and liver cancers exhibiting the most and few-
est differentially spliced events on average. Cassette exons
comprised approximately 50 % to 60 % of all differentially
spliced events, while competing 5′ and 3′ splice sites and
retained introns comprised less than 20 % each across all
cancer types (Fig. 1a-d, Table 1), consistent with patterns
observed in studies of tissue-specific alternative splicing
[38]. Differential splicing of cassette exons and competing
5′ and 3′ splice sites was balanced, in the sense that cas-
sette exons were not preferentially included/excluded and
intron-proximal/distal 5′ or 3′ splice sites were not prefer-
entially used.

Retained introns are common in cancer transcriptomes
In contrast to cassette exon recognition or competing
splice site usage, intron retention was markedly imbal-
anced. All cancer types exhibited a strong enrichment
(median of 1- to 20-fold) for increased retention of alter-
native introns in cancers, with the notable exception of
breast cancer, for which adjacent normal tissue exhibited
a four-fold enrichment for increased intron retention
relative to cancer samples (Fig. 1d). We therefore tested
whether constitutive as well as alternative introns were
retained. Again requiring a difference in isoform ratio
of ≥10 %, we found that constitutively spliced introns
were frequently unspliced in cancers relative to normal
controls (with the exception of breast cancer), although
the enrichment was more modest than for alternative
introns (Fig. 1e).
Increased intron retention could potentially be a side

effect of the reportedly high levels of noisy splicing in
cancers rather than a specific failure to remove intronic
sequences [18]. To test this hypothesis, we estimated
levels of noisy splicing by quantifying mis-splicing of
constitutive junctions, such as splicing from the 5′ splice
site of a constitutive junction to a different 3′ splice site
of the gene. In contrast to intron retention, where all
cancer types except for breast cancer exhibited increased
levels of unspliced mRNA, we did not observe uniform
increases or decreases in mis-splicing of constitutive
junctions in cancer relative to normal transcriptomes
(Fig. 1f ). Specific introns of a gene were typically
retained while others were removed with high efficiency
(Fig. 1g).
While intron retention was a readily detectable feature

of all cancer types except for breast, the degree of intron
retention in any particular sample was highly variable,
ranging from increases of 2- to 40-fold in AML and
colon cancer (Fig. 2a). The average number of differen-
tially retained introns within a cancer type correlated
with the absolute magnitude of the change in intron
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retention levels (Fig. 2b). The enrichment for retention
of alternative versus constitutive introns was well-
correlated within each sample for all cancer types
(Fig. 2c), suggesting that the propensity to retain introns
is a patient-specific characteristic of the transcriptional
environment. Here and subsequently, we focused on
AML and colon cancer as exemplars of cancers exhibit-
ing strong intron retention, and on breast cancer as the
sole example of a cancer exhibiting decreased intron re-
tention relative to normal controls.
As we restricted our analysis to poly(A)-selected

cDNA libraries, increased RNA-seq coverage of introns
was likely due to the presence of incompletely spliced
mRNA rather than inefficiently degraded spliced introns.
To confirm that the signal did indeed arise from incom-
pletely spliced mRNA, we quantified intron retention
using only reads crossing the exon-intron boundary, which
cannot arise from spliced introns or lariats. We observed
similar enrichment for intron retention with this conser-
vative measure, indicating that the intronic signal arises
from incompletely spliced mRNA (Figs. 1d and 2d).
Intron retention typifies normal breast tissue instead of
breast cancer
Of the 16 cancer types that we studied, only breast can-
cer was associated with decreased, rather than increased,
intron retention relative to normal controls. Infrequent
intron retention in breast cancer versus normal breast
tissue could be due to efficient intron removal in breast
cancer, or instead inefficient intron removal in normal
breast. To distinguish between these possibilities, we
measured intron retention in breast cancer versus each
of the 14 other solid cancer types, as well as in normal
breast versus each of the 14 other normal control tis-
sues. We did not observe consistently increased or de-
creased intron retention in breast cancer versus other
cancers. In contrast, there was a strong bias towards in-
creased intron retention in normal breast versus other
control tissues, wherein normal breast exhibited more
frequent intron retention than any other control tissue
except for endometrium (Fig. 2e). Median gene expres-
sion of MKI67, encoding the proliferation marker Ki-67,
was >10-fold higher in breast cancer samples than in
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adjacent controls, indicating that enhanced intron reten-
tion in normal breast is unlikely to be explained by con-
tamination of adjacent control tissue by cancerous cells.
Breast cancer’s status as an outlier in our analysis

