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Abstract

Background: Lymphocyte receptor repertoires are continually shaped throughout the lifetime of an individual in
response to environmental and pathogenic exposure. Thus, they may serve as a fingerprint of an individual’s
ongoing immunological status (e.g, healthy, infected, vaccinated), with far-reaching implications for immunodiagnostics
applications. The advent of high-throughput immune repertoire sequencing now enables the interrogation of immune
repertoire diversity in an unprecedented and quantitative manner. However, steadily increasing sequencing depth has
revealed that immune repertoires vary greatly among individuals in their composition; correspondingly, it has been
reported that there are few shared sequences indicative of immunological status (public clones'). Disconcertingly, this
means that the wealth of information gained from repertoire sequencing remains largely unused for determining the
current status of immune responses, thereby hampering the implementation of immune-repertoire-based diagnostics.

Methods: Here, we introduce a bioinformatics repertoire-profiling framework that possesses the advantage of
capturing the diversity and distribution of entire immune repertoires, as opposed to singular public clones. The
framework relies on Hill-based diversity profiles composed of a continuum of single diversity indices, which
enable the quantification of the extent of immunological information contained in immune repertoires.

Results: We coupled diversity profiles with unsupervised (hierarchical clustering) and supervised (support vector
machine and feature selection) machine learning approaches in order to correlate patients’ immunological statuses
with their B- and T-cell repertoire data. We could predict with high accuracy (greater than or equal to 80 %) a wide
range of immunological statuses such as healthy, transplantation recipient, and lymphoid cancer, suggesting as a proof
of principle that diversity profiling can recover a large amount of immunodiagnostic fingerprints from immune
repertoire data. Our framework is highly scalable as it easily allowed for the analysis of 1000 simulated immune
repertoires; this exceeds the size of published immune repertoire datasets by one to two orders of magnitude.

Conclusions: Our framework offers the possibility to advance immune-repertoire-based fingerprinting, which
may in the future enable a systems immunogenomics approach for vaccine profiling and the accurate and early
detection of disease and infection.

Background

The lymphocyte repertoire of B and T cells is shaped
throughout the lifetime of an individual; in response to
environmental and pathogenic antigen challenge, lym-
phocytes clonally expand and are selected in a highly
specific manner. Therefore, the immune receptor clonal
diversity and distribution, which summarize the state of
clonal selection and expansion, may serve as a
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fingerprint of an individual’s current immunological sta-
tus (e.g., healthy, infected, vaccinated), and may thus be
exploited for immunodiagnostic applications [1]. There
is an enormous diversity of B-cell receptors (BCRs, anti-
bodies) and T-cell receptors (TCRs), theoretically ap-
proaching 10" and 10'® protein sequences, respectively
[2]. Only very recently, through the advent of high-
throughput sequencing (HTS), has it become possible to
capture the immense clonal diversity and distribution of
BCR and TCR repertoires at high resolution [1, 3-5].
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While immune repertoire sequencing datasets have
steadily increased from 10° to 10° sequencing reads per
sample [6-10], it has still remained a challenge to extract
from large-scale repertoire data immunological status-
specific fingerprints of entire repertoires for systems medi-
cine and immunodiagnostics application [1, 11, 12]. In
fact, due to both biological and technological reasons, im-
mune repertoire data are quasi-distinct across individuals
(humans or mice) with respect to their clonal composition
[8]. Clones are predominantly defined based on the com-
plementarity determining region 3 (CDR3) of BCR heavy
chains or TCR beta chains [1, 9, 13], which contributes
most to the BCR/TCR binding specificity. Biologically, as
a result of junctional recombination, P/N nucleotide edit-
ing and somatic hypermutation (for BCR/antibodies) [14],
the protein sequence space of CDR3s is immense and ren-
ders the finding of significant overlap between repertoires
highly unlikely. Indeed, BCR-CDR3 sequences from both
unimmunized and immunized/vaccinated individuals
show small to no sequence overlap [15-17]. Although
the incidence of public T-cell clones is higher than
that of B cells due to the lack of secondary diversifi-
cation by somatic hypermutations (SHM), previous
HTS studies indicated that their numbers are low
compared with the size of the entire T-cell repertoire
at any given time (see [8] and references in Robins et
al. [18]). Technologically, sequencing error, PCR error
and limited sequencing depth further decrease the
likelihood of discovering 'public' clones [9, 19-21]. In
summary, lymphocyte repertoires are quasi-distinct in
clonal composition and distribution and this is largely
independent of immunological status. This restricts
the comparison of immune repertoires across individ-
uals to public clones, thus disregarding a wealth of
additional information present in entire immune reper-
toires, which consequently limits a deeper understanding
of lymphocyte repertoires and hampers the development
of robust immune-repertoire-based diagnostics.

The challenges in comparing immune repertoires in their
entirety led to the adoption of sequence-independent quan-
tifiers of clonal diversity (also termed 'diversity indices')
[7, 22-25]. These quantifiers offer the possibility to correl-
ate immune repertoire diversity to immunological status
and in doing so readily allow for immune-repertoire-based
comparisons across individuals [7, 22, 26-30]. It has been
long known that there is a continuum of possible diversity
measures all of which are related to Rényi’s definition of
generalized entropy [31, 32]. However, the extent to which
diversity indices reliably capture the status-specific informa-
tion of immune repertoires still remains an area in need of
deeper investigation. The premise that immune repertoires
accurately reflect immunological status serves as the basis
for the alluring possibility that diversity analysis could be
exploited for applications such as next-generation
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immunodiagnostics, which may in the long term en-
able the early detection and diagnosis of disease/in-
fection and provide more quantitative vaccine
profiling [4, 7, 33, 34]. Disconcertingly, it has been
noted that single diversity indices, such as the Shan-
non or Simpson’s diversity index, can yield qualita-
tively different results [35-37] (Fig. 1lc); this finding
raised questions regarding the consistency of im-
munological classification based on single diversity
indices [22, 24, 26, 30]. Therefore, we set out to an-
swer the following questions: (i) To what extent do
diversity indices robustly capture the immunological
information inherent in high-throughput immune
repertoire sequencing data? (ii) How can diversity in-
dices be used to quantitatively define and reveal im-
munological status?

To answer these questions, we have developed a
sequence-independent and highly scalable bioinformatical
framework for the analysis of immune repertoire diversity
(Fig. 1). The framework relies on the transformation of
clonal frequency distributions into alpha-parameterized
profiles of Hill-based diversities (*'**D), resulting in a con-
tinuum of diversity indices with an alpha-modulated sensi-
tivity for the relatively rare clones in a lymphocyte
repertoire. As opposed to single diversity values, our
profile-based framework enabled the reliable capture of
immune repertoire clonal frequency distributions, and
thus, the majority of potential immunological information
coded therein. Leveraging machine learning approaches
we could show that clonal frequency distributions hold in-
deed a potentially large amount of immunological finger-
print information, since we could classify with high
accuracy (=80 %) BCR- and TCR-repertoire datasets de-
rived from a wide range of immunological statuses such as
healthy, transplantation and lymphoid cancer. Thereby,
our work represents a proof of principle for the successful
utilization of immunogenomic lymphocyte repertoire fin-
gerprinting and the development of diversity-based immu-
nodiagnostics for early detection of disease and infection
[4, 5, 20, 38].

