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Abstract

Background: Whole exome sequencing is increasingly used for the clinical evaluation of genetic disease, yet the
variation of coverage and sensitivity over medically relevant parts of the genome remains poorly understood.
Several sequencing-based assays continue to provide coverage that is inadequate for clinical assessment.

Methods: Using sequence data obtained from the NA12878 reference sample and pre-defined lists of medically-relevant
protein-coding and noncoding sequences, we compared the breadth and depth of coverage obtained among
four commercial exome capture platforms and whole genome sequencing. In addition, we evaluated the
performance of an augmented exome strategy, ACE, that extends coverage in medically relevant regions and
enhances coverage in areas that are challenging to sequence. Leveraging reference call-sets, we also examined
the effects of improved coverage on variant detection sensitivity.

Results: We observed coverage shortfalls with each of the conventional exome-capture and whole-genome
platforms across several medically interpretable genes. These gaps included areas of the genome required for
reporting recently established secondary findings (ACMG) and known disease-associated loci. The augmented exome
strategy recovered many of these gaps, resulting in improved coverage in these areas. At clinically-relevant coverage
levels (100 % bases covered at ≥20×), ACE improved coverage among genes in the medically interpretable genome
(>90 % covered relative to 10-78 % with other platforms), the set of ACMG secondary finding genes (91 %
covered relative to 4-75 % with other platforms) and a subset of variants known to be associated with human
disease (99 % covered relative to 52-95 % with other platforms). Improved coverage translated into improvements in
sensitivity, with ACE variant detection sensitivities (>97.5 % SNVs, >92.5 % InDels) exceeding that observed with
conventional whole-exome and whole-genome platforms.

Conclusions: Clinicians should consider analytical performance when making clinical assessments, given that even a
few missed variants can lead to reporting false negative results. An augmented exome strategy provides a level
of coverage not achievable with other platforms, thus addressing concerns regarding the lack of sensitivity in
clinically important regions. In clinical applications where comprehensive coverage of medically interpretable
areas of the genome requires higher localized sequencing depth, an augmented exome approach offers both
cost and performance advantages over other sequencing-based tests.
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Background
Next-generation sequencing (NGS) technologies are
increasingly used for the diagnosis of suspected genetic
syndromes and cancer [1, 2]. Reductions in cost and
time to diagnosis have made NGS-based testing a prac-
tical first-line tool in a diagnostic evaluation, potentially
supplanting or supplementing other low-yield imaging,
biochemical, histopathology, and genetic evaluations.
Whole exome sequencing (WES) is a particularly effi-
cient diagnostic method because it interrogates exome-
wide variation in a single assay and can provide a
genetic assessment even when candidate genes are not
known, or when a disorder exhibits substantial pheno-
typic and genetic heterogeneity. Several studies [2–7]
have demonstrated the ability of WES to reveal medic-
ally significant variants, even in cases where prior diag-
nostic tests were performed.
Sequencing-based diagnostic tests require adequate

breadth and depth of coverage to ensure high clinical
sensitivity. Despite the rapid adoption of WES tech-
nologies in clinical decision-making, the extent and
consistency of coverage over medically relevant variants
is poorly understood. Single-gene and gene-panel tests
are often evaluated using patient-derived samples that
harbor known disease-related mutations. In contrast, it
is not feasible to evaluate accuracy among all potential
variants associated with all known diseases captured on
an exome-wide or genome-wide basis. However, recent
guidance on the evaluation of NGS technologies for use
in clinical settings [8–10] establishes criteria for evaluating
the accuracy of variant detection in WES. As recently
demonstrated [11–13], this includes the calculation of
false positive (FP) and false negative (FN) rates using well-
characterized reference materials (RM) and the reporting
of depth of coverage and breadth of coverage statistics.
Using these guidelines, we examine the coverage and ac-

curacy obtained with currently available exome capture
technologies and whole genome sequencing (WGS). With
a pre-defined list of medically-relevant protein-coding and
non-coding sequences, we identify regions of the genome
that are poorly covered and inaccurately identified with
these technologies. Finally, we present an Accuracy and
Content Enhanced (ACE) augmented exome strategy that
improves coverage in these regions and provides variant
detection sensitivities not typically achieved with other
commercially available exome platforms.

Methods
Samples and sequencing
Exome capture was performed using the well-characterized
cell-line sample, NA12878 [14], a prospective RM at
the time of this study [15], using two recently devel-
oped commercial WES capture kits: Agilent SureSelect
Human All Exon v5 plus untranslated regions (UTR)
(SS) and Agilent SureSelect Clinical Research Exome
(SSCR) according to manufacturers’ recommendations.
Manufacturer protocols were modified to adjust the
average library insert length to approximately 250 bp
and included the use of KAPA HiFi DNA Polymerase
(Kapa Biosystems) instead of Herculase II DNA poly-
merase (Agilent), given recent evidence of improved
on-target capture performance with high-fidelity poly-
merases [16]. Sequencing was performed using HiSeq
2500 (Illumina, San Diego, CA, USA) sequencers with
single lane, paired-end 2 × 101 bp reads and Illumina’s
proprietary Reversible Terminator Chemistry (v3). In
addition, raw read-data files (FASTQ 2 × 101 bp reads)
using the NimbleGen SeqCap EZ Human Exome
Library v3.0 (NG) exome capture kit [17] and lllumina’s
Nextera Rapid Capture Exome (NX) [18] were obtained
from the sequence read archive (SRA) under accession
SRX731649 [11] and from Illumina’s BaseSpace repository
[19], respectively. For NG and NX, reads were combined
across replicate runs of the same sample (NA12878) in
order to obtain the coverage depth needed for subsequent
analysis. For ACE, target probes were prepared to enhance
coverage within sets of biomedically and medically rele-
vant genes as described in additional materials (Additional
files 1 and 2). Details regarding ACE assay robustness and
reproducibility are described in Additional file 1.
Preserving read pair information, the original amount