could potentially be due to the different cell types repre-
sented in the cancer versus normal samples. Breast can-
cer predominantly arises from the mammary ductal or
(occasionally) lobular cells, whereas the surrounding
stroma consists of fibroblasts, adipocytes, and cells from
the immune system. We therefore compared intron reten-
tion levels in 50 tumorigenic and six non-tumorigenic
breast cell line models [23, 24] (Fig. 2f). While the effi-
ciency of intron removal varied across the cell lines, we
did not observe a consistent association between tumori-
genic/non-tumorigenic status and degree of intron reten-
tion. This cell line analysis is consistent with the
hypothesis that cell type differences between tumor and
normal samples may contribute to breast cancer’s outlier
status, although the known propensity of cell lines to
adopt ‘cancer-like’ RNA processing characteristics such as
preferential usage of short 3′ UTRs [39] suggests that the
same could occur for intron retention.

Retained introns are frequently specific to the cancer
of origin
Select introns, such as two adjacent introns in FUS, were
recurrently retained in cancers from many different tis-
sues of origin (Fig. 3a). Quantifying this genome-wide,
we found that while most introns were retained in just a
few samples of a particular cancer, 1,205 and 171 in-
trons, respectively, exhibited increased or decreased re-
tention in >10 % of cancer samples relative to normal
controls across all cancer types (Fig. 3b). An unsuper-
vised cluster analysis confirmed that while some retained
introns are shared across most cancer types, the majority
are either specific to the cancer of origin, or present at
low frequencies in multiple cancers. For example, can-
cers arising from similar tissues of origin (for example,
kidney) clustered together, indicating that they exhibit
similar genome-wide patterns of intron retention
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Hierarchical clustering of all retained introns (rows) and all cancer types (columns). Analysis restricted to introns that exhibit increased (red) or decreased
(blue) retention relative to normal controls in >10 % of samples for at least one cancer type. Clustering is based on Euclidean distances computed over
intron retention frequencies and Ward’s agglomeration method. (d) The combined -log10 false discovery rate of the most significant Biological Process
Gene Ontology (GO) terms enriched among genes containing differentially retained introns in at least 20 % of samples within each cancer type. Colors
as in Fig. 1. (e) Percentage of samples within cancer types with differential intron retention for select genes mapped to the ‘mRNA export from nucleus’
GO term (GO: 0006406). Dashed line, average across all genes and cancer types. (f) Distribution of Pearson correlation coefficients between intron
retention and gene expression across all samples within each cancer type. Dashed line, median taken over all samples for each cancer type. Colors as
in Fig. 1. (g) Scatter plots comparing intron retention to fold-change of the corresponding parent genes for two colon adenocarcinoma samples
relative to their patient-matched normal control
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(Fig. 3c). The preponderance of differentially retained in-
trons in any given cancer sample is typically specific to
that cancer, although a subset of introns are frequently
retained across diverse cancers.

Intron retention affects genes involved in RNA processing
and nuclear export
We next tested whether genes containing the small sub-
set of introns that are frequently retained across diverse
cancers are preferentially involved in particular bio-
logical processes (Fig. 3d). We identified Gene Ontology
(GO) terms that were enriched for genes exhibiting
changes in intron retention affecting at least 20 % of
samples within each cancer type. Strikingly, the most
enriched terms were all involved in RNA processing,
with mRNA export as the most enriched term (Fig. 3d).
This association between frequently retained introns and
mRNA export is primarily mediated by nine genes that
exhibit differential intron retention in more than one-
third of all samples on average (Fig. 3e). These genes en-
code SR proteins, DEAD box proteins associated with
the nuclear export factor NXF1, and components of the
TREX mRNA export complex.
Intron retention is modestly anti-correlated with parent
gene expression
As intron-containing mRNAs are frequently retained in
the nucleus and/or subject to degradation, preferential
intron retention in cancer cells could potentially sup-
press gene expression in the absence of compensatory
transcriptional upregulation. Consistent with this hy-
pothesis, a recent study reported that intron retention
was associated with lower expression of the parent genes
[40], although other studies have reported the opposite
trend [20, 41]. We therefore tested whether differential
intron retention was associated with altered gene expres-
sion by simply computing the Pearson correlation be-
tween differences in intron retention and parent gene
expression for each cancer sample and matched normal
control. For all cancers with the exception of AML, we
observed a weak negative correlation between differen-
tial intron retention and expression of the corresponding
parent genes (Fig. 3f ). The origin of AML’s outlier status
is unclear, although it may be due to the lack of patient-
matched controls. While some tumor-normal pairs ex-
hibited consistent anti-correlation between intron reten-
tion and gene expression for many genes, in many cases
the anti-correlation was driven by a few outliers with un-
usually prominent changes in both intron retention and
gene expression (Fig. 3g). Our data are consistent with
the hypothesis that intron retention contributes to alter-
ations in gene expression [40], although the changes that
we observed were generally modest.
Sequence features distinguishing differentially
retained introns
Previous genome-wide studies have reported that cis-act-
ing sequence features distinguish introns susceptible to
retention, including weak splice sites, shorter lengths,
and higher GC content [40, 41]. Consistent with these
studies, introns that were preferentially retained in either
normal or cancer samples had weak 5′ and 3′ splice
sites, were very short, and had high GC content relative
to constitutively spliced introns (Fig. 4a-d). These trends
persisted even after controlling for intron length. Trends
for introns that were preferentially retained or removed
in cancer cells were qualitatively similar, suggesting that
similar sequence features predispose introns to ineffi-
cient splicing in both normal and cancer cells.