Methods

Experimental datasets

We compiled four experimental datasets, which are
characterized below. Sequencing read statistics are sum-
marized in Additional file 1. Further quality and read in-
formation on datasets 1-3 can be found in the
respective publications.

Dataset 1

Human T-cell origin: HT'S data were published by Muraro
and colleagues [10] as part of a phase II trial for poor-
prognosis multiple sclerosis. TCR-V[ gene sequencing
was performed to assess both CD4 and CD8 repertoires
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Fig. 1 Rendering HTS repertoire data suitable for machine learning-based immunodiagnostics. a The clonal distribution and diversity of lymphocyte
repertoires may represent a fingerprint of an individual’s current immunological status (e.g.,, healthy, vaccinated, diseased/infected). b Lymphocyte
repertoire 1 represents a uniform repertoire (e.g, resembling that of a healthy individual) as opposed to lymphocyte repertoire 2, which shows a large
clonal expansion (few clones dominate the repertoire, e.g, as a result of disease/infection or vaccination). Each color describes one lymphocyte clone
(usually defined by the CDR3). € The immediate output of HTS datasets are immune repertoire clonal frequency distributions, which are composed of
the frequency of each clone (where frequency is the proportion of the sequencing reads bearing the same clonal identifier [e.g., CDR3 amino acid
sequence]). These distributions differ in clonal composition even in inbred mice [9, 15] (Additional file 4); this renders the application of
machine learning approaches highly problematic (f) as they require identical composition. d Diversity (“D, derived from the Rényi entropy)
alleviates the problem of incomparable datasets by projecting clonal frequency distributions onto the same (reduced) alpha space. Shannon
diversity (alpha=1) and Simpson’s index (alpha = 2) are widely used for diversity comparisons but, depending on the dataset structure, show
qualitatively inconsistent Diversity values (Additional file 2). e The Diversity value °D for each alpha signifies an equivalent repertoire in which
all clones are equally abundant. These equivalent repertoires represent different portions of the original repertoires, with only the top clones
remaining as alpha tends towards infinity. f Diversity profiles (vectors of alpha values) are of identical (alpha-)composition and are therefore
suitable for cross-repertoire comparisons by machine learning approaches allowing for their potential application in next-generation immunodiagnostics

per individual before and at two time points, 2 months
and 12 months, after autologous hematopoietic stem cell
transplantation in a cohort of 24 patients. The prepro-
cessed CDR3 clonotype frequency distributions were
downloaded from [39].

Dataset 2

Human B-cell origin: HTS BCR data were published by
Bashford-Rogers and colleagues [7]: peripheral blood
mononuclear cells (PBMCs) were isolated from 10 ml of
whole blood from 13 healthy volunteers and 11 patients
with chronic lymphocytic leukemia (CLL) and immuno-
globulin heavy chains were amplified. HTS was performed
on the VH gene using Roche 454. The raw data were down-
loaded (European Nucleotide Archive accession number
ERP002120) and submitted to ImMunoGeneTics (IMGT)/
HighV-QUEST [40] for CDR3 annotation. IMGT-
annotated data were preprocessed analogously to that
of dataset 4.

Dataset 3

Human B-cell origin: HTS BCR data published by Jackson
and colleagues [16]. PBMCs were isolated from blood
drawn from 14 individuals before and on days 7 and 21
after influenza vaccination. BCR-VH genes were PCR
amplified, sequencing was performed using Roche 454.
The raw data were downloaded (dbGaP accession number
phs000760.v.1.p1) and submitted to IMGT for CDR3 an-
notation. IMGT-annotated data were preprocessed analo-
gously to that of dataset 4.

Dataset 4

Murine B-cell origin: From a single mouse immunized
and boosted with one chicken gamma globulin (CGG)
conjugated to 4-hydroxy-3-nitrophenylacetyl (NP; NP-
CGQG), naive follicular B cells (NFBCs, IgM), antibody-
secreting cells (ASCs, IgM/IgG) and plasma cells (PCs,
IgM/IgG) were isolated using fluorescence-activated cell
sorting (FACS). The experimental workflow and data
preprocessing are described below.
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Animal experiments and cell isolation All animal
experiments were performed under the guidelines and
protocols approved by the Basel-Stadt cantonal veterin-
ary office (Basel-Stadt Kantonales Veterindramt Tierver-
suchsbewilligung #2582). One BALB/c mouse (Charles
Rivers Laboratories, 8—10 weeks old), housed under
specific pathogen-free conditions and maintained on a
standard chow diet, was immunized with 50 pg alum-
precipitated CGG conjugated to NP (NP-CGG, BioCat)
and boosted with 50 pg NP-CGG in phosphate-buffered
saline three weeks later. The mouse was sacrificed 7 days
after the boost. The spleen was harvested and=~3
Mio splenic NFBCs (CD19"/CD1387/IgM*/IgD"*/CD23"
*/CD21*/GL77), =~200,000 splenic ASCs (CD19™Y
CD138"*/MHCII"*'°/CD38*/CD937/GL77), and 5000
splenic PCs (CD197/CD138"*/MHCII'*/CD38"/CD93
“/GL7") were FACS-isolated and sorted into Trizol.

Preparation of antibody libraries for high-throughput
sequencing Total RNA extraction and antibody library
generation were performed from the above described three
cell populations (NFBCs, ASCs, PCs) using a primer exten-
sion method as described previously [41]. NFBCs were
amplified with an IgM-specific (in italics) reverse primer
(GAGGAGAGAGAGAGAG CGAGGGGGAAGACATTT
GGG) containing the overhang region as previously de-
scribed [41] while the ASC and PC samples were amplified
using a mix of IgM (GAGGAGAGAGAGAGAG
CGTGAT CGAGGGGGAAGACATTTGGG)- and IgG
(GAGGAGAGAGAGAGAG ACATCG CCARKGGA
TAGACHGATGGG)-specific reverse primers contain-
ing an identification tag (underlined region) within
the primer sequence that was later used in the data
pre-processing for discrimination between isotypes
from each Illumina barcoded sample.

