
Smedley and Robinson Genome Medicine  (2015) 7:81 
DOI 10.1186/s13073-015-0199-2
REVIEW Open Access
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Abstract

Whole exome sequencing has altered the way in
which rare diseases are diagnosed and disease genes
identified. Hundreds of novel disease-associated genes
have been characterized by whole exome sequencing
in the past five years, yet the identification of disease-
causing mutations is often challenging because of the
large number of rare variants that are being revealed.
Gene prioritization aims to rank the most probable
candidate genes towards the top of a list of potentially
pathogenic variants. A promising new approach
involves the computational comparison of the
phenotypic abnormalities of the individual being
investigated with those previously associated with
human diseases or genetically modified model
organisms. In this review, we compare and contrast the
strengths and weaknesses of current phenotype-driven
computational algorithms, including Phevor, Phen-Gen,
eXtasy and two algorithms developed by our groups
called PhenIX and Exomiser. Computational phenotype
analysis can substantially improve the performance of
exome analysis pipelines.
have reported a successful molecular diagnosis in up to
Disease-associated gene discovery and genomic
diagnostics
It seems fair to say that next-generation sequencing
(NGS)-based diagnostics are revolutionizing the way that
rare diseases are diagnosed and researched. For example,
programs such as Care4Rare [1], the program at the
Centers for Mendelian Genomics [2], and the Undiag-
nosed Diseases Program of the National Institutes for
Health [3] have developed computational and clinical
frameworks for the efficient identification of novel genes
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implicated in disease. Furthermore, clinical groups have
shown the utility of exome and genome sequencing in
improving the diagnosis of rare genetic diseases [4–11].
The UK 100,000 Genomes Project, which aims to trans-
form the way that genomics is used in the National
Health Service (NHS), is focused on the areas of rare
disease, infectious disease and cancer. This project has
recently reported the first successful diagnoses of pa-
tients using exome sequencing [12] (Box 1). Detailed
clinical phenotyping is a keystone of the UK 100,000
Genomes Project's strategy; the aim is to use phenotypic
analysis to guide the interpretation of genome sequence
data that cover at least 95 % of the genome at 15-fold or
better.
Many clinical centers are now using whole exome se-

quencing (WES). This process relies on oligonucleotide
probes to capture (hybridize to) the target exonic se-
quences from fragmented total genomic DNA, followed
by enrichment and NGS of the targeted sequences [13].
WES is typically performed using kits that aim to cap-
ture all exonic and flanking sequences and may also in-
clude probes to target microRNA and other sequences
of interest [14]. Recent large-scale clinical WES studies

25 % of cases in large cohorts of unselected, consecutive
patients [6–8, 15]. Despite this progress, it remains diffi-
cult to identify causative mutations in the genomes of
many patients.
A number of strategies have emerged to rank the vari-

ants and the genes that they affect, with those most
likely to cause disease ranked highest, through a process
termed gene prioritization [16–18]. Current approaches
towards gene prioritization include simultaneously se-
quencing multiple affected individuals and searching for
genes that are affected in all or most individuals [17],
linkage analysis [19], and various forms of network ana-
lysis [20]. The first two strategies identify specific genes
or genomic intervals as candidates, whereas network
approaches generate a relative likelihood that every gene
in the genome is causal. An additional strategy that is
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Box 1. Prominent exome sequencing projects in the
field of rare disease research

A number of large-scale, multicenter projects have emerged in

recent years that aim to use whole exome sequencing (WES) to

discover novel disease-associated genes and to improve the

diagnosis and treatment of rare hereditary diseases. These include:

� Care4Rare (http://care4rare.ca/). This project has emerged

from the Canadian FORGE (Finding of Rare Disease Genes)

initiative, which has been able to identify disease-causing

variants for 146 of the 264 disorders studied over a 2-year

period, with up to 67 novel disease-associated genes being

characterized [63].

� Centers for Mendelian Genomics (CMG) (http://www.

mendelian.org/). A group of sequencing centers funded by

the National Institutes of Health has established three CMGs

(Baylor-Johns Hopkins CMG, the University of Washington

CMG and the Yale CMG) [64].

� Undiagnosed Disease Program of the National Institutes

of Health (http://www.genome.gov/27550959). The

Undiagnosed Disease Program was founded with the goal of

achieving a diagnosis for patients who remained undiagnosed

after an exhaustive workup and to discover new disorders that

would provide insight into mechanisms of disease [65].

� The UK 100,000 Genomes Project (http://www.genomics

england.co.uk/). This project includes a major focus on rare

inherited diseases with the goal of introducing genomics

diagnostics into the mainstream healthcare system for the

benefit of patients and researchers.

� DECIPHER (DatabasE of genomiC varIation and

Phenotype in Humans using Ensembl Resources)

(https://decipher.sanger.ac.uk/). This resource has been in

operation since 2004 and represents a community driven

database of array comparative genomic hybridization (CGH)

and WES data that can be used for genomic matchmaking

[66].