A subset of retained introns can be explained by
expression of RNA processing factors
In addition to cis-acting sequence features, we investi-
gated the extent to which trans-acting factors may affect
differential intron retention. We used a generalized addi-
tive model to identify relationships between changes in
expression of genes encoding trans-acting factors rele-
vant to the RNA life cycle and intron retention. While
the majority of RNA processing factors were not system-
atically predictive of changes in intron retention, expres-
sion of a subset of genes was strongly associated with
intron retention (Fig. 4e). Many of these genes, which
were involved in RNA splicing, transport, and degrad-
ation, were associated with intron retention across
AML, colon cancer, and breast cancer (Fig. 4f ). These
genes encoded proteins involved in 3′ splice site selec-
tion (for example, SF3A1, SF3B1, SF3B2), the nuclear
pore complex (NUP60, NUPL1, NPIPA1, RANBP2) and
RNA degradation and nonsense-mediated decay (UPF1,
SMG1, PAN2, XRN1).

Clinical correlates of intron retention
We next sought to identify clinical variables that poten-
tially contributed to the high levels of inter-sample vari-
ability in intron retention that we observed (Fig. 2a,
Table 1). We first tested whether specific somatic muta-
tions were associated with enhanced or diminished in-
tron retention relative to normal controls. We focused
on AML due to the mounting evidence that presence/
absence of specific driver mutations is clinically and
therapeutically relevant [42–44]. For each of 22 genes
that were somatically mutated in at least five of the 169
AML samples, we computed the number of differentially
retained introns in wild-type versus mutant samples.
Mutations in most genes were not associated with in-
creased or decreased intron retention relative to other
AML samples (although all AML samples exhibited
strong intron retention relative to normal bone marrow;
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Fig. 2a). Mutations in RUNX1, IDH1, and IDH2, in con-
trast, were associated with a strongly increased intron
retention relative to wild-type AML samples (Fig. 4g).
For IDH1 and IDH2, the augmented intron retention
that we observed is likely an underestimate of the true
effect. We treated IDH1 and IDH2 separately so that
they could serve as a rough validation of each other, and
so many of the IDH1 wild-type samples contained IDH2
mutations and vice versa.
We next tested whether specific molecular subtypes of

tumors exhibited stronger or weaker signals of intron
retention. We focused on breast cancer, which is fre-
quently divided into subtypes that correlate strongly
with prognosis and response to therapy [45]. Using all
1,080 poly(A)-selected breast cancer samples available in
TCGA, we computed the number of differentially
retained introns in each molecular subtype relative to all
available normal controls (Fig. 4h). (As we performed a
subgroup rather than per-sample analysis, we did not
restrict to samples with matched tumor-normal pairs.)
Normal-like samples exhibited the fewest differentially
retained introns relative to all normal controls, consist-
ent with their known similarity to normal breast tissue
[45], and also exhibited relatively balanced increases and
decreases in intron retention, as did luminal A and B
samples. In contrast, basal-like and Her2 amplified or
over-expressing samples exhibited the most differential
intron retention relative to normal tissue, as well as the
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strongest bias towards decreased intron retention. As
basal-like and Her2 amplified or over-expressing samples
are associated with the worst prognosis of the subtypes
analyzed, it is interesting to note that a recent study ob-
served high levels of unspliced mRNA in bone metasta-
ses from castration-resistant prostate cancer relative to
primary prostate cancer [20].