of sequence data collected for each WES platform was
randomly downsampled to control either the total
amount of sequence data in Gigabases (Gb) or the
mean depth of coverage in each platform’s target re-
gions. Downsampling to a fixed amount of sequence
data has the advantage of controlling for the combin-
ation of breadth (footprint) and depth of sequencing -
two parameters that are key determinants of WES assay
performance. Total sequence data can also be more
easily related to overall-sequencing costs given that the
target regions (and mean coverage within target re-
gions) vary widely among WES platforms. Conversely,
100× average depth of coverage is commonly referred
to as the minimum amount of coverage needed in clin-
ical applications, regardless of the total amount of se-
quence data obtained.
100× mean coverage depth within each platform’s tar-

get region was obtained using the following amounts of
sequence data: 13.8 Gb (SS), 8.9 Gb (SSCR), 18.6 Gb
(NX), 13.4 Gb (NG), and 13.8 Gb (ACE). In addition,
12 Gb of sequence data were obtained for each WES
and ACE platform resulting in mean coverages of 88.3×
(SS), 132.2× (SSCR), 91.1× (NX), 91.9 (NG), and 86.9×
(ACE) in the respective target regions. Using a standard
Illumina TruSeq PCR-free protocol, we also obtained
100.0 Gb WGS data resulting in a mean coverage depth
of 31.5×. FASTQ files resulting from the downsampled
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data used in this study or 31.5× WGS are available from
SRA under accession PRJNA289286.

Alignment, mapping, and variant identification
For all platforms, raw sequence data were in FASTQ
format and were analyzed with standard Phred-scale
quality scores. Gapped alignment was performed using
the Burrows-Wheeler Aligner (v.0.6.2) [20] combined
with Picard (v.1.74) [21] and the Genome Analysis Tool-
kit (GATK v3.1) [22] base quality score recalibration to
perform sequence alignment and base quality scoring.
Data were aligned to the hs37d5 genome [23], producing
compressed Binary Alignment Map format files. GATK’s
Unified Genotyper module provided the core set of SNV
and InDel calls and quality metrics using both GATK’s
variant quality score recalibration (VQSR) (for SNVs)
and hard-filtering (for InDels), per GATK best practices
documentation [24]. SNV and small InDels were reported
in variant call format (VCF).

Coverage and accuracy statistics
For each platform, the mean coverage depth over each
exon was calculated from the base-resolved coverage
depth integrated over the exon length, considering only
aligned bases with high-quality mapping (Q ≥20) and
base-quality (Q ≥20) scores. Gene-specific mean coverages
were calculated as the mean coverage of the constitutive
exons weighted by each exon length. We also report the
percent of exonic bases reaching a minimum coverage
threshold of ≥20×, a level of coverage depth necessary to
call heterozygous SNVs with approximately 99 % sensi-
tivity in WES and WGS data [25, 26]. Using a stringent
definition of high-quality coverage, we termed a gene
‘finished’ when 100.0 % of its exonic bases met this
threshold.
To evaluate relative platform performance, we calculated

coverage and accuracy statistics for ACE and other com-
mercially available platforms within commonly-defined
medically relevant target regions. Accuracy was assessed by
utilizing two reference ‘gold standard’ call-sets available for
the NA12878 RM from the National Institutes of Stan-
dards and Technology (NIST) Genome in a Bottle (GIB)
consortium. Briefly, the NIST-GIB high-confidence call-set
(GIBv2.18, 16 December 2013) [27] is restricted to high-
confidence regions of the genome based on arbitration of
SNV, InDel, and homozygous reference genotype calls
among multiple sequencing platforms, aligners, and
variant callers. It further filters locations in an effort to
remove regions of the genome where the likelihood of
an incorrect genotype call is increased. A second call-
set was used that contains variants with evidence from
>1 platform but may fail published arbitration rules
[27] or fall into regions that are difficult to sequence.
Despite a higher likelihood of benchmark-set errors in
these regions, this second ‘less restrictive’ call-set is
useful in evaluating the relative sensitivity to variants in
known problematic regions (for example, areas of high
GC) that are typically excluded from high-confidence
call-sets and exome-based target regions.
Sequencer, alignment, and variant calling parameters

were set to be identical in the analysis of all exome-
based sequencing platforms (WES and ACE) with the
exception of the target capture region used, which is
specific to each platform. Error rates were derived from
the comparison of observed variant call-sets to reference
call-sets within the medically interpretable genome
(MIG), within a target region common (that is, the over-
lap/intersection) to all exome-based platforms (Common
Target File), within a subset of predicted moderate-high
impact variants occurring in any of the platform-specific
target files (Union Target File), and within regions of
>70 % GC content. True positive (TP) observed calls
matched the reference call in position, genotype and
alternate bases, and were based on those variants that
are callable (that is, the proportion of variants that are
detected at or above the predefined alignment, mapping
quality and variant calling quality thresholds). FP and FN
rates were calculated based on the use of GATK’s VQSR
module derived VQSLOD score (log odds (variant / no
variant) cutoffs for SNVs. A set of hard-filter thresholds,
which includes the Phred-scaled quality scores (QUAL,
−10log10 P(variant / no variant)), were used for evaluating
InDels. These cutoffs discretized the variant call likelihood
scores into a series of categorical ‘FILTER’ levels. The
PASS level was used as a threshold for both variant types
across all platforms, which is estimated to capture 99.5 %
of known TP SNVs [24]. Both genotyping and mischarac-
terization errors were included as FP and FN errors. 95 %
confidence intervals for sensitivity and the false discovery
rate (FDR) were based on an exact binomial test [28].
Pair-wise comparisons of observed sensitivities across
platforms was done using X2(chi-square, df = 1), with a
significant level of α = 0.01.