� The Deciphering Developmental Disorders (DDD) study

(http://www.ddduk.org/) has the goal of improving

diagnostics of developmental disorders in children by means

of array CGH and next-generation sequencing methods. The

program has achieved a diagnostic yield of 27 % among

1133 previously investigated yet undiagnosed children who

have developmental disorders [67].

� The Global Alliance for Genomics and Health coordinates

several groups that are involved in genomic matchmaking,

which allows physicians to search for patients with similar

genotypes and phenotypes to facilitate and accelerate novel

disease-associated gene discovery. Many of these databases,

such as PhenomeCentral (https://phenomecentral.org/), use

phenotype analysis.

The analysis of data in these and other projects benefits greatly

from other collections of exome data that allow the frequency

of variants in the population to be estimated (for instance, in

order to filter out variants whose population frequency exceeds

a certain threshold). These include the NHLBI-ESP 6500 exome

project (https://esp.gs.washington.edu/drupal/), the Exome

Aggregation Consortium (ExAC) (http://exac.broadinstitute.org/),

and the 1000 Genomes Project [23].
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proving particularly successful uses knowledge of the pa-
tient’s phenotype to assess candidate sequences.
In this review, we provide an overview of the current

tools that use computational analysis of the phenotype
as a major component of their exome prioritization pro-
cedures. We explain how phenotype-driven analysis of
exome data can be used to filter out common variants
and those deemed to be non-pathogenic. We also present
a number of recently published tools that substantially im-
prove the analysis of WES data by incorporating pheno-
typic features into their prioritization procedures, and
compare their strengths and weaknesses.

Variant annotation and filtering
Exome analysis of the tens of thousands of sequence var-
iants typically found in any individual usually begins
with filtering out of target and high-frequency variants.
In many cases, the remaining variants are filtered or pri-
oritized on the basis of their predicted pathogenicity. An
essential step in the interpretation of these data is the
annotation of these variants with respect to their poten-
tial effects on genes and transcripts; this requires the
translation of variant-describing semantics in the Variant
Call Format (VCF), which reflects the chromosomal coordi-
nates of each variant (for example, chr10:g.123256215T>G),
into gene-based variant annotations (such as c.518A>C;
p.Glu173Ala in the gene FGFR2). This is necessary be-
cause evaluation of a variant in a diagnostic context al-
most always requires assessment of the potential effects of
variants on gene products [21].
Several annotation tools offer additional functionality

that allows variants to be filtered according to their
population frequency and variant class. For instance,
ANNOVAR [22] annotates variants relative to a number
of popular gene sets to identify the functional conse-
quence of the mutation; for example, new amino acid
(missense) or stop-codon (nonsense) mutations can result
from a non-synonymous point mutation. In addition, this
tool can filter variants to produce a more manageable set
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http://www.mendelian.org/
http://www.mendelian.org/
http://www.genome.gov/27550959
http://www.genomicsengland.co.uk/
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of candidates on the basis of various criteria, such as ex-
cluding any common single nucleotide polymorphisms
(SNPs) present in dbSNP or present with a minor allele
frequency (MAF) more than 1 % in the 1000 Genomes
Project [23] or NHLBI-ESP 6500 exome project (ESP)
datasets. Other sources of data that can be used for
prioritization include deleteriousness scores precomputed
using the variant-analysis tools Sorting Intolerant from
Tolerant (SIFT) [24], Polymorphism Phenotyping (Poly-
Phen) [25], Genomic Evolutionary Rate Profiling (GERP)
[26], and Combined Annotation-Dependent Depletion
(CADD) [27] (Box 2). Finally, the exome annotation tool
Jannovar can implement the expected inheritance model
Box 2. Selection of tools used for the analysis of
variants found in whole exome sequencing data

Variant annotation tools translate the genomic coordinates of

variants given by variant call format (VCF) files (which are

commonly used in exome sequencing) into the corresponding

transcript-based annotations. ANNOVAR annotates variants in this

way and performs tasks such as examining their functional

consequence on genes. In addition, this tool performs functional

annotation of the variants with respect to a number of attributes

[22]. Jannovar performs such annotation as well as pedigree-based

analysis and can also be used as a Java programming library [21].

Pathogenicity prediction programs use computational

analysis to assess the potential impact of amino acid

substitutions, and in some cases other categories of variants, on

protein function. Sorting Intolerant from Tolerant (SIFT) uses

sequence homology to predict the likelihood that an amino

acid substitution will have an adverse effect on protein function

[68]. Polymorphism Phenotyping v2 (PolyPhen-2) predicts the

impact of amino acid substitutions on the stability and function

of affected proteins using structural and comparative

evolutionary comparisons [25]. MutationTaster uses Bayesian

methodologies to predict the relevance of a wide range of

variants [69]. The Combined Annotation scoRing toOL (CAROL)

combines the predictions of PolyPhen-2 and SIFT [70]. The

Combined Annotation-Dependent Depletion (CADD) integrates

a large number of sequence and genomic attributes to train a

support vector machine to predict deleteriousness [27]. Genomic

Evolutionary Rate Profiling (GERP) is a method to assess regions

that have been subject to purifying selection and are enriched

for functional elements [26].

Variant annotation pathogenicity prediction tools are used to

assess the potential relevance of variants in WES data. In

phenotype-driven exome analysis, the final ranking of the genes

that contain these variants is performed using phenotypic analysis

according to the algorithms described for the several programs.
for further filtering [21]. The Variant Effect Predictor [28]
of the European Bioinformatics Institute (EBI) can be used
through either an online interface, a downloadable Perl
command-line tool or a scalable web service such as
RESTful. Variants can be input in a number of formats
(VCF, Human Genome Variation Society (HGVS) and so
on) and the functional consequence annotated using a
number of transcript sets (Ensembl, Gencode or Refseq).
Filters can be set to exclude non-coding variants or com-
mon variants above a certain MAF in the variant popula-
tions provided by the1000 Genomes Project [23], the
Exome Sequencing Project [29], or the Exome Aggrega-
tion Consortium [30]. The output also includes predicted
deleteriousness scores from SIFT and PolyPhen.

Phenotype-based exome analysis tools
When the diagnosis is not known in advance, or if a novel
disease gene is being sought, computational phenotype
analysis can serve to assess each candidate gene’s rele-
vance to the clinical abnormalities observed in the
patient(s). Although other ontologies or terminologies
that represent phenotypes exist (such as SNOMED CT,
MeDRA, London Dysmorphology Database, POSSUM,
PhenoDB, ICD-9/10/11) [31] the current applications
in this field make use of the Human Phenotype Ontology
(HPO) database, which aims to provide a computable rep-
resentation of the clinical abnormalities observed in hu-
man disease [32]. A number of algorithms have been
developed to estimate the similarity between two diseases
based on their phenotypic features encoded using HPO
terms [33]. These algorithms can be adapted to measure
the similarity between a set of query terms representing
the clinical manifestations observed in a patient and those
representing each of the diseases in a database [34–37].
The algorithms below utilize an assessment of clinical
similarity to prioritize candidate genes.

eXtasy
eXtasy [38] takes a data integration approach (genomic
data fusion [39]) to variant prioritization. To generate an
overall prediction of causality, ten different measures of
variant deleteriousness that are available from existing
tools and databases, along with a gene haploinsufficiency
prediction score, are combined with a phenotype-specific
gene score. The phenotype-based method takes all disease
genes known to be associated with a particular HPO term
or terms from Phenomizer [37] and scores the similarity
of each candidate gene in the exome to this gene set using
the Endeavour algorithm [39]. Endeavour uses various
measures of gene similarity, such as sequence similarity
and co-expression, as well as involvement in the same
protein–protein interactions or pathways. A Random For-
est algorithm is used to produce a single combined candi-
dacy score from all of these sources of evidence. For
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variants that are missing data from any of the methods, an
imputed score is calculated that ignores haploinsufficiency
and uses median values across all variants for the missing
deleteriousness scores.
Receiver operating characteristic (ROC) analysis was

used to assess the ability of eXtasy to discriminate disease-
causing from rare control variants or common polymor-
phisms. This analysis showed substantial improvement
when compared with classical deleterious prediction
methods such as PolyPhen, SIFT, MutationTaster and
CAROL. Currently, eXtasy only performs prioritization of
non-synonymous variants but when public datasets that
are sufficiently large for training become available, it will
be expanded to include mitochondrial, noncoding, syn-
onymous and nonsense variants, as well as mutations
around the splice junction that affect splicing and in-
sertion and deletion of base mutations (indels). eXtasy
performs no filtering, so it is recommended that the
exome is pre-filtered to remove off-target or common
(MAF > 1 %) variants. eXtasy is available for online use
or download [40].
Phevor: Phenotype Driven Variant Ontological Re-ranking
tool
Phevor [41] takes the outputs of variant-prioritization
tools such as ANNOVAR or the Variant Annotation,
Analysis, Search Tool (VAAST) [42] and then prioritizes
the remaining genes using phenotype, gene function and
disease data. This knowledge comes from publically avail-
able gene annotation sets using various biomedical ontol-
ogies such as the HPO, Mammalian Phenotype Ontology
(MPO) [43, 44], Disease Ontology (DO) [45], and Gene
Ontology (GO) [46]. Users specify a list of terms from one
or more of HPO, DO, MPO, GO or Online Inheritance in
Man (OMIM) [47] that characterize what is known about
the patient. Phevor then generates a list from genes that
have been annotated with these terms or their parent
terms if no gene annotations exist. Next, it identifies
terms in the other ontologies that are annotated to these
genes and the process is repeated to expand the gene list.
Thus, concepts in different ontologies are related through
their annotation of the same gene. Finally, each gene re-
ceives a score based on propagation from the seed nodes
in each ontology and a combination procedure across the
scores from the various ontologies. The final Phevor
score combines the ranking information for the variant
prioritization tool (or P-value from VAAST) with this
gene score.
Benchmarking of Phevor on simulated disease

exomes, based on in-house generated exomes, dem-
onstrated a considerable improvement over variant
prioritization methods such as ANNOVAR and
VAAST, with 95–