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Abstract

We describe an approach for genotyping bacterial strains from low coverage genome datasets, including metagenomic
data from complex samples. Sequence reads from unknown samples are aligned to a reference genome where the
allele states of known SNPs are determined. The Whole Genome Focused Array SNP Typing (WG-FAST) pipeline can
identify unknown strains with much less read data than is needed for genome assembly. To test WG-FAST, we
resampled SNPs from real samples to understand the relationship between low coverage metagenomic data and
accurate phylogenetic placement. WG-FAST can be downloaded from https://github.com/jasonsahl/wgfast.
Background
Whole genome sequencing (WGS) is a powerful and
increasingly available technology for understanding the
evolutionary and epidemiological relationships among
bacterial pathogens. For bacterial disease outbreaks,
whole genome analysis has been used to identify and
attribute the outbreak sources for many bacterial patho-
gens, including Escherichia coli O104 [1],Vibrio cholerae
[2], Klebsiella spp. [3], methicillin resistant Staphylococcus
aureus (MRSA) [4] and even Bacillus anthracis [5]. Adding
the genetic relationships of isolates to other standard
epidemiological correlates (for example, time and space)
offers the power to identify disease outbreaks that
would not otherwise be apparent. This approach has
been highly successful using sub-genomic DNA methods
(for example, multi-locus sequence typing (MLST) [6])
but the use of whole genome sequencing will replace
these in the near future due to precision and accuracy of
strain identification offered by this near comprehensive
technology [7].
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The advent of molecular diagnostics (for example,
polymerase chain reaction (PCR)) has led to improved
pathogen identification, in part, because they are not
dependent upon isolation and subsequent culturing of
the pathogen. But the currently dominant disease-
tracking methods (for example, pulsed field gel electro-
phoresis (PFGE)) only work with isolated pure cultures,
leading to the possibility that disease tracking efforts will
be diminished in this new age [8]. Molecular epidemio-
logical methods using the power of WGS that parallel
molecular diagnostics with direct application to complex
specimens are needed. In fact, recent studies have used
this approach to associate diseases with the infectious
agent [9, 10].
WGS analysis to identify pathogen strains would seem

possible through the metagenomic deep sequencing of
clinical specimens, but genome coverage of a specific
microbe is hard to predict and the pathogen may repre-
sent only a minor component in the microbiome of the
infected tissue [11]. Many pathogen populations have
low diversity and, hence, single nucleotide polymorph-
ism (SNP) discovery with low-genome coverage leads to
greater misidentification due to sequencing errors than
true SNP genotyping. To reduce this ‘signal-to-noise’
problem, we developed the Whole Genome Focused
Array SNP Typing (WG-FAST) method, where only
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known SNPs with defined allele states are scored. These
are derived from a reference population where high
quality genomic data are available to generate a highly
robust phylogenetic reconstruction. Sequencing reads
are aligned to a reference genome annotated with the
positions of known SNPs and their allelic states. The
metagenomic SNP genotype of the unknown pathogen
can then be placed into the most likely phylogenetic
position. It is the reference population SNP database
that defines the best possible model for population
structure, which is then used as a reference for unknown
SNP genotypes identified from less than ideal (for ex-
ample, low coverage) datasets. We also present several
approaches for establishing confidence in phylogenetic
placement including hypothesis-testing methods that
generate odds ratio probabilities. This is essential be-
cause the precision of phylogenetic placement will be
unique for each application and is dependent upon a
number of variables including: (1) the SNP/genome
density in the reference population; (2) the depth of gen-
ome coverage from the unknown sample; and (3) the
phylogenetic topology in the actual placement position
of the reference population. Thus, placement confidence
metrics must be established for each unknown sample.
WG-FAST will allow the use of deep metagenomic se-
quencing data to identify strains from complex samples
such as clinical specimens, food matrices, and the envir-
onment, alleviating the requirement for pure cultures to
accomplish molecular epidemiological goals.

Methods
Single nucleotide polymorphism (SNP) discovery
The robust characterization of SNPs in a reference set of
isolates is a necessary first step in the WG-FAST analysis
pipeline. A pipeline to wrap methods discussed below,
known as the Northern Arizona SNP Pipeline (NASP), is
publically available (tgennorth.github.io/NASP/). Our
strategy for reference SNP identification is to use only
the non-redundant core genome sequences to avoid
missing data and misuse of paralogous regions. To
create a reference database, raw reads or assembled
genomes are aligned to a reference genome with
BWA-MEM [12] or NUCmer [13], respectively. SNPs
and insertion/deletions (indels) can be identified with
variant callers including the UnifiedGenotyper method in
GATK [14, 15], SAMtools [16], VarScan [17], and/or
SOLSNP ([18]). Called SNPs can then filtered using user-
defined thresholds for read depth (default = 3×) and allele
frequency proportion (default = 90 %). All called SNPs
are then placed into a matrix that includes the nucleotide
calls in each position of the reference genome for all
genomes queried. Benchmarking tests on a single
genome (E. coli C227-11) with 12 million reads, 100
bases in length, took 4 h 25 min to place and perform 100
subsampling confidence tests using eight processors on a
single node with 48 Gb of RAM.

Whole genome focused array SNP typing (WG-FAST)
pipeline
Source code for WG-FAST is publically available at [19]
under a GPL v3 license. The required input for a
WG-FAST analysis includes a NASP-formatted SNP
matrix, a phylogeny inferred with RAxML [20], a ref-
erence genome assembly, and a directory including
single or paired-end reads with ‘.fastq.gz’ extensions.
Dependencies for WG-FAST include BWA-MEM, GATK,
Picard-tools ([21]), DendroPy [22], RAxML v8 [23],
BioPython [24], Trimmomatic [25], and SAMtools [16];
many of these dependencies are included in the WG-
FAST repository. A script to generate the formatted,
required phylogeny from the SNP matrix is included
with WG-FAST.
In the WG-FAST pipeline workflow, reads are initially

mapped to a reference genome assembly with BWA-
MEM and SNPs are called with the UnifiedGenotyper
method in GATK. The resulting variant call format
(VCF) file is then filtered for minimum coverage and
minimum allele proportion. If a position fails a filter,
then the call is replaced with a gap (‘-’), indicating miss-
ing data. The VCF file is also filtered to only include
genomic coordinates present in the input SNP matrix.
The unknowns are then merged with the original SNP
matrix, which is converted into a multi-FASTA file. All
unknowns are then inserted into the phylogenetic tree
using an evolutionary placement algorithm (EPA)
method in RAxML [26]; this method assigns unknowns
to edges of the phylogeny based on a maximum likeli-
hood algorithm. When the final tree is opened with
FigTree ([27]), all unknown genomes are displayed in
red for easy visualization. All patristic distances are cal-
culated with DendroPy [22], and the most closely related
genomes to each unknown, based on the lowest patristic
distance, is identified and reported. A schematic of the
complete WG-FAST pipeline is shown in Fig. 1.
An optional subsampling routine is built into WG-

FAST in order to test the robustness of a given place-
ment on a phylogenetic tree. From the final phylogeny,
the two closest genomes to each unknown, based on
patristic distances, are identified. The SNPs from the
two neighbors are then sampled at the same coverage
level as each unknown and a new SNP matrix is created.
Each matrix is then converted into a multi-FASTA and
the samples are placed into the phylogeny with the EPA
algorithm. The patristic distance to the reference isolate
is then calculated for each subsample and is compared
to the ‘true’ patristic distance using all SNPs; the reference
is used because its position is fixed and the ‘Reference’
name is the same for each NASP-formatted SNP matrix,
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regardless of the target organism. The null hypothesis is
that a random subsampling placement will differ signifi-
cantly from the ‘correct’ placement based on a comparison
of patristic distances. The number of times that the
distance from the reference is different from the known
placement is calculated for 100 replicates based on a user-
defined threshold. From a set of 100 replicates, if the num-
ber of samples placed incorrectly is fewer than 5, then the
P value is <0.05 and the placement can tentatively be
trusted. For large datasets (that is, hundreds of thousands
of SNPs and hundreds to thousands of genomes), this sub-
sampling routine may be impractical, as 200 placements
are required if 100 replicates is selected by the user.

A WG-FAST test case
To test the utility of the WG-FAST pipeline, approxi-
mately 700 E. coli genome assemblies were downloaded
from GenBank [28]; E. coli was used as the test case due
to the large number of assembled genomes in public da-
tabases and due to the non-clonal nature of the species
[29]. SNPs from all genomes were identified using E. coli
K-12 W3110 (accession # NC_007779) [30] as the refer-
ence, and a SNP matrix was generated with NASP. A
maximum likelihood phylogeny (Additional file 1:
Data file 1) was inferred on this concatenated SNP
alignment with RAxML v. 8.1.13 using the following
parameters: −f d -p 12345 -m GTRGAMMA. Closely
related genomes, based on phylogenetic relatedness,
were then manually removed, resulting in 255 genomes
(Additional file 2). Autapomorphic SNPs (that is, private
SNP alleles) in the outgroup genome, TW10509
(AEKA00000000) [31], belonging to a ‘cryptic’ lineage of
E. coli [32], were also removed. The resulting SNP matrix
consisted of greater than 225,000 SNPs (Additional file 3:
Data file 2).

Read subsampling
To test the robustness of the WG-FAST pipeline using a
low number of reads, sequence reads were randomly
sampled at varied depths (50–100,000 read pairs), from
published E. coli datasets (Additional file 4). One hun-
dred separate datasets at each read depth were then
processed with WG-FAST. The minimum number of
called positions in order to correctly genotype the un-
known ≥95 % of the time, based on a patristic distance
ratio (query patristic distance to reference/true patristic
distance to reference) between 0.99 and 1.01, was identi-
fied for each genome. Multiple isolates from different
regions of the tree and sequence data from multiple
sequencing platforms were analyzed.

SNP subsampling
In addition to subsampling raw reads, positions present
in the SNP matrix were subsampled for each genome in
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the phylogeny. SNPs were sampled at a lowest frequency
of 50, then sampled every 100 SNPs subsequently, until
the patristic distance of 95 % of 100 iterations, compared
to the reference, was between 0.99 and 1.01, compared
to the patristic distance of the placement using all avail-
able positions.

SNP matrix correlation with subsamplings
To identify the fewest number of reference positions
required in order to obtain a comparable matrix to a
matrix using all available SNPs, a subsampling method
was employed. A user-provided number of SNPs were
randomly selected from the matrix, the reduced matrix
was converted into a multi-FASTA, and a distance
matrix was calculated with mothur [33]. A distance
matrix was also generated from the complete SNP
matrix with mothur. A Mantel test was then performed
on the two matrices with mothur, using the Pearson
correlation. The Pearson correlation value at each
SNP level, with 100 replicates, was then plotted. A
script to wrap these functions is available with WG-FAST
(subsample_snps_pearson.py).

Metagenomic analysis
To test the WG-FAST method on metagenomic samples,
53 datasets from a recent metagenomic survey of stool
samples from the 2011 E. coli O104:H4 outbreak [34]
were downloaded and processed with WG-FAST
(Additional file 5). The subsample routine was run
on all samples using 100 iterations.

In silico mixtures
In some clinical samples, mixtures of multiple closely
related conspecific strains have been observed [35].
To determine how mixtures will affect phylogenetic
placement using WG-FAST, several artificial mixtures
were generated (Additional file 6) and processed with
WG-FAST. When processed with WG-FAST, a mini-
mum coverage of 1× and a minimum proportion of
60 % was used.

Error rate calculation
WG-FAST is intended to phylogenetically genotype iso-
lates from complex samples where the desired signal
could be faint. In these cases, error in the data could
confound accurate phylogenetic characterization. To test
the error rate, raw reads were mapped against the E. coli
genome TY-2482 (SRR292862) with BWA-MEM, and a
BAM file was generated. At each position in the refer-
ence chromosome, the most frequent base was removed
and the counts of the alternate alleles, which represents
error, were summed. Average error and associated stand-
ard deviation was calculated across the entire reference
chromosome.
Results
Whole genome focused array SNP typing (WG-FAST)
pipeline
WG-FAST was developed as a parallel, open source
method to accurately genotype novel isolates from high
read coverage (for example, 50× reference genome
coverage) or from metagenomic data in the context of a
known phylogenetic or population genetic structure
(Fig. 1). This method can be used to type new bacterial
populations, where the tree structure should either not
be altered, the read depth is low (<1×), as is the case
with metagenomic samples, or where computation of a
new tree is too computationally expensive. WG-FAST is
an open-source application written in Python and relies
on published and validated tools for read alignment, sin-
gle nucleotide polymorphism (SNP) calling, and the
placement of samples in a phylogenetic context.

Intrinsic error rate
One potential pitfall to identifying SNPs from low cover-
age samples is mistaking sequencing errors for true vari-
ants. We estimated the single-read base call error rate
across the E. coli chromosome in isolate TY-2482 [36] to
understand its effect on genotyping accuracy; the aver-
age error rate in this dataset was 0.16 % (SD ± 0.43 %)
(Additional file 7). Although this error rate is low, at
1× coverage of a model bacterial genome (for ex-
ample, 5 Mbp) this would result in the discovery of
roughly 8,000 false SNPs. These errors would lead to
incorrect calls across the reference genome, which
would confound the analysis of true SNPs in many
epidemiological analyses where the true variation can
be much less. While the use of short read error cor-
rection tools, such as Hammer [37] or Musket [38],
prior to WG-FAST should reduce many of these er-
rors, the common solution is to increase sequence
coverage to verify a particular SNP. With high read
coverage, the false SNP discovery is small, but this is
difficult and expensive to achieve in a metagenomic
analysis of complex specimens. Rather, the WG-FAST
approach limits base calling to known SNP positions
and therefore minimizes the impact of this error rate.
In a 1,000 SNP genotype, fewer than 2 SNPs would
be falsely identified at this rate. If metagenomic data
are used to generate a genotype at known genomic
positions and with known allele states, the sequen-
cing error has little consequence on a multi-locus
genotype determination.

Escherichia coli dataset and phylogeny
As a WG-FAST test case, approximately 700 E. coli gen-
ome assemblies were downloaded from GenBank; E. coli
was used as a test case due to the large number of
sequenced genomes. For this analysis, closely related
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genomes were manually removed based on phylogenetic
redundancy, resulting in a dataset of 255 genomes
(Additional file 2). SNPs were then identified from
NUCmer [39] alignments and a phylogeny was gener-
ated from the concatenated SNP alignment (approxi-
mately 225,000 SNPs) with RAxML v8 [23], using
TW10509 (accession #AEKA00000000) as the root
(Additional file 8) and K-12 W3110 [30] as the refer-
ence. The retention index (RI) [40] of the tree was
0.80, demonstrating significant homoplasy in the
underlying SNP data, probably resulting from histor-
ical recombination among lineages. However, the
major E. coli phylogroups, labeled A through E, were
monophyletic and consistent with previous analyses
[41].

Subsample SNP correlations
At a gross level, population genetic structure is fre-
quently estimated by calculating a pairwise distance
matrix among all the genomes in a study. In order to
understand how many SNPs are needed to accurately es-
tablish the population distance structure, we subsampled
the SNP matrix at different levels and calculated a pair-
wise distance matrix. We then correlated the resampled
data to the original distance matrix using a Mantel test
with the Pearson correlation; a script to perform these
functions is included with WG-FAST. The subsampled
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to calculate genetic distance, but the correlation in-
creased rapidly with increasing numbers of SNPs (Fig. 2).
The results demonstrate that at 500 SNPs, there is
strong correlation (>0.9) between the original distance
matrix and the subsampled matrix. The correlations only
slightly improved with greater than 500 SNPs. While
using all available data is prudent, this demonstrates that
many fewer than the full 225,000 SNPs are needed to
accurately estimate the relationships in this reference
population. Nevertheless, precise phylogenetic place-
ment is more than a simple genetic correlation and must
be explored with more detailed methods.

Subsampling SNPs from the complete SNP matrix
In order to understand the consequence of the popula-
tion structure on WG-FAST, we subsampled SNPs for all
255 genomes and examined the accuracy of phylogenetic
placement. SNPs were subsampled from the matrix for
each genome at different depths and the genome was
then re-inserted into the phylogeny. In the first iteration,
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as well as for individual genomes. In the next iteration,
each genome in the reference phylogeny was subsampled
at different depths and pruned from the phylogeny. The
subsampled genome was then re-inserted into the phyl-
ogeny with RAxML and the results tabulated (Fig. 3). In
general, the lack of a precise target required more SNP
loci for accurate phylogenetic placement. In some phylo-
genetic positions this was dramatically different, though
not universal as some clades and positions had very
similar accuracy between the two iterations. The results
demonstrate that if the exact or a closely related genome
is in the phylogeny, far fewer SNPs are required for
accurate placement than if the genome represents a new
node or branch in the phylogeny. Thus, the precision of
the WG-FAST approach is highly dependent upon
the reference phylogeny and even the position within
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the phylogeny, with well-sampled clades giving higher
genotyping resolution. This argues for the generation of
large population reference sets with an emphasis on
clinically important strains to increase the probability of
a near or perfect match. Regardless, resampling of the
underlying SNPs for any reference phylogeny can be
used to understand assignment power at each position
and more SNPs will be needed for accurate placement at
some positions than for others.

Subsampling Reads for WG-FAST placement
WG-FAST was designed for metagenomic datasets where
the number of reads mapping to a reference genome will
be variable and difficult to control or predict. The accur-
acy of phylogenetic placement will be greater with more
reads, but also dependent upon whether these reads
align to known SNP positions to allow determination of
the allelic state. We have resampled between 200 and
2,000 raw reads from different genomes from each major
group from the phylogeny (Additional file 4), aligned
them to the reference genome, and then determined the
SNP allele states for positions with mapped reads. These
limited genotypic data were resampled 100 times each
and then placed with RAxML onto the reference tree
and the frequency of placement represented as a heat-
map (Fig. 4); the patristic distances of all subsamples
compared to the ‘correct’ placement demonstrates that
additional SNP loci genotyped increases the quality of
the placement (Additional file 9). The accuracy of place-
ment increases with larger read resamples, but as with
SNP resampling (Fig. 3), this relationship changes based
on phylogenetic position. Clades with many closely re-
lated genomes complicate exact positioning of an un-
known, especially with smaller read datasets, though
near-misses are very common and might be sufficient
for some studies. As one demonstration of the potential,
however, we demonstrate that the O157:H7 Sakai gen-
ome could be accurately placed on the tree >95 % of the
time with as few as 360 SNP loci genotyped from only
50 Illumina MiSeq (2 × 250 bp) read pair alignments
(Additional file 4).

Strain mixtures
In some cases, a single pathogen from a given species
will be dominant in a clinical specimen [42], but not
always. To test the effect of strain mixtures in silico, we
used E. coli as the test case, which is a normal inhabitant
of the healthy human gut. Reads from the reference iso-
late O104:H4, strain C227-11 [1], were mixed with reads
from the O157:H7 isolate 8624 [43] at different propor-
tions (90:10, 80:20, 70:30, 60:40) in a total of 10,000 read
pairs (100 bp reads) (Additional file 6). At a read mix-
ture of 80:20, the dominant sample was still accurately
genotyped, although a longer branch length was
observed due to homoplasious SNPs and unwarranted
additional phylogenetic steps (Additional file 10). At a
70:30 mixture, the unknowns were no longer placed into
the dominant strain clade, and could not be accurately
typed. At a 60:40 mixture, most samples erroneously
grouped with the reference with longer branch lengths.
Strain mixtures at near equal proportions, which is not
anticipated based on analyses of stool samples, would
definitely confound accurate placement with WG-FAST.
Importantly, however, this problem can be identified due
to the presence of long branches leading to each un-
known sample with highly homoplasious characters.
More detailed analyses to identify the homoplasious
SNPs and separate them has the potential to deconvo-
lute mixtures into the source genotypes and allow their
phylogenetic placement.

Metagenomic sample analysis
Metagenomic sequences of fecal specimens (53 datasets
from 45 separate individuals) were generated during the
investigation of the enteroaggregative/Shiga-toxin pro-
ducing E. coli O104:H4 foodborne disease outbreak [34]
and were processed in this report with WG-FAST. In a
previous study using a separate informatics pipeline, the
authors identified 12 of 53 stool samples as containing
O104:H4 sequence and appeared to not be mixed with
other E. coli genotypes, although several of the calls,
based on coverage of MLST markers, were partial. In
another seven samples they found that there were E. coli
mixtures including O104:H4. WG-FAST correctly geno-
typed all 12 un-mixed samples as O104:H4 and also cor-
rectly classified the pathogen in four of the seven
samples reported as mixed (Additional file 5 and Fig. 5);
for three of the samples (2772-H, 2880-H, 4168-H),
WG-FAST reported the sample as a near miss to the tar-
get, but were reported as not determined by the authors.
This demonstrates the ability of WG-FAST to use low
numbers of sequence data to accurately genotype sam-
ples, where other methods may require additional data.

Metrics to measure placement accuracy
Several methods have been provided with WG-FAST to
help a user assess the robustness of a phylogenetic place-
ment. The first piece of evidence is if an unknown meets
the minimum number of SNP positions for accurate
placement, which will ultimately depend on the dataset
analyzed. Scripts are included with WG-FAST that can
be used to identify the number of required positions
across a phylogeny for robust phylogenetic placement.
Additionally, the EPA algorithm in RAxML [26] pro-
duces a file that contains the insertion likelihood for
each placement. If the insertion likelihood is 1.0, the
placement is reflective of the input data; the insertion
likelihood values generally scale with the number of
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SNPs kept in a dataset (Additional file 11). To further
quality check a placement, an optional subsample rou-
tine is included with WG-FAST that identifies the two
closest genomes to the unknown, based on patristic dis-
tances, prunes them from the phylogeny, then subsam-
ples the two neighbors at the same number of called
positions as the unknown and re-inserts those genomes
back into the phylogeny. The patristic distances
between the two near neighbors and the reference are
compared to the subsamples and the reference to see
how SNP subsampling affects placement. A placement
P value is then calculated by dividing all placements by
the number of correct placements, based on a user-
defined threshold, for each near neighbor sampling.
The subsampling approach demonstrates that greater
sequencing depth is correlated with P value significance
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(Additional file 12). A decision tree is provided to give
a user confidence in a placement, based on several cri-
teria (Fig. 6).

Discussion
Analysis of the microbiome has been largely performed
at higher taxonomic levels (for example, genus, species)
and focused primarily upon the 16S rRNA gene [44] but
these analyses are now increasingly using full metage-
nomic data sets [45]. This offers the opportunity to
move the taxonomic discrimination to levels below that
of species (that is, precise strain identification). However,
genome-based classification is still complicated by low
coverage datasets and ambiguous classification due to
database biases, including incomplete datasets for many
organisms. For pathogen identification, multiple refer-
ence genomes are usually available for a known patho-
gen and should only increase as whole genome sequence
(WGS) data becomes easier to generate and analyze.
The availability of WGS data has led to the problem of

how to analyze newly sequenced isolates in the context
of existent data. This is especially a problem when trying
to accurately genotype the causative agent of infections
from WGS obtained directly from clinical specimens.
Our WG-FAST pipeline is able to phylogenetically geno-
type isolates from single isolate sequencing projects, low
coverage sequencing projects, or from complex samples
with variable coverage, such as metagenomics projects
sequenced from human samples. Specifically, WG-FAST
was designed to accurately genotype new isolates where
the read coverage is below 1× and may not be able to be
genotyped by methods that rely on higher query cover-
age. Although studies have been published that use a
similar concept [46], WG-FAST represents the only
publically-available pipeline that can perform these func-
tions and provide statistical support for a given
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et al.; because WG-FAST does not discover novel SNPs,
any branch lengths are indicative of homoplasy created
by character state conflicts.
The placement of artificial mixtures demonstrated that

at near equal proportions, WG-FAST can place a sample
in the wrong location (Additional file 10). When a long
branch is observed on a placed sample, other evidence
must be considered when evaluating the quality of a
placement, including the number of positions required
for accurate placement, determined by subsampling, in
that region of the phylogeny. Removing homoplasious
SNPs has the potential to resolve the mixture into dom-
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understand the limits of the placement method. To
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determine the fewest number of reads and reference po-
sitions that still result in accurate phylogenetic place-
ment, a subsampling approach was employed. The
subsampling experiments based on subsampled SNPs
demonstrated that a minimum of 100 reference positions
must be called in the case of the E. coli dataset used in
this study to accurately genotype unknowns ≥95 % of the
time. However, the region of the tree where the unknown
falls can drastically affect the number of required posi-
tions, which can be greater than 9,500 (approximately
0.002× genome coverage). There was a strong correlation
with the number of positions required for accurate place-
ment and the topology of the tree. In general, nodes that
were filled with closely related isolates required only ap-
proximately 100 positions for accurate placement, while
nodes containing isolates with long branch lengths re-
quired far more positions to be called for accurate place-
ment. The sequence analysis of additional diverse isolates
will help fill in blank regions in the tree and create a
reference phylogeny that will be better able to place un-
known isolates at very low read coverage.
When compiling a reference database for a pathogen

of interest, the clonality of an organism should be
considered. For highly recombinant pathogens, such as
Burkholderia pseudomallei, WG-FAST analysis may re-
quire additional positions to be called in order to separ-
ate the clonal signal from the recombinant signal. For
highly clonal pathogens, the issue becomes the relative
lack of polymorphisms in the dataset. For example, only
2,298 SNPs are able to describe the global phylogenetic
diversity in Yersinia pestis [47], which will require more
sequence reads to accurately place an unknown due to
the reduced size of the available SNP search space.
The large sequence datasets that are now available to

most researchers have presented new problems, both
computationally and methodologically, for the analysis
of new isolates. WG-FAST presents a method to
characterize new isolates in the context of a reference
population. The applications to this method include
assigning isolates to known outbreaks, as described in
this study, typing unknown isolates to specific phylogen-
etic lineages, and may provide the resolution to resolve
transmission routes, although additional experimenta-
tion is required before this is verified. As sequence data,
both single isolate and metagenomic, become more
commonplace, methods that scale linearly with huge
datasets, such as WG-FAST, will become critical for the
analysis of clinical pathogens.

Conclusions
In this study, we demonstrate how WG-FAST can be
used to genotype isolates at the strain level from com-
plex samples using low levels of sequence data obtained
from metagenomics studies. While WG-FAST can also
be used in conjunction with single isolate genomics
datasets, it is especially powerful when analyzing low
coverage datasets. In addition to genotyping, WG-FAST
performs statistical analysis to help assess the quality of
an unknown placement. We demonstrate that in E. coli,
WG-FAST can be used to genotype from metagenomic
datasets, place samples accurately at extremely low refer-
ence genome coverage, and provide a confidence
landscape when assessing placement confidence. As
reference databases and sequence datasets become
more complex, methods such as WG-FAST are required
for strain-level genotyping.
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