Establishing the medically interpretable genome
We first assembled a list of 5,419 unique genes in
which mutations have been causally implicated in dis-
ease or disease-related drug response. This list included
genes that: (1) are part of an existing clinical test; (2)
are documented in published literature as pharmaco-
genes; or (3) have a causal association with Mendelian
disease, inherited disease, or cancer. This literature-
based gene set was constructed by combining three
public data-sources: a subset of Mendelian Disease
genes catalogued in Online Mendelian Inheritance in
Man [29] (OMIM), the Human Gene Mutation Data-
base [30] (HGMD, v2013.4), and clinical genetic tests
submitted to the Genetic Testing Registry (GTR, 07/14
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data release) [31]. This list was then supplemented with
genes drawn from the Cancer Gene Census (COSMIC,
7/14 data release) [32], and a subset of PharmGKB (04/
14 data release) [33], which included genes classified in
the Very Important Pharmacogenes (VIP) project and/
or those with dosing guidelines available in the Clinical
Pharmacogenetics Implementation Consortium (CPIC).
Figure 1 identifies the number of genes drawn from
these five sources.
Gene redundancies, due to the use of gene synonyms

in source databases, were eliminated by mapping gene
symbols to the currently approved HGNC and NCBI
identifiers. Chromosomal location information for each
gene was based on NCBI annotation (release 105),
whereby regions were defined by collapsing all anno-
tated transcripts per region. Collectively, the genomic
regions defined by these genes and the reference tran-
scripts are referred to as the ‘medically interpretable
genome’ (MIG) (Additional file 3). Notably, the MIG
contains 97 % of the genes defined by the International
Collaboration for Clinical Genomics (ICCG) consortium
as belonging to the ‘medical exome’, after filtering the
ICCG set to remove redundant genes and unmappable
gene locations. The MIG incorporates an additional 1,281
genes not found in the ICCG set. Since a female derived
sample (NA12878) was used in this study, 20 genes occur-
ring on the Y chromosome were excluded from the MIG
for subsequent analysis.
Fig. 1 A total of 5,419 genes in the MIG drawn from five data
sources. The bulk (98 %) of genes came from HGMD, OMIM, and
GTR with additional genes supplemented from COSMIC (67) and
PharmGKB (1). Areas of vertical overlap indicate genes common
across multiple sources
Results
Coverage in the MIG
We compared coverage performance among ACE, four
conventional WES platforms (SS, SSCR, NX, NG) and
WGS using the DNA from NA12878. WES and ACE
platforms were compared after normalizing to both 12
Gb of total sequence data and to 100× mean coverage
depth in each platform’s respective target regions. At
100× mean-target coverage (ACE, WES) and 31.5× (100
Gb) WGS, the mean coverage depth observed in the
MIG was: 102.7× (SS), 125.1× (SSCR), 208.8× (NX),
95.5× (NG), 138.0× (ACE), and 29.5× (WGS). The cover-
age efficiency observed within MIG genes across all plat-
forms when normalized for 100× mean target coverage
depth is shown in Fig. 2. The distribution of base-quality
reads observed at different levels of coverage depths is
shown, centered at a clinically relevant minimum cover-
age of ≥20× (vertical gray line). At ≥20×, ACE covers
>99 % of bases in protein coding regions and 93 % of
bases in the non-coding regions compared to 93-97 % of
protein coding and 50 %-73 % non-coding bases covered
across WES platforms. WGS covered 97 % and 95 % of
all bases in coding and non-coding regions respectively
(Fig. 2). Notably, low-coverage in non-coding regions of
the genome is expected with SSCR, NX, and NG, which
do not substantially include non-coding areas (for ex-
ample, UTRs) in the target design.
We next examined the percentage of MIG genes ‘fin-

ished’ as the criterion for base coverage varied. Figure 3
shows the number of finished MIG genes observed in
NA12878 with ≥90.0-100.0 % of constituent exonic
bases covered at ≥20×. ACE achieved 100.0 % base
coverage at ≥20× in approximately 90 % of the MIG
genes. Conventional WES platforms (SS, SSCR, NX,
NG) finished 30-65 % of genes at this level whereas
WGS finished 10 %. If the stringency for per-gene per-
cent coverage is reduced to ≥90.0 % of exonic bases,
100 % of genes are finished at ≥20× with ACE; between
65 % and 90 % of genes are finished among WES; and
75 % of genes are finished with WGS. Conversely, we
also examined the percentage of finished MIG genes as
the coverage depth was in the range of ≥10-20× (Fig. 2,
right). Generally, at lower minimum coverage levels
(that is, 10×) ACE finished the most genes (100 %)
followed by WGS (96 %), SSCR (81 %), SS (75 %), NX
(70 %), and NG (51 %). Relative WES platform per-
formance remained consistent as the coverage finishing
threshold increased to ≥20×, with ACE continuing to
cover a higher percentage of bases at higher depths. In
contrast, WGS coverage performance decreased sharply
as coverage stringency increased, finishing only 10 % of
genes at ≥20 × .
The relative breadth and depth of coverage across exons

with varying GC composition was similar to the relative



Fig. 2 Coverage efficiency in the medically interpretable genome (MIG). Shown is the cumulative distribution of on-target sequence coverage
obtained from sequencing NA12878 across multiple platforms: Personalis Accuracy and Content Enhanced (ACE) Clinical Exome, Agilent SureSelect
Clinical Research Exome (SSCR), Agilent SureSelect Human All Exon v5 plus untranslated regions (UTR) (SS), lllumina’s Nextera Exome Enrichment (NX),
NimbleGen SeqCap EZ Human Exome Library v3.0 (NG), and 31× whole-genome sequencing (WGS) using an Illumina PCR-free protocol. For clinical
applications, we indicate ≥20× as the minimum coverage threshold required (gray line) among all coding (left) and non-coding (right) regions. For
reference, insets show an expanded distribution of sequence coverage. ACE and conventional WES data are normalized to 100× mean target coverage

Fig. 3 Relationship between the percentages of MIG exons ‘finished’ as the coverage stringency varies. The left graph shows the percentage of
MIG exons (y-axis) with ≥90.0-100.0 % of bases covered at ≥20× depth (x-axis) among different platforms using data obtained on NA12878. The
right graph shows the percentage of finished exons (y-axis) with 100.0 % base coverage as the local coverage depth varies ≥10-20× (x-axis). At
higher coverage stringencies, ACE finishes more exons than other WGS or WES assays in regions defined as the entire exon (solid curves) or only
the subset of coding-regions (circles). ACE and conventional WES data are normalized to 100× mean target coverage
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platform performance observed in the MIG set. ACE
finished a larger percentage of MIG exons compared to
other WES and WGS platforms (Fig. 4), finishing >90 %
of exons regardless of the amount of GC content. Other
platforms showed a decline in the number of finished
exons as the percentage of GC increased, with some
platforms (WGS, NG, NX) showing substantial reduc-
tions at >50 % GC content.
Analyses were repeated after re-normalizing WES and

ACE data to 12 Gb of total sequence data (Additional
file 4). Relative performance among platforms was con-
sistent with the results reported above, which are based
on data normalized to 100× mean coverage within each
platforms target region. For reference, a summary of
platform parameters and sequencing statistics is shown
in Additional file 5.

Coverage performance in the ACMG genes and known
disease-associated variants
Included within the MIG gene set are 56 genes that per
ACMG guidelines [34] are recommended for examin-
ation and reporting of secondary findings during clinical
genomic testing. Although concerns over the accuracy of
sequencing platforms in clinically relevant regions of the
genome have been widely discussed [8, 35], the lack of
sensitivity of WES and WGS to known variants occur-
ring in genes of the ACMG secondary findings list have
highlighted the extent of these inaccuracies [36, 37]. The
coverage of these genes and their constituent variants by
these platforms illustrates how variations in design can
impact clinical decision making, presuming that a lack
Fig. 4 Relationship between GC content and the percentages of
MIG exons ‘finished’ by platform. Regions with >30-80 % GC content
(x-axis) represent 99 % of exons in the MIG. Finishing is determined
by 100 % base coverage at ≥20×
of sensitivity to variants within these genes: (1) affects
the reporting of secondary findings; and (2) is represen-
tative of other pathogenic variants not specifically
assessed in this study.
Using WES and ACE data normalized to 100× cover-

age depth, the per-gene mean coverage observed among
the 56 genes was in the range of 41-371× for WES, 24-
36× for WGS, and 92-234× for ACE (Additional file 6).
Ten (18 %) of the 56 genes failed to reach our prede-
fined level of coverage (100 % bases covered at ≥20×) in
any of the conventional WES platforms (SS, SSCR, NG,
NX). Among these genes, eight had some proportion of
their exonic bases covered at a higher depth (that is,
covered at ≥20×) with ACE (MEN1, RB1, TGFBR1,
PKP2, KCNQ1, KCNH2, PCSK9, RYR1) and two showed
improved coverage with WGS (MEN1, TGFBR1).
Exome-based platforms (WES, ACE) generally showed
substantially improved breadth and depth of coverage
compared to 31× WGS for these 56 genes. Fifty-four
genes had some proportion of their constituent bases
inadequately covered (<20×) with 31× WGS. Of these,
53 genes had a larger fraction of exonic bases covered at
≥20× using ACE and 52 had a larger fraction covered
with at least one of the conventional WES platforms (SS,
SSCR, NX, NG). Two genes with some proportion of
their exonic bases inadequately covered (<20×) with
ACE had these bases covered to ≥20× by NX (PMS2) or
WGS (MEN1). The individual platform rankings based
on the number of genes with 100 % base coverage at
≥20×, were ACE (51 genes) > SSCR (39 genes) > NX (36
genes) > SS (15 genes) > NG (12 genes) > and WGS (2
genes) (Additional file 6).
Several regions inadequately covered by WES plat-

forms encompass disease-associated variants. Using
12,535 documented disease-associated SNVs (daSNV) in
HGMD (version 2013_01) for the 56 ACMG genes as a
‘truth’ set, we extended our analysis to examine the frac-
tion of daSNV loci covered at ≥10-25× with WES, ACE,
and WGS platforms. Figure 5 shows the percentage
daSNVs covered at ≥20× with more extensive tabular
results (≥10×, ≥15×, ≥20×, ≥25×) reported in Additional
file 7. For brevity, only the highest obtained base cover-
ages achieved (Max) across all WES platforms (SS,
SSCR, NX, NG) are shown. Depending on the platform
used, 0.8-9.6 % (96–1,200 loci) of the daSNVs showed
inadequate coverage (<20×) with conventional WES
compared to 6.0 % (756 loci) for WGS and 0.2 % (26
loci) for ACE. Coverage shortfalls were spread across 41
genes, with 2,134 (17 %) daSNVs showing <20× coverage
in at least one platform (WES, ACE, or WGS) (Add-
itional file 8). Among these loci, the platforms with the
highest to lowest number of loci with adequate coverage
depth (≥20×) were: ACE (1,836 daSNVs), SSCR (1,727),
NX (1,653), SS (1,435), NG (1,100), and WGS (968).



Fig. 5 Disease-associated variants covered at ≥20× for 56 genes in the ACMG gene list. The x-axis labels indicate the total number of disease-
associated SNVs (daSNVs) drawn from HGMD for each ACMG gene; and the y-axis indicates the percentage of those variants covered at ≥20×.
For brevity, only the highest obtained percentage (Max over all WES) observed across all conventional WES (SS, SSCR, NX, NG) platforms is
shown. Seventeen of the 56 genes failed to have some fraction of their daSNVs covered at ≥20× among any of the conventional WES platforms.
On a gene basis, the platforms with the highest to lowest number of genes with constituent daSNVs adequately covered included ACE (51 genes with
100 % daSNVs covered at ≥20×), SSCR (39 genes), NX (36 genes), SS (15 genes), NG (12 genes), and WGS (2 genes). The y-axis is truncated at 95 %, with
truncated points labelled accordingly
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Relative gene and daSNV coverage performance be-
tween platforms and the differences observed between
platforms were consistent regardless of the normalization
scheme used (total sequence data or mean coverage) for
exome-based data. For reference, results using each
method are reported alongside each other in additional
materials (Additional files 6, 7, and 8).

Accuracy and characteristics of detected variants
Inadequate coverage, together with errors occurring in
downstream alignment and variant calling, reduces the
ability to accurately identify and characterize variants.
Since ACE extends coverage of conventional WES to in-
clude all medically interpretable regions of the genome
and targets genomic areas that are challenging to se-
quence, we quantified its impact on the accuracy of
variant calls in: (1) the MIG; (2) genomic regions that
are overlapping among exome-based (that is, ACE,
WES) platforms (Common Target File); (3) functionally
impactful genomic regions targeted among any exome-
based platforms (Union Target File); and (4) areas of
high GC content. The Common Target File allowed us
to evaluate relative variant sensitivity without regard to
platform-specific target design. Differences among plat-
forms would presumably be based on variations in depth
of coverage and coverage efficiency rather than due to
the selective exclusion of some regions by specific cap-
ture kits (for example, the exclusion of UTRs by SSCR,
NX, NG). In contrast, the Union Target File allowed us
to evaluate how differences in each platforms target re-
gion (for example, differences in targeted non-coding
and coding regions) impacted accuracy among variants
with putative functional impact. Loci within platform
specific target files were annotated with information
about genomic location (for example, intron, exon, inter-
genic, intragenic, coding region) and predicted deleteri-
ous impact (for example, low, moderate, high, modifier/
other) [38]. Regions containing loci within high (frame-
shift, stop-gain, splice-site acceptor, splite-site donor,
start lost, stop lost) and moderate (non-synonymous
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coding, codon change plus deletion/insertion, codon de-
letion/insertion) impact regions were combined into the
Union Target File. Non-synonymous coding mutations
contributed most (99 %) to the moderate-impact class in
the Union Target File whereas 60 % of high-impact vari-
ants were splice-site donor/acceptor loci, followed by
frame-shift mutations (20 %), stop-gain (12 %), and
start/stop-lost (8 %).
For each platform, error rates and accuracy are pre-

sented in terms of the interval tested, which consists of
high-confident variant loci within the MIG (Table 1, left);
Common Target File (Table 1, middle); and Union Target
File (Table 1, right) or a less-restrictive set of loci within
subsets of GC-rich regions (Table 2). For reference, the set
of genomic regions comprising the Common Target File
and Union Target File and a catalogue of all 792,245 ex-
onic regions with >70 % GC content among 20,000 genes
are provided (Additional files 9, 10, and 11). Information
about resources used in constructing reference and target
regions is included in Additional file 12.
Using WES and ACE data normalized to 100× mean

coverage depth, sensitivities across intervals ranged
from 88-99 % for SNVs and 75-100 % for InDels. ACE
yielded the highest sensitivities (>97.5 % SNVs; >92.5 %
InDels) relative to other platforms across all intervals
(Table 1). Based on sensitivities to SNVs and InDels,
the relative rank of platform performance in the MIG
and Common Target File were similar: ACE > SS >
SSCR >WGS > NX > NG; whereas the relative rank of
platform performance in the Union Target File was
ACE >WGS > SS > SSCR > NG > NX. FDRs for SNVs
were low across all platforms (<1 %) regardless of the
interval used. For InDels, the FDR was generally highest
among NG and NX across intervals. The use of the
VQSLOD score for InDels, as is sometimes recom-
mended given the larger amount of data available from
WGS [24], had no effect on InDel specific errors. Re-
gardless of the interval used, observed differences in
SNV sensitivities were small across platforms. ACE
showed significantly (P <0.01) improved sensitivity for
SNVs compared to NX and NG and in some cases
WGS (MIG: ACE vs. WGS X2 = 16.1, P <0.01; ACE vs.
NX X2 = 61.9, P <0.01; ACE vs. NG X2 = 102.7, P <0.01;
Common Target File: ACE vs. WGS X2 = 13.9, P <0.01;
ACE vs. NX X2 = 44.5, P <0.01; ACE vs. NG X2 = 135.3,
P <0.01; Union Target File: ACE vs. WGS X2 = 0.1, P =
0.72; ACE vs. NX X2 = 518.6, P <0.01; ACE vs. NG X2 =
232.9, P <0.01); whereas no statistical significant im-
provement in SNV sensitivity was observed with ACE
compared to SS or SSCR.
Increased breadth or depth of coverage is only asymp-

totically related to a higher capture efficiency, partly due
to biases that occur with high-GC content [26]. These
highly variable regions produce ‘gaps’ with levels of
coverage insufficient for resolving disease causing vari-
ants [39]. Given the improved coverage characteristics of
ACE in high GC content areas (Fig. 4), we examined its
impact on accuracy in GC-rich regions. In the subset of
the MIG and Common Target File containing >70 % GC
content, ACE generally outperformed other platforms
(Table 2) based sensitivities to SNVs (97.0 %) and InDels
(>94.7 %). With the exception of NG and NX, however,
the differences were small across platforms and were
within the expected range of sampling error (95 % CI). In
the Union Target File, WGS had the highest sensitivity
(96.8 % SNVs; 95.0 % InDels), with ACE and SS
sensitivities equal (94.9 % SNVs; 92.5 % InDels) in these
GC-rich regions. Substantially reduced sensitivities (60-
65 % SNVs; 48-58 % InDels) were observed with NG
across all intervals. This was consistent with the steep
reductions in coverage performance observed with NG
among regions with GC fractions >50 % (Fig. 4).

Discussion
The comprehensive nature of WGS and WES-based
technologies means that most previous analytic perform-
ance studies have been independent of any particular
disease or clinical scenario. In contrast, this study high-
lights issues of coverage and accuracy in a set of genes
likely to be clinically relevant and provides a method of
improving sensitivity in these regions. We demonstrate
that several recently developed (2012–2014) commercial
exome sequencing platforms continue to have significant
gaps in their coverage of medically relevant genes. These
deficiencies led us to design target regions, capture
probes, and sequencing parameters that would improve
both coverage and accuracy within these regions. An
ACE strategy that ‘fills in’ gaps to a sufficient coverage
depth for clinical interpretation and that expands cover-
age to more comprehensively cover medically interpret-
able areas of the genome, results in coverage efficiencies
greater than other currently available platforms. Com-
pared to conventional WES and 31× WGS, ACE shows
a greater percentage of bases covered in the MIG (Figs. 2,
3, Additional file 4), the set of recently established
ACMG secondary finding genes (Additional file 6), and
variants known to be associated with disease (Fig. 5,
Additional files 7 and 8) at coverage levels that are clin-
ically relevant (≥20×).
The occurrence of ‘coverage gaps’ with conventional

exome sequencing and their subsequent targeting by
ACE is illustrated in RPGR, a gene in which over 300
mutations are implicated in retinitis pigmentosa; and
CFTR, a gene in which >1,000 mutations are associated
with cystic fibrosis. Figure 6 depicts the breadth and
average depth of coverage in these genes, where coverage
shortfalls are evident in areas where conventional exomes
(blue) did not reach ≥20×. Targeting the sequence features



Table 1 Accuracy across target regions. Errors, Sensitivity, and FDR for the ACE, WGS, SSCR, SS, NX, and NG platforms based on evaluation of observed variant calls using data
normalized to 100× mean coverage (conventional WES and ACE) or 31× WGS. Calculations are based on position and genotype matching to the GIBv2.18 high-confident call-set
within the MIG (left), a target region common to all ACE and WES platforms (middle, Common Target File), and a target region aggregated across all ACE and WES specific target
files that contain moderate-impact and high-impact loci (right, Union Target File)

MIG Common Target File Union Target File

TP FP FN %Sens %FDRa TP FP FN %Sens %FDRa TP FP FN %Sens %FDRa

95%CI 95%CI 95%CI 95%CI 95%CI 95 % CI

ACE SNV 5362 5 62 98.9 0.1 7133 12 90 98.8 0.2 7486 6 191 97.5 0.1

98.5-99.1 <0.1-0.2 98.5-99.0 0.1-0.3 (97.1-97.8) (<0.1-0.2)

InDel 34 1 2 94.4 2.9 83 0 0 100 <0.1 198 3 16 92.5 1.5

81.3-99.3 0.1-14.9 95.7-100 <0.1-4.3 (88.1-95.7) (0.3-4.3)

WGSb SNV 5309 2 115 97.9 <0.1 7076 6 147 98.0 0.1 7479 2 198 97.4 <0.1

97.5-98.2 <0.1-0.1 97.6-98.3 <0.1-0.2 (97–97.8) (<0.1-0.1)

InDel 33 1 3 91.7 2.9 78 0 5 94.0 <0.1 197 2 17 92.1 1.0

77.5-98.2 0.1-15.3 86.5-98.0 <0.1-4.6 (87.6-95.3) (0.1-3.6)

SSCR SNV 5341 4 83 98.5 0.1 7107 11 116 98.4 0.2 7443 4 234 97.0 0.1

98.1-98.8 <0.1-0.2 98.1-98.7 0.1-0.3 (96.5-97.3) (<0.1-0.1)

InDel 34 2 2 94.4 5.6 82 0 1 98.8 <0.1 194 4 20 90.7 2

81.3-99.3 0.7-18.7 93.5-100 <0.1-4.4 (85.9-94.2) (0.6-5.1)

SS SNV 5355 2 69 98.7 <0.1 7126 5 97 98.7 0.1 7468 3 209 97.3 <0.1

98.4-99.0 <0.1-0.1 98.4-98.9 <0.1-0.2 (96.9-97.6) (<0.1-0.1)

InDel 33 2 3 91.7 5.7 82 0 1 98.8 <0.1 192 5 22 89.7 2.5

77.5-98.2 0.7-19.2 93.5-100 <0.1-4.4 (84.8-93.4) (0.8-5.8)

NX SNV 5240 4 184 96.6 0.1 7020 8 203 97.2 0.1 6754 10 923 88.0 0.1

96.1-97.1 <0.1-0.2 96.8-97.6 <0.1-0.2 (87.2-88.7) (0.1-0.3)

InDel 33 2 3 91.7 5.7 77 2 6 92.8 2.5 160 6 54 74.8 3.6

77.5-98.2 0.7-19.2 84.9-97.3 0.3-8.8 (68.4-80.4) (1.3-7.7)

NG SNV 5190 31 234 95.7 0.6 6900 39 323 95.5 0.6 7065 38 612 92.0 0.5

95.1-96.2 0.4-0.8 95.0-96.0 0.4-0.8 (91.4-92.6) (0.4-0.7)

InDel 31 4 5 86.1 11.4 74 2 9 89.2 2.6 168 10 46 78.5 5.6

70.5-95.3 3.2-26.7 80.4-94.9 0.3-9.2 (72.4-83.8) (2.7-10.1)

FDR false discovery rate, FN false negatives, FP false positives, MIG medically interpretable genome, SENS Sensitivity, TP true positives
aFDR is used in lieu of specificity due to a large skew in the TN, FP class distribution
bIn WGS data, there was no difference in error rates when using either VQSLOD scores or hard-thresholding cutoffs for InDels
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Table 2 Accuracy in high-GC rich regions. Errors, Sensitivity, and FDR for the ACE, WGS, SSCR, SS, NX, and NG platforms based on evaluation of observed variant calls using data
normalized to 100× mean coverage (conventional WES and ACE) or 31× WGS. Calculations are based on position and genotype matching to the GIBv2.18 less restrictive call-set
within the MIG (left), a target region common to all ACE and WES platforms (middle, Common Target File), and a target region aggregated across all ACE and WES specific target
files that contain moderate-impact and high-impact loci (right, Union Target File)

MIG Common Target File Union Target File

TP FP FN %Sens %FDRa TP FP FN %Sens %FDRa TP FP FN %Sens %FDRa

95%CI 95%CI 95%CI 95%CI 95%CI 95 % CI

ACE SNV 518 0 16 97.0 <0.1 706 1 22 97.0 0.1 562 2 30 94.9 0.4

95.2-98.3 <0.1-0.7 95.5-98.1 <0.1-0.8 (92.8-96.6) (<0.1-1.3)

InDel 18 1 1 94.7 5.3 23 0 0 100 <0.1 37 0 3 92.5 <0.1

74.0-99.9 0.1-26.0 85.2-100 <0.1-14.8 (79.6-98.4) (<0.1-9.5)

WGSb SNV 499 0 35 93.4 <0.1 701 0 27 96.3 <0.1 573 0 19 96.8 <0.1

91.0-95.4 <0.1-0.7 94.6-97.5 <0.1-0.5 (95.0-98.1) (0–0.6)

InDel 18 0 1 94.7 <0.1 23 0 0 100 <0.1 38 0 2 95.0 <0.1

74.0-99.9 <0.1-18.5 85.2-100 <0.1-14.8 (83.1-99.4) (<0.1-9.3)

SSCR SNV 504 1 30 94.4 0.2 684 4 44 94.0 0.6 545 2 47 92.1 0.4

92.1-96.2 <0.1-1.1 92.0-95.6 0.2-1.5 (89.6-94.1) (<0.1-1.3)

InDel 17 1 2 89.5 5.6 21 1 2 91.3 4.5 37 0 3 92.5 <0.1

66.9-98.7 0.1-27.3 72.0-98.9 0.1-22.8 (79.6-98.4) (<0.1-9.5)

SS SNV 497 2 37 93.1 0.4 704 0 24 96.7 <0.1 562 1 30 94.9 0.2

90.6-95.1 <0.1-1.4 95.1-97.9 <0.1-0.5 (92.8-96.6) (<0.1-1)

InDel 16 2 3 84.2 11.1 21 0 2 91.3 <0.1 37 0 3 92.5 <0.1

60.4-96.6 1.4-34.7 72.0-98.9 <0.1-16.1 (79.6-98.4) (<0.1-9.5)

NX SNV 465 1 69 87.1 0.2 650 1 78 89.3 0.2 484 0 108 81.8 <0.1

83.9-89.8 <0.1-1.2 86.8-91.4 <0.1-0.9 (78.4-84.8) (<0.1-0.8)

InDel 19 0 0 100 <0.1 21 0 2 91.3 <0.1 31 1 9 77.5 3.1

82.4-100 <0.1-17.6 72.0-98.9 <0.1-16.1 (61.5-89.2) (0.1-16.2)

NG SNV 346 6 188 64.8 1.7 436 14 292 59.9 3.1 373 10 219 63.0 2.6

60.6-68.8 0.6-3.7 56.2-63.5 1.7-5.2 (59.0-66.9) (1.3-4.7)

InDel 11 0 8 57.9 <0.1 11 1 12 47.8 8.3 20 1 20 50.0 4.8

33.5-79.7 <0.1-28.5 26.8-69.4 0.2-38.5 (33.8-66.2) (0.1-23.8)

FDR false discovery rate, FN false negatives, FP false positives, MIG medically interpretable genome, SENS Sensitivity, TP true positives aFDR is used in lieu of specificity due to a large skew in the TN, FP
class distribution.
aFDR is used in lieu of specificity due to a large skew in the TN, FP class distribution
bIn WGS data, there was no difference in error rates when using either VQSLOD scores or hard-thresholding cutoffs for InDels
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A

B

Fig. 6 Coverage gaps in Retinitis Pigmentosa and Cystic Fibrosis genes are recovered with augmented exome approaches. Chromosomal
position (x-axis) is plotted against coverage depth (y-axis) averaged over multiple 1000 Genome samples, with the clinical coverage threshold
(≥20×) represented by a horizontal black line. Blue areas represent mean-depth of coverage across coding and non-coding regions using the
SS (light blue), and SSCR (dark blue) exomes. Areas in green represent coverage gaps ‘filled in’ by ACE. These include areas with known pathogenic
variants in high GC rich areas in the RPGR gene associated with retinitis pigmentosa (a); or non-coding regions of the CFTR gene (b)
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described above, ACE ‘fills in’ missing coverage data so
that the entire coding region and any clinically inter-
pretable non-coding regions are covered at ≥20×
(green). This includes a high GC content area in RPGR
and an intronic region in CFTR. In the NA12878 sam-
ple, the percent of coding bases covered ranged from
71-87 % for RPGR at ≥20× using WES. One hundred
percent and 88 % of coding bases were covered in RPGR
at ≥20× using ACE and 31× WGS, respectively. Although
conventional WES platforms captured 90-99 % of exonic
bases at ≥20× in CFTR, an intronic pathogenic variant
(rs75039782, NM_000492.3: c.3717 + 12191C > T) recom-
mended for carrier screening [40] was only adequately
covered using 31× WGS and ACE.
Increased coverage efficiency translated to improved

accuracy when assessing observed variant calls against
the reference calls-sets, with notable exceptions. In
terms of sensitivity, ACE outperformed other platforms
across all intervals (Table 1) whereas NX and NG had a
substantially larger FN rate than other platforms, includ-
ing WGS. Despite high coverage efficiency and finishing
statistics (Figs. 2 and 3) relative to other WES platforms,
NX showed relatively poor performance in terms of ac-
curacy. This was a surprising result since we presumed
that increased coverage efficiency would correlate dir-
ectly with increased variant calling accuracy when all
other parameters are fixed, including mean coverage
depth. Interpreting the TP rates across various intervals
(Table 1), it is likely that the lower sensitivities with NX
and NG are due to a combination of inadequate cover-
age depth across what is predominantly coding regions
(MIG, Common Target File) and relatively poor cover-
age outside of coding regions. Like SSCR, both NX and
NG do not specifically target non-coding or regulatory
regions, so poor performance in an interval that in-
cludes these regions is not unexpected. Unlike other
platforms, however, this limitation in NG and NX had a
substantial effect on the detection of variants that have
moderate-high predicted functional impact (Union
Target File).
Across intervals our results demonstrate that in-

creased error rates occur in areas that are not suffi-
ciently targeted by WES, due to either insufficient
coverage of medically important regions or exclusion of
non-coding regions of the genome. Whereas ACE and
SS sensitivities are improved due to the specific expan-
sion of coverage into UTRs, further improvements with
ACE occur due to improved coverage in GC-rich re-
gions (Table 2) and the selective inclusion of genomic
regions (for example, areas near genes, promoter prox-
imal sequences, splice recognition sequences) that are
relevant for clinical interpretation despite their non-
coding status. Targeting of ACE based on interpretability,
emphasizing evidence of disease association and patho-
genicity, results in higher coverage (Fig. 5, Additional files
7 and 8) and sensitivities (Table 1) to variants associated
with disease or variants that are more likely to have dele-
terious effects.
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Notably, there are limitations when drawing parallels
between coverage and accuracy among platforms: (1) the
NA12878 sample used in this study have variants occur-
ring in only a small fraction of the regions being
assessed; (2) areas that are medically relevant but may
be challenging to sequence or that are error-prone (for
example, low-complexity regions, regions of excessive
coverage depth) are excluded from the current versions
of the reference call-sets by design; (3) while reference
call-sets serve as useful benchmarks, 16 % (12,558 /
78,489 regions) of the MIG and 12 % of known daSNVs
in the 56 ACMG genes did not overlap loci in the
GIBv2.18 high-confidence call-set; and (4) recent stud-
ies [25, 26] have shown that there is not a 1:1 corres-
pondence between increases in coverage and increases
in sensitivity . For a given loci, an increase in coverage
from 10-20× would roughly translate to a 4-5 % increase
in SNV sensitivity assuming an expected heterozygous/
homozygous ratio of approximately 5/1 in an individual.
This effect would be hard to detect using the reference
call-sets in this study, as they represent a biased set of
consistently covered loci compared to the unselected/un-
filtered set of loci on which the coverage plots are based
(Figs. 2, 3, and 4).
These limitations make it difficult to comprehensively

resolve accuracy differences among platforms, despite
obvious coverage differences in these areas (Figs. 2, 3,
and 5, Additional files 4 and 5). Ongoing development
[27, 41] of reference call-sets that leverage phased pedi-
gree consistent variant calls and multiple reference mate-
rials may help increase the number of high-confidence
variant calls in these regions. As these reference call-sets
become more comprehensive, we anticipate that many
additional variant observations will occur in GC-rich and
known pathogenic regions of the genome that are specific-
ally targeted by ACE but are not currently captured in
sensitivity calculations due to reference set bias. As an
example, we expanded out the canonical reference call-set
to re-include high-quality calls that may have failed multi-
dataset arbitration rules (that is, GIBv2.18 less restrictive
call-set). By examining GC-rich areas of the genome
across platforms with this reference call-set, we were able
to reveal increases in sensitivity in the MIG with ACE
(Table 2), although the numbers are relatively small.
A related concern, involves the interpretation of the

FDR. Whereas TPs in the reference call-set are likely to be
TPs given that they are called by multiple orthogonal
technologies and pipelines, using the inverse of this set to
confidently identify areas of the genome that are truly
non-variant may not be justified. Recent evidence has
shown that alignment-based [42] and some assembly-
based [43] variant-callers show high error rates for large
InDels and heterozygous InDels even at WGS coverage
depths up to 90×. Although higher coverage (190×) WGS
datasets contribute calls to the GiBv2.18 reference, the
majority of datasets are <80×. In addition to difficulties in
distinguishing InDels from other complex variants, larger
variants and homopolymer runs in our sequenced data-
sets, the higher FDR for InDels across platforms (com-
pared to SNVs) may reflect increased genotyping errors in
the reference call-sets.
Alternative variant types, like structural variants, and

alternative mechanisms of causal variation, like mosai-
cism, are not specifically evaluated in this study. Al-
though methods to detect duplication and deletion
events by exome-based sequencing methods continue
to improve [44–46], they remain challenging to assess
systematically on a genome-wide scale. Given the large
fraction of disease heritability they are thought to repre-
sent [47], a reference call-set to enable accuracy compari-
sons among different platforms is needed. Improved
reference datasets are being developed by NIST and others
and will enable more objective comparisons between WES
and WGS platforms for copy number variations. Similarly,
the detection of mosaic variants in Mendelian disease is
increasingly recognized as a clinically important and com-
mon mechanism of causal variation. Several recent studies
using high-depth targeting sequencing approaches like
gene panels [48, 49] and WES [7, 49–53] have shown the
presence of somatic mutations capable of causing inher-
ited disease when present in as little as 10 % of a patient’s
cells. However, obtaining ≥20× local coverage depth on
alternative alleles, when the fraction of cells in which the
allele is present may be as low as 10 %, is not attainable
with clinical WGS and conventional WES sequencing in a
cost-effective manner. Conversely, the use of high cover-
age (>500×) gene panels increases the ability to resolve
mosaic variants but only if they occur in the set of
genes defined a priori in the panel - a limitation when
attempting to diagnose a patient with atypical clinical
manifestation or in the presence of substantial genetic
heterogeneity [50]. For cases of inherited disorders and
cancer, an ACE strategy that insures the availability of
higher localized coverage depth and completeness of
coverage within a comprehensive medically relevant
target region is currently being assessed for its ability to
resolve mosaic variants at low allele frequencies.
Conclusions
The variation in coverage and accuracy among platforms
highlights the need for clinicians to consider analytical
performance when making clinical assessments, given
the risk of over-interpreting negative results. At compar-
able levels of sequence data, ACE was the most sensitive
enrichment-based platform among those tested; and was
comparable to WGS despite an eight-fold reduction in
the amount of sequence data obtained.
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Considering that sequencing costs typically account
for the largest fraction of total costs incurred when using
exome-based assays in the clinic, this sensitivity makes
ACE cost-efficient compared to conventional WES. This
also makes ACE a cost-effective diagnostic tool com-
pared to WGS given that WGS costs four to five times
that of conventional WES for a given level of sensitivity
based on sequencing costs alone [26]. In clinical applica-
tions such as inherited disease and tumor analysis where
comprehensive coverage of medically interpretable areas
of the genome requires higher localized sequencing
depth, ACE offers both cost and performance advantages
over other sequencing-based tests.
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