Discussion
Alternative splicing of specific genes has long been
known to contribute to cancer initiation, progression,
and metastasis [46–49]. The recent discovery of spliceo-
somal mutations in diverse cancers, coupled with the
identification of spliceosomal components that are dif-
ferentially required in cancer versus normal cells [17]
and the ongoing development of RNA splicing inhibitors
as potential antitumor drugs [50–52], suggests that the
RNA splicing process may frequently differ substantially
between cancer and normal cells. Our study bolsters this
conjecture by demonstrating that cancer transcriptomes
from diverse tissues of origin frequently exhibit marked
increases in intron retention relative to adjacent normal
tissue even in the absence of mutational insults to the
splicing machinery.
Intriguingly, our simple correlation of clinical variables

with intron retention suggested that mutations affecting
factors not canonically involved in RNA processing, such
as IDH1 and IDH2, may contribute to splicing
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lation can influence alternative splicing through differen-
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epigenetics and RNA splicing may link a diverse spectrum
of mutations to RNA processing defects in cancer.
While our study and others make increasingly clear that

intron retention is much more common in human cells
than previously believed, the functional consequences of
this intron retention remain unknown. Impaired nuclear
export and cytoplasmic RNA degradation both provide
barriers to stable expression of intron-containing mRNAs
[58–63], and likely reduce many such mRNAs to dead-
end products of incomplete splicing. As TCGA data are
from whole-cell transcriptomes, we were unable to test
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whether intron-containing mRNAs are present in the
cytoplasmic mRNA pools of primary cancers. We there-
fore instead used subcellular fractionation data from
MCF-7 (breast cancer) and K562 (erythroleukemic) cell
lines as rough approximations of the cell types represented
in the TCGA primary breast cancer and AML samples
[22]. We restricted to introns that were differentially
retained in breast cancer or AML relative to normal con-
trols, and quantified the relative abundance of mRNAs
containing these introns in the nuclear and cytoplasmic
fractions of MCF-7 or K562 cells (Fig. 5). Most intron-
containing mRNAs were present at higher levels in the nu-
clear fraction, as expected, but many retained introns were
nonetheless present at high levels in both fractions. Ap-
proximately 75 % or 52 % of introns that were differentially
retained in breast cancer or AML relative to controls were
retained at rates ≥10 % in the cytoplasmic fraction (mean-
ing that the intron-containing mRNA constituted ≥10 % of
the mRNAs from the parent gene). With the caveat that
data from MCF-7 and K562 cell lines may not closely cor-
respond to in vivo processes, we conclude that biased in-
tron retention may generate a diversity of intron-containing
mRNAs that are exported to the cytoplasm and sufficiently
stable to be readily detectable.
If translated, intron-containing mRNAs could produce

novel peptides with unknown consequences, ranging
from a potentially adaptive expansion of the proteomic
repertoire to a deleterious triggering of tumor immuno-
genicity. While genes involved in many biological pro-
cesses are affected by intron retention, it is interesting to
note that the small subset of introns that are preferen-
tially retained across many cancers are frequently found
in genes encoding RNA processing factors involved in
RNA export and splicing (Fig. 3d). Finally, it is tempting
to speculate that the apparent abundance of intron-
containing mRNAs in tumor cells may contribute to the
observed antitumor activity of compounds that inhibit
RNA splicing catalysis. Future work will reveal whether
intron-containing mRNAs are important contributors to
tumor cell biology, host-tumor interaction, and sensitiv-
ity to antitumor agents, or instead simply by-products of
the widespread molecular dysregulation that accompan-
ies oncogenesis.

Conclusions
Our data show that intron retention characterizes the
transcriptomes of many primary cancers, indicating that
globally abnormal RNA splicing is a common correlate
of tumorigenesis even in the absence of direct muta-
tional insults to the RNA splicing machinery. Different
introns were preferentially retained in specific samples
and cancer types, although a small minority of introns
were frequently subject to retention in diverse cancers.
The degree of intron retention appears to be influenced
by a complex interplay of cis-acting sequence features
and RNA processing factors acting in trans, rather than
by a single mechanism. Many introns that were prefer-
entially retained in primary cancers were detectable in
the cytoplasmic fractions of cancer cell lines, suggesting
that at least some intron-containing mRNAs are suffi-
ciently stable to contribute to the transcriptional diver-
sity of cancer cells. Further investigation will determine
whether these intron-containing mRNAs are translated
into potentially functional proteins, or instead dead-end
products of inefficient splicing.
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