Illumina sequencing and data preprocessing All sam-
ples were sequenced using the Illumina MiSeq platform
with 2 x 250 bp paired-end reads with high mean quality
Phred scores ranging from 35 to 36 and = 90 % of bases
having a quality Phred score of >30. Raw data can be
accessed from zenodo [42]. Forward and reverse reads
were paired using PANDAseq (v.2.7, threshold parameter
t=0.6) [43]. The PANDAseq pairing efficiency was >97 %.
The splitting of the PANDAseq fasta files into IgM and
IgG sequencing reads was performed using the function
veountPDict (allowing indels and a maximum number of
five mismatches) from the R package ShortRead [44] with
a=95 % efficiency. Full-length VD] region annotation of
successfully paired sequences was performed using
IMGT/HighV-QUEST [45, 46]. For downstream analyses,
sequences were pre-processed and reads were only
retained if answering the following requirements: (i) the
IMGT-indicated 'Functionality’ of the sequencing was
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‘productive’; (ii) CDR3s were of minimal length of four
amino acids; (iii) CDR3s were present with a minimum
abundance of 2. For all analyses, CDR3 abundances were
calculated based on occurrence of exact amino acid se-
quences (100 % identity).

Simulation of Zipfian distributions

Zipfian distributions were simulated using the Zipf-
Mandelbrot law implemented in the zipfR R package
[47]. The respective probability density function used for
simulations is given by

() = C.pZpfetl — |0<n<Zipf-B
g = 0, |otherwise

Here, Zipf-a € (0, 1) and Zipf-B € (0, 1) are two free pa-
rameters. C is a normalizing constant. B corresponds to the
probability 11; of the most frequent species (clone) [48].

Diversity profiles
Clonal diversity was defined as

i) = (30 ,)"

where fis the clonal frequency distribution with f; being
the frequency of each clone and # the total number of
clones [31, 32, 49]. The «-values represent weights,
which means as « increases, higher frequency clones are
weighted more. The alpha-parameterized Diversity cre-
ates for a given array of alphas a diversity index profile
(short: diversity profile or * D). Diversity is not defined
for the case alpha = 1. However, we used L'Hospital’s rule
to find that as alpha tends to 1, Diversity tends to the
Shannon entropy. Thus, the Shannon entropy is a spe-
cial case of the Diversity for alpha = 1.

Evenness (“E) describes the extent to which a given
species frequency vector is distanced from the uniform
distribution species frequency vector and is defined as

“D = SRx"E

where SR is the species richness (SR = “°D), that is, the
number of unique clones in a repertoire dataset.

Diversity and Evenness profiles were calculated in a
range of alpha =0 to alpha =10 with a step size of 0.2 if
not specified otherwise. The alpha range was chosen
based on the observation that most profiles leveled off
toward an alpha of 10 (Additional file 2).

Hierarchical clustering

Using Euclidean distance as a distance metric, clustering
of profiles was performed using the 'complete linkage'
clustering algorithm performed by the R function
hclust() from the stats R package [50]. Hierarchical clus-
tering was visualized by dendrograms using the ggdendro
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R package [51] and heatmaps using the gplots [52], NMF
[53] and heatmap.plus [54] R packages. For Evenness pro-
files, we performed the above mentioned clustering algo-
rithm on the correlation matrix in order to obtain scale
invariance and focus exclusively on differences of shapes
in Evenness profiles (for Diversity profiles the focus lay on
shape and magnitude differences).

The correlation between dendrograms was determined
using the cor_cophenetic() function from the dendex-
tend R package [55]. Specifically, it calculates the correl-
ation between any two cophenetic distance matrices of
two given hierarchical clustering trees (dendrograms).
The cophenetic distance between two observations that
have been clustered is defined to be the intergroup dis-
similarity at which the two observations are first com-
bined into a single cluster. The values given by the
cor_cophenetic() function range between -1 and 1.
Values near zero signify that two trees were not statisti-
cally similar [56].

Support vector machine analysis and feature selection
Support vector machine (SVM) analysis was performed
using the Potential Support Vector Machine (P-SVM) [57],
which combines linear classification (classification of im-
munological status) of Diversity and Evenness profiles with
the selection of a minimal subset of alpha values achieving
the highest prediction accuracy (feature selection). The goal
criterion of classification performance was balanced predic-
tion accuracy (BACC = (Sensitivity + Specificity)/2). The
classification performance was measured using nested
leave-one-out cross-validation, where feature selection
and hyperparameter selection were performed in the
inner cross-validation loop independently of the test
sample of the outer cross-validation loop (Additional
file 3). The inner loop was used to determine the com-
bination of parameters allowing the best classification
performance: the cost parameter c was varied from 1 to
17 in five equally spaced steps and the regularization
parameter & was chosen as 2 with i=-3,-2,...,3, 4. In
order to obtain compact models that only use a small
set of features, all parameter combinations in the inner
cross-validation loop for which more than three models
exceeded an upper limit of 20 selected alpha values
were excluded. A flowchart of the P-SVM algorithm is
given in Additional file 3.

Correlations between P-SVM-selected alpha values
and immunological status may occur by chance. In order
to exclude such random effects, permutation testing
consisting of 1000 independent random shuffles of the
label vector and subsequent determination of BACC was
performed. BACCs were regarded as significant if the
number of BACCs of the shuffled label vectors exceed-
ing that of the original label vector was lower than 10
out of 1000 (p < 0.01) [58].
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Results

Diversity profiles comprehensively characterize immune
repertoire structure

To characterize immune repertoire clonal structure, we
employed the Hill-based Diversity (hereafter referred to
as “Diversity”), which is based on Rényi’s definition of

generalized entropy [31, 32, 49], *D(f) = (Z?zlf?)ﬁ,

where f is the clonal frequency distribution with f; the
frequency of each clone and n the total number of
clones. Currently, the structure of BCR and TCR reper-
toires is represented by their clonal frequency distribu-
tions as it summarizes the state of clonal expansion and
selection (Fig. 1c). Notably, our framework is independ-
ent of specific definitions of clonality (e.g., unique CDR3
sequences). The alpha-parameterized Diversity unifies
many previously established diversity indices (SR, *=°D
[9, 59]; Shannon,**'D [24, 60]; Simpson’s, *=*D [7, 61];
Berger-Parker * =~ “D [9, 62]) and creates, for a given
array of alphas, a diversity index profile (diversity profile

in short or D). The Diversity represents the number
of equally common species (e.g., clones) required to
yield a particular value of “D [49, 63] (Fig. le). The a-
values represent weights, which means as o increases,
higher frequency clones are weighted more (Fig. 1le). While
the lower limit of alpha tends to the SR (SR = “=°D = n),
the upper limit of alpha is dominated by the frequency
of the most abundant clone of the respective repertoire
(* 7 "D =-log sup f;). Since each alpha value focuses
on a different stretch of the immune repertoire (Fig. 1d, e),
the Diversity forms a continuum of viewpoints on the
same underlying immune repertoire structure.

Recent reports have provided evidence that immune rep-
ertoires follow a power law distribution, more specifically,
Zipf-like distributions [64] (linear correlation between log(-
clonal frequencies, f) and log(clonal rank)). Our own and
previously published data from others [7, 10, 16] are in
agreement with these findings both for B- and T-cell reper-
toires (Additional file 4) [41]. The influence of alpha on
Zipf-like clonal frequency distributions is high, in contrast
to uniform ones (Fig. 1d, e), and may lead to the intersec-
tion of Diversity profiles (Fig. 1d, e; Additional file 2). Nat-
urally, this renders qualitative diversity comparisons based
on single diversity indices questionable; a diversity index
before the intersection may reveal that one repertoire is
more diverse than the other while the reverse is true for an
index with a different alpha value after the intersection
(Fig. 1d, e; Additional file 2). Indeed, we found diversity
profile intersection for all of the BCR and TCR datasets
within and across immunological status, which were as var-
ied as healthy, cancer (CLL), influenza vaccination and
transplantation (Additional file 2). Therefore, we set out to
attribute an immunological meaning to diversity profile
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intersection by connecting diversity profiles directly to the
underlying immune repertoire (Fig. 2). In order to ac-
complish this we took advantage of the Schur-concavity
of the Diversity functions. Briefly, the intersection of
Schur-concave functions (Fig. 2a) predicts a likewise
intersection of the underlying rank-ordered cumulative
frequency distributions (Fig. 2b) [35]. Thus, the inter-
section of diversity profiles indicates that the underlying
clonal frequency distributions differ markedly in their
shape on several (at least two) clonal regions of the rep-
ertoire (Fig. 2b), indicating the existence of qualitatively
varying clonal expansion differences between immune
repertoires (Fig. 2b). By virtue of the linkage of diversity
profiles and underlying frequency distributions, it is
now possible to predict these differences in clonal ex-
pansion only based on the respective diversity profiles.
Of note, without the use of profiles, the differences in
clonal expansion may have remained undetected. Im-
munologically, the intersection of diversity profiles may
be explained by different underlying kinetics of clonal
expansion: while one repertoire is already highly ex-
panded possibly due to an acute infection (showing a
minority of clones with higher frequency and a majority
of clones with very low diversity), the other repertoire
could be more evenly distributed with most of the
clones being of similar frequency as this may be reflect-
ive of an antigen-inexperienced cell population.

Having linked diversity profiles to frequency distribu-
tions, we next went one step further to quantitatively test
how sensitively diversity profiles represent the underlying
clonal frequency distribution. Only when the representa-
tion is of high confidence is the maximum amount of im-
munological information inherent to the clonal
frequency distribution captured by the considerably
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lower-dimensional diversity profile. To test the level of
confidence of diversity profiles, we hierarchically clus-
tered 1000 in silico generated Zipf frequency distribu-
tions representing various states of repertoire clonal
expansion (Fig. 3a, c) as well as their corresponding
Diversity profiles (Fig. 3b, d). The number of our sim-
ulated Zipf distributions exceeds the size of published
immune repertoire HTS datasets by one to two orders
of magnitude [7, 10, 16]. The Zipf-distributions were of
identical dimension and composition, which allowed for
their hierarchical clustering. The hierarchical clustering
dendrograms of Zipf distributions (Fig. 3c) and Diversity
profiles of 51 alpha values in a range of 0 to 10 (Fig. 3d)
reached a cophenetic correlation of r~0.82 (Fig. 3e),
which reflects a highly faithful representation of immune
repertoire structure by diversity profiles. The cophenetic
correlation coefficient measures the similarity between
dendrograms (see Methods). Next, we proceeded to deter-
mine the dependence of the correlation of distribution
and diversity profile clustering on the number of alpha
values used. We found that the positive correlation be-
tween both dendrograms levels off towards 15 alpha
values (r~0.82); the maximum correlation of r~ 0.94 is
reached with 40 alpha values (Fig. 3e). These simulations
suggest that diversity profiles reflect with higher accuracy
the clonal distributions of immune repertoires when com-
pared with single diversity measures. Indeed, low numbers
(<5) of alpha values yielded correlations below r=0.8
(Fig. 3e); profiles composed of two alpha values, which is
in the range of the commonly used Shannon and Simp-
son’s index, did not recover the hierarchical clustering of
the simulated Zipf-distributions (r =~ 0) (Fig. 3f).

Although Diversity profiles accurately reflect immune
repertoire clonal (Zipf) frequency distributions, they are
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(See figure on previous page.)

Fig. 3 Diversity profiles recover the underlying frequency distribution to a large extent. a Simulation of 1000 clonal frequency (Zipf) distributions
of varying degree of clonal expansion (Zipf-alpha = 0.1, Zipf-B € [0.001, 0.1]), but equal clonal composition. Distributions were colored by extent of
clonal expansion (blue, low clonal expansion; red, high clonal expansion). b Diversity profiles of Zipf-distributions (a) were plotted for alpha values
ranging from 0 to 10. Diversity profiles were colored by the respective Zipf-distribution. ¢ Zipf-distributions (a) were hierarchically clustered based
on Pearson correlation distance in order to only take into account the shape of the distributions. Hierarchical clustering was visualized using heatmaps,
in which each tile represents the Pearson correlation coefficient between any two distributions. Row and column color (blue, red) bars indicate the
respective degree of clonal expansion of each distribution as shown in (a). d Diversity profiles of Zipf-distributions (a) were hierarchically clustered
based on Pearson correlation distance in order to only take into account relative clonal expansion differences. e The cophenetic correlation of
the dendrograms of Zipf-distributions (c) and of Diversity profiles (d) was determined as a function of a growing [accumulating] number of alpha-
values used — the number of alpha values was varied between 2 and 51 within an alpha range of 0 to 10 (step size of 0.2). The cophenetic correlation
(r) between dendrograms of frequency distributions and Diversity profiles increases with increasing number of alpha values used reaching r=0.94 for
40 and r=0.82 for 51 alpha values used. f Color bars as used in heatmaps in (c) and (d) are shown to visualize the correspondence of clustering of Zipf

distributions and Diversity profiles for the two extreme cases of the number of alpha values used: 2 (blue arrow) and 51 (red arrow)

unfit to quantify their degree of clonal expansion. There-
fore, we showed using the Rényi divergence [31] that the
Diversity is divisible into two components: SR (SR = *=°D)
and Evenness (“E: °D = SR x “E) (Additional file 5). Even-
ness describes the extent to which a given species fre-
quency vector is distanced from the uniform distribution
species frequency vector, and is thereby immunologically
interpretable as the extent of clonal expansion of a given
immune repertoire. Diversity and Evenness are mathemat-
ically independent [63], signifying the inability to infer
Evenness solely based on Diversity and vice versa. Thus,
Evenness and Diversity are two independent descriptors of
lymphocyte clonal frequency distribution. Since Evenness
profiles are SR-scaled versions of diversity profiles, it fol-
lows that they also represent immune repertoire frequency
distributions to a high degree (Fig. 3).

While HTS has enabled an unprecedented depth of
coverage of immune repertoires (ie., 10°~10° sequencing
reads per repertoire), there is still a vast undersampling of
biological diversity, especially in human samples [9, 65].
Consequently, we investigated the robustness of Diversity
and Evenness profiles to varying sequencing depth
(technological undersampling). To this end, we simulated
Zipf distributions of a wide range of states of clonal expan-
sion using 10° reads (Additional files 2A and 4A) as this
represents the magnitude of reads reported using current
HTS instruments (e.g., [llumina) [7, 24, 41]. Across various
sequencing read depths (10 to 100 %), we determined both
the pairwise probability of the intersection of repertoires
(qualitative robustness; Additional files 6A and 7A) and
the mean distance between profiles (quantitative robust-
ness; Additional files 6B and 7B). We found that Diversity
profiles were qualitatively and quantitatively robust across
the entire sampling range (from 10 % sampling onward;
Additional file 6) whereas in case of qualitative robustness,
Evenness had to rely on higher percentages of reads
(>90 %) to reach robustness to technological undersam-
pling (Additional file 7) [9].

Thus, Diversity and Evenness profiles reliably con-
serve the information of higher dimensional frequency

distributions (Fig. 3; Additional files 6 and 7) and re-
flect accurately the state of clonal expansion (Fig. 2;
Additional file 2). Importantly, immune repertoires,
across individuals and across time points within indi-
viduals, differ in clonal composition, and thus are un-
suitable for machine learning analyses, which require
the compared repertoires to be of identical compos-
ition. Diversity and Evenness profiles, however, fulfill by
construction this requirement (Fig. 1c) and therefore
enabled us to perform cross-individual comparison of
entire immune repertoires.

Diversity and Evenness profiles can predict the
immunological status of immune repertoires: a proof of
principle for a repertoire-based immunodiagnostics
pipeline

As environmental and pathogenic exposure greatly influ-
ence clonal frequency distributions, diversity profiles

(“ D« E) may be reflective of an individual’s current

immunological status [66] (Fig. 3). To test this, we ap-
plied our profile-based framework and machine learning
to in-house and publicly available experimental HTS
data of both BCR/antibody variable heavy chain (VH)
and TCR variable beta chain (Vp) repertoires in various
human and murine lymphocyte populations. We com-
piled four datasets using the CDR3 as clonal identifier.
Dataset 1 consists of HTS data of sorted CD4 and CD8
T cells, which was part of a phase II trial for poor-
prognosis multiple sclerosis [10]. Sequencing was per-
formed on the level of TCR VP to assess the repertoires
before (baseline, 24 samples for both CD4/CD8) and at
two time points (2 and 12 months, 24 samples each for
both CD4/CD8) after autologous hematopoietic stem
cell transplantation. Dataset 2 consists of HTS of VH
from B cells obtained from peripheral blood of healthy
volunteers (13 samples) and patients with CLL (11 sam-
ples) [7]. Dataset 3 is composed of human HTS of VH
from peripheral blood B cells of 14 individuals prior to
and 7 and 21 days after seasonal influenza vaccination
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[16]. Dataset 4 is composed of HTS of VH from murine
NFBCs and antibody-secreting B cells.

In order to visualize possible immunological pheno-
typic differences of Diversity and Evenness profiles, we
used hierarchical clustering. Diversity profiles were clus-
tered by Euclidian distance to take into account the SR
differences between repertoires, whereas Evenness pro-
files were clustered by correlation distance in order to
exclusively focus on their shape (relative degree of clonal
expansion). For dataset 1 (human, TCR-Vp, baseline ver-
sus transplantation), we found that both Diversity and
Evenness profiles cluster by 2 months, and baseline with
12 months, which is in line with the intuition that
12 months after hematopoietic stem cell transplantation
the immune system has recovered the pre-surgery base-
line state whereas 2 months after transplantation the T-
cell repertoire has assumed a perturbed state (Fig. 4a—d).
For dataset 2 (human, BCR, healthy versus CLL), we
found that Diversity and Evenness profiles cluster sam-
ples of B-cell repertoires of healthy and CLL-afflicted pa-
tients well (Fig. 5a, b).

For dataset 3 (human, BCR, baseline versus influenza
vaccination), we found that profiles did not cluster by
immunological status. Interestingly, diversity profiles of
our two human BCR/antibody datasets 2 and 3 clustered
apart from one another well (Additional file 8). However,
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healthy individuals across both datasets did not cluster
together, suggesting that dataset clustering may still be
heavily influenced by non-biological factors such as la-
boratory origin, sample preparation, and sequencing in-
strument. Finally, for dataset 4 (murine, BCR, naive
versus antibody secreting cells), naive B cells distinctly
clustered apart from repertoires of antibody-secreting cells
(Additional file 9). We also determined that the robustness
of profile clustering to varying sequencing depth was high:
we in silico generated 20 Zipf-distributions of 10° reads and
assessed whether clustering was consistent between 10 %
and 100 % of sequencing reads. Indeed, we found that both
Diversity and Evenness profile clustering was robust start-
ing from 30 % of the total data (Additional file 10).

Finally, in order to quantify the immunological predictive
performance of Diversity and Evenness profiles, we applied
SVM analysis and feature selection (Additional file 3) to
dataset 1 and 2 profiles (Table 1) since they showed im-
munological status-dependent profile differences by un-
supervised hierarchical clustering (Figs. 4 and 5). The
prediction accuracy of our SVM analysis, defined as the
mean of prediction specificity and sensitivity, ranged be-
tween~80 % and~95 %, showing that diversity profiles
correlated with immunological status. SVM feature selec-
tion determined a median number of 2 to 11 alpha values
as optimal for reaching the highest prediction accuracy

A
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M Month 2
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Fig. 4 Diversity and Evenness profiles resolve stages of hematopoietic stem cell transplantation. a—d Hierarchical clustering was performed based
on Euclidean distance for Diversity profiles and correlation-based distance for Evenness profiles of dataset 1 and visualized using heatmaps. The
heatmaps depict the pairwise distances/Pearson correlation coefficients of all profiles determined (see Methods for further details). Both for CD4
and CD8 T-cell repertoires, Diversity (a, ¢) and Evenness (b, d) profiles from 'Month 2" (blue) after transplantation cluster together as do profiles of
'Baseline’ measurements (green) and 'Month 12" (red) after transplantation (red color bar). Of note, for CD8 datasets, Diversity profiles cluster almost
perfectly by each of the three statuses (Baseline, Month 2, Month 12). Diversity and Evenness profiles were calculated in a range of alpha=0 to
alpha =10 with a step size of 0.2. Sample numbers: 24 per immunological status and T-cell population
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Fig. 5 Diversity and Evenness profiles separate healthy from cancer-afflicted individuals. a, b Analogously to Fig. 4, Diversity (a) and Evenness (b)
profiles of dataset 2 were hierarchically clustered. Diversity and Evenness profiles separate healthy and CLL-afflicted individuals well (red color bar).
Diversity and Evenness profiles were calculated in a range of alpha =0 to alpha =10 with a step size of 0.2. Sample numbers: healthy, 13; CLL, 11
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(Table 1). Restricting SVM analyses to conventional single
Diversity and Evenness indices =D and *~"*E (represent-
ing the [scaled] exponential of the Shannon entropy and
Simpson’s index, respectively) resulted in a drop of predic-
tion accuracy by=5 % to~30 % (Additional files 11 and
12). In addition, for dataset 2 (healthy versus CLL), all (2
out of 2), and for dataset 1, several (2 out of 4 for Shannon
and 1 out of 4 for Simpson’s index) of the single diversity
indices-based SVM analyses did not reach significance (p >
0.01), whereas profile-based SVM analyses always yielded
(6 out of 6 SVM analyses) p-values of 0 (Table 1; Additional
files 11 and 12). This further underlined the advantage of
using Diversity and Evenness profiles in a prospective im-
munodiagnostics pipeline (Fig. 1) for a more accurate and
robust capture of the immunological status of immune
repertoires.

Discussion

The non-uniform composition of immune repertoires pre-
cludes their comparison using machine learning approaches
and consequently the extraction of whole-repertoire im-
munological fingerprints. Translation into Diversity and

Evenness profiles, in contrast, offers the unique advantage
to conserve (and potentially extract) the biological informa-
tion of entire immune repertoire datasets while simultan-
eously compressing them to a uniform composition.
Having shown that immune repertoire frequency distribu-
tions are faithfully captured by diversity profiles (Figs. 2 and
3), we applied hierarchical clustering, SVMs and feature se-
lection to diversity profiles and showed that they accurately
predict immunological status (Figs. 4 and 5, Table 1). This
indicated that the clonal frequency distributions of the
datasets analyzed contained immunological information
that was consistent across individuals of identical immuno-
logical status but differed from those individuals of different
status. Therefore, diversity profiles offer a sequence-inde-
pendent approach to immune repertoire-based diagnostics,
taking into account the entire clonal structure of the com-
pletely sequenced repertoire and not just that of a vanish-
ingly small percentage of potentially shared public clones.
SVM analyses revealed that, as opposed to diversity profiles,
single diversity values were unreliable predictors; for
alpha=1, 4 out of 6, and, for alpha=2, 3 out of 6
prediction accuracies were insignificant (p > 0.01;

Table 1 Diversity (“°D) and Evenness (°F) profiles classify TCR (dataset 1) and BCR (dataset 2) immune repertoires by immunological

status with high accuracy

BACC (%) Sensitivity (%) Specificity (%) Significance Median number of
(p-value) alpha-values used

Dataset 1

CD4-Diversity (g’ D ): Month 2 versus Baseline + Month 12 86.5 729 100 0 8
CD4-Evenness (@ £ ): Month 2 versus Baseline + Month 12 91.7 833 100 0 11
CD8-Diversity (3 : Month 2 versus Baseline + Month 12 792 583 100 0 9
CD8-Evenness (? E ): Month 2 versus Baseline + Month 12 96.9 9338 100 0 6
Dataset 2

Diversity: Healthy versus CLL (? D 88 77 100 0 5
Evenness: Healthy versus CLL (3 E; 84 77 91 0 2

The median number of alpha-values employed to reach optimal prediction accuracy (BACC) ranged between 2 and 11. BACCs were computed using nested leave-one-out
cross-validation and were regarded as significant if p < 0.01. BACC ((Sensitivity + Specificity)/2), balanced prediction accuracy. Diversity and Evenness profiles were calculated
in a range of alpha =0 to alpha = 10 with a step size of 0.2
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Additional files 11 and 12). Our diversity profile-
based approach was highly and consistently reliable
as profiles yielded the lowest possible p-value for all
six prediction scenarios (Table 1). The feature selec-
tion of alpha values for prediction of immunological
status avoided overfitting. The number of alpha values
used is a function of the extent of difference between
immunological statuses: the lower the difference, the
more alphas will be needed by the SVM (or any other
feature selection algorithm) to reach optimal prediction
accuracy. For the development of an immunodiagnostics
pipeline, the dependence of antibody repertoire structure
on demographic factors (age, gender, medical history) de-
serves further consideration [29, 67].

While we have provided evidence that clonal fre-
quency distributions contain immunologically relevant
information, an equally important question is how this
information is coded. Clearly, a non-uniform distribution
is required for storage of biologically specific informa-
tion. Indeed, we found, in accordance with previous
publications [64, 68], that all datasets analyzed followed
a non-uniform, power-law distribution (Zipf-distribu-
tion). It has been suggested that Zipf-distributions can
naturally arise in response to antigen exposure [66] —
modulated by antigenic complexity, exposure frequency
and evolutionary optimization [27, 69]. This may ex-
plain diversity profile patterns shared across individuals
(Figs. 3, 4 and 5). By virtue of the developed bioinfor-
matical framework and high-throughput repertoire se-
quencing, we are now in the position to investigate
whether any given immunological status gives rise to a
specific clonal frequency distribution (immunosignature)
[9, 70, 71]. Performing these investigations depends
on further experimental, technological and statistical
advancements.

Experimentally, (single-cell) sorting and sequencing of
specific lymphocyte populations (e.g., PCs, memory B
cells, effector memory T cells) may increase the antigen-
specific signal in diversity profiles by eliminating the
noise of non-significant cell populations [3, 15] as well
as normalizing the influence of differences in clonality
and RNA expression and correcting for PCR and se-
quencing related biases. This may be especially relevant
in PBMC-based repertoire analyses where it remains to
be seen whether the clonal expansion signature is dom-
inant enough to show through the background diversity
of other cell populations. Thus, a high sequencing depth
might also be needed if performing sequencing on bulk
unsorted cell populations with a high amount of non-
specific signal (Additional file 8) in order to be able to
detect immunological status-specific differences.

Technologically, standardization [72, 73] will be needed
to increase comparability of repertoire datasets originating
from different sources (Additional file 8; batch variance)
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as currently different experimental approaches (single cell
sequencing [74] and heavy/light-chain-pairing [75], unique
molecular identifier tagging [76]) and varying computa-
tional workflows (quality pre-processing [77], error cor-
rection by consensus read formation [21, 78], replicate
sequencing [9, 68, 79]) are used for data generation and
analysis. Indeed, our results suggested that diversity
profile-based analyses were very sensitive to laboratory-
dependent experimental workflows (Additional files 1,
8 and 10). For example, assuming that healthy individ-
uals should have generally similar clonal frequency dis-
tributions (Figs. 4 and 5), and thus similar diversity
profiles (Fig. 3), deviations from this 'immunosignature
of health' (Additional file 8) may signal technological
differences between experimental workflows (ie., li-
brary preparation, cell population, sequencing depth).
This may possibly prevent comparative repertoire analyses
between any samples (be it healthy or diseased/infected)
obtained from different laboratories [58]. Diversity profiles
may, therefore, become a valuable bioinformatical tool for
technological benchmarking and normalization of im-
mune repertoire sequencing in the future, enabling cross-
laboratory comparisons and meta-analyses, which would
be highly valuable in advancing the development of next-
generation immunogenomics diagnostics.

We showed that diversity profiles were considerably
robust to sequencing depth (technological undersam-
pling; Additional files 6, 7, and 10). This is at least in
part due to the frequency-dependence of the diversity
measures used, which leads to a relatively fast saturation
in case of the power law distribution of immune reper-
toires [9], thus minimizing the overestimation of diver-
sity resulting from low-frequency clones, which could
have arisen from PCR and sequencing error. For any di-
versity measure to be biologically meaningful, it is highly
desirable that samples cover a large portion of the bio-
logical diversity. To correct for insufficient biological
sampling, recent investigations have focused on good es-
timators of selected diversity measures [23, 80] or even
the underlying clonal frequency distribution [81]. How-
ever, the statistical research for diversity estimators of
large-scale immune repertoire data is still in its infancy
and needs further development.

Similarity-based clustering of CDR3 or V(D)] sequences
(also called clonotyping) represents a frequent pre-
processing step in immune repertoire analyses [82].
Recently, it has been shown that diversity profiles can po-
tentially be linked to such similarity clustering approaches
[37]. While, the lack of somatic hypermutation in T cells
renders T-cell clonotype definition straightforward, it is a
non-resolved issue in the data analysis of B-cell repertoire
data [82]. Further research, possibly driven by the applica-
tion of phylogenetic analyses [83] to immune repertoire
data, will be needed to determine a clonotype definition
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that best represents a sample’s functional immune recep-
tor diversity [84] as well as antigen specificity [3].

Conclusions

We have shown that high-throughput immune repertoire
sequencing coupled to sequence-independent diversity
profiling may enable the development of immunodiagnos-
tic cross-patient comparisons of immune repertoires, thus
advancing the fields of systems and personalized medicine
[85]. In contrast to the use of distinct (and very rare)
disease-indicative public clonal sequences, diversity pro-
files reflect to a large extent the entire immune repertoire,
which may reflect immunological statuses and their asso-
ciated repertoire evolution and dynamics more sensitively.
Indeed, we detected a large amount of immunological
status-specific information in sequence-independent
clonal repertoire distributions. Our approach is largely
independent of the number of samples and therefore
highly scalable for clinical use [86]. Finally, since im-
mune repertoires represent fingerprints of the current
status of an immune response, our approach can also
be applied as a diagnostic metric to diseased or infected
individuals where the disease or infection-causing anti-
gen is unknown [87].

Additional files

Additional file 1: Sequencing read statistics of analyzed datasets.
Of note, for dataset 4, the number of CDR3s is slightly higher than the
actual cell numbers (=5000). It is most likely that the increased number of
CDR3s was a result of PCR-introduced errors (due to the use of Taq rather
than a high-fidelity polymerase). It is well established that raw sequencing data
would drastically overestimate the number of unique clones and the only way
to fully overcome this would be to apply sophisticated experimental and
bioinformatic methods for error correction (see Shugay et al. [21] for more
information). Such an advanced method was not available to any of the
researchers (or ourselves) who generated the datasets used in this
manuscript. Therefore, we decided to use the simple approach of singleton
exclusion (CDR3s with abundance of 1 were excluded). Other publications,
including our own, have also used replicates to determine much more strict
cutoffs [9, 68, 79]. Of note, if cutting at CDR3 abundance equaling 5 (as
others have done [68]), the number of unique CDR3s is 1538 (data not
shown), thus being well below the number of 5000 sorted cells. However,
the important thing to acknowledge is that the clonal frequency
distributions of naive B cells on the one hand and that of ASCs and PCs on
the other hand are markedly different and in line with biological expectations
of B-cell populations (Additional file 2). It is these differences that cause the
compartments to cluster apart (Additional file 9).

Additional file 2: Diversity and Evenness profiles of frequency
distributions depicted in Additional file 4. Numerous profiles intersect
in in silico and experimental datasets. a Diversity and Evenness profiles of
distributions in Additional file 4a. Per parameter combination, 200
Zipf-distributions were simulated and are shown as boxplots; the
variance of Diversity and Evenness profiles for any given parameter
combination is low. b Diversity and Evenness profiles of clonal frequency
distributions of Additional file 4b (dataset 1) are graphed by immunological
status. ¢ Diversity and Evenness profiles of clonal frequency distributions of
Additional file 4c (dataset 2) are graphed by immunological status.

d Diversity and Evenness profiles of clonal frequency distributions of
Additional file 4d (dataset 3). e Diversity and Evenness profiles of clonal
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frequency distributions of Additional file 4e (dataset 4). ASC antibody-secreting
cells, NFBC naiive follicular B cells, PC plasma cells.

Additional file 3: Flowchart of the P-SVM algorithm. Support vector
machine analysis was performed using the potential support vector
machine (P-SVM) [57], which combines linear classification (classification
of immunological status) of Diversity and Evenness profiles with the
selection of a minimal subset of alpha values achieving the highest
prediction accuracy (feature selection). The goal criterion of classification
performance was balanced prediction accuracy (BACC = (Sensitivity +
Specificity)/2)). The classification performance was measured using nested
leave-one-out cross-validation, where feature selection and hyperparameter
selection were performed in the inner cross-validation loop independently
of the test sample of the outer cross-validation loop. The inner loop was
used to determine the combination of parameters that give the best classifi-
cation performance: the cost parameter ¢ was varied from 1 to 17 in five
equally spaced steps and the regularization parameter € was chosen as 2'
with i=-3,-2,..., 3, 4. In order to obtain compact models that only use a
small set of features, all parameter combinations in the inner cross-validation
loop for which more than three models exceeded an upper limit of 20
selected alpha values were rejected. BACC balanced prediction accuracy.

Additional file 4: Simulated and experimental immune repertoire
datasets are Zipf-like distributed as evidenced by the near-linear
relation between the logarithm of the clonal (CDR3) frequency and
logarithm of the clonal rank. a Zipf-distributions were simulated using
the Zipf-R package with the parameter combinations (Zipf-a: 0.01, 0.1, 0.9;
Zipf-B: 0.0001, 0.001, 0.01, 0.1). For further details regarding simulations,
please refer to Methods. b CDR3 clonal frequency distributions of dataset
1 [10]. Due to the size of dataset 1, only one, although representative,
distribution per immunological status is shown. ¢ CDR3 clonal frequency
distributions of dataset 2 [7]. d CDR3 clonal frequency distributions of
dataset 3 [16]. e Clonal frequency distributions of dataset 4 are shown.
Of note, Zipf-like behavior increases with increasing sequence coverage
(NFBCs). ASC antibody-secreting cell, NFBC naive follicular B cell, PC
plasma cell.

Additional file 5: Proof that Diversity (°D) is divisible into species
richness and Evenness (“E).

Additional file 6: Diversity profiles are qualitatively and
quantitatively robust to varying sampling depth. a Assessment of
qualitative robustness to technological undersampling: the probability
(color-coded, ranging from 0 [no intersection for no simulation run] to 1
[always intersection for all simulation runs]) of the intersection of profiles
of Zipf distributions simulated using varying Zipf-a [a] (0.01,0.1,0.5,0.9)
and Zipf-B [b] (0.0001, 0.001,0.01, 0.1, 1) parameters (Additional file 2) was
assessed for 200 simulation runs per parameter combination and sampling
depth (10-100 % of original sampling depth, 100 % = 10° reads). Within
heatmaps, each tile represents one parameter combination of Zipf-a and
Zipf-B. The Rényi-alpha for all profiles ranged from a=0 to a= 10 in steps of
02. b Assessment of quantitative robustness to technological undersampling:
the mean ratio of pairs of Diversity profiles ( 2,%D'¢ %) where ng is the
number of alphas used (range, 0-10; step size, 0.2) and °D and °D are any
two pairs of Diversity profiles, was assessed. ¢ The Pearson correlation between
the heatmaps of the complete datasets (100 % of simulated reads) in (a) and
(b) and the undersampled ones (10-90 %). If undersampling had no influence
on profiles, the correlation between the complete dataset and the
undersampled ones was r=1.

Additional file 7: Evenness profiles are qualitatively and
quantitatively robust to undersampling, though to a lesser extent
than Diversity profiles. a Assessment of qualitative robustness: the
probability (color-coded, ranging from zero [no intersection for no
simulation run] to one [always intersecting for all simulation runs]) of
intersection of profiles of Zipf distributions simulated using varying Zipf-a
[a] (0.01, 0.1, 0.5, 0.9) and Zipf-B [b] (0.0001, 0.001, 0.01, 0.1,1) parameters
(Additional file 2) was assessed for 200 simulation runs per parameter
combination and sampling depth (10-100 % of original sampling depth,
100 % = 10° reads). Within heatmaps, each tile represents one parameter
combination of Zipf-a and Zipf-B. The Rényi-alpha for all profiles ranged
from a=0to a=10in steps of 0.2. b Assessment of quantitative robustness:
the pairwise ratio of pairs of Evenness profiles gza%'“ f—) where ng is the
number of alphas used (range, 0-10; step size, 0.2) and “F and °F are any
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two pairs of Evenness profiles, was assessed. ¢ The Pearson correlation
between the heatmaps of the complete datasets (100 % of simulated reads)
n (a) and (b) and the undersampled ones (10-90 %). If undersampling had
no influence on profiles, the correlation between the complete dataset and
the undersampled ones should be r=1.

Additional file 8: Diversity and Evenness profiles of dataset 3 (BCR,
baseline versus influenza vaccination) do not cluster by sampling
time point but cluster apart from cluster profiles of dataset 2 (BCR,
healthy versus CLL). a Hierarchical clustering of Diversity profiles of
dataset 2 (healthy versus CLL) and dataset 3 (baseline versus influenza
vaccination) was performed based on Euclidean distance and visualized
using heatmaps. The heatmap depicts the pairwise distance coefficients
of all profiles determined (see Methods for further details). Row colors
describe dataset origin (dataset 2, red; dataset 3, blue), whereas column
colors describe the different immunological statuses contained in
datasets 2 (healthy, blue; CLL, red) and 3 (baseline, green; day 7, brown;
day 21, violet). b Analogous analyses to (a) using Evenness profiles and
correlation distance were performed.

Additional file 9: Naive follicular B cells cluster apart from antibody
secreting cells. a Hierarchical clustering of dataset 4 Diversity profiles
was performed based on Euclidean distance and visualized using
dendrograms. The respective sorted B-cell populations are color-coded.
For more information on dataset 4, please refer to Methods. Of note, we
recently showed that the sequencing depth achieved by us is sufficient
to accurately represent murine repertoire diversity [9]. b Hierarchical
clustering of dataset 4 Evenness profiles was performed based on
correlation-based distance and visualized using dendrograms. The
respective sorted B-cell populations are color-coded.

Additional file 10: Hierarchical clustering of Diversity profiles is
more robust to varying sampling depth than that of Evenness
profiles. a Dendrograms of the hierarchical clustering of mean Diversity
profiles from undersampled data (10-100 % of total data, 10° reads) are
drawn per each sampling stage. The same parameter combinations as in
Additional file 4 were used (200 Zipf-distributions per sampling stage and
parameter combination). Hierarchical clustering on Diversity profiles was
performed using the Euclidean distance. The first three clusters as determined
by similarity are color-coded. b Dendrograms of hierarchical clustering of
mean Evenness profiles from undersampled data (10-100 % of total data, 100
reads) are drawn per each sampling stage. The same parameter combinations
as in Additional file 4 were used (200 Zipf distributions per sampling stage
and parameter combination). Hierarchical clustering on Evenness profiles was
performed using the Pearson correlation-based distance. The first three clusters
as determined by similarity are color-coded. ¢ Boxplots of the cophenetic
correlations for each of the 200 Zipf distribution for each parameter
combination per sampling state (10-90 % of total data, 10° reads) and
the tree from the complete data set (100 %) was determined to quantify
the clustering robustness. The cophenetic correlation between trees
from Diversity profiles exceeds r = 0.8 for both Diversity and Evenness
profiles at 30 % sampling of the complete dataset.

Additional file 11: Diversity (““'D) and Evenness (*='E) Shannon
values classify TCR (Dataset 1) and BCR (Dataset 2) immune
repertoires with lower prediction accuracy (BACC, >64 %) than the
respective profiles (Table 1). BACCs were computed using nested
leave-one-out cross-validation and were regarded as significant if p < 0.01.
Legend: BACC (Sensitivity + Specificity)/2, balanced prediction accuracy.
Please refer to Materials and Methods for more details.

Additional file 12: Diversity (*~2D) and Evenness (*~2E) Simpson-Index
values classify TCR (dataset 1) and BCR (dataset 2) immune repertoires
with lower BACC (prediction accuracy, >64 %) than the respective
profiles (Additional file 11). BACCs were computed using nested
leave-one-out cross-validation and were regarded as significant if

p < 0.01. BACC (Sensitivity + Specificity)/2, balanced prediction accuracy.
Please refer to Methods for more details.

Abbreviations

ASC: antibody-secreting cell; BACC: balanced accuracy (prediction accuracy);
BCR: B-cell receptor; bp: base pair; CGG: chicken gamma globulin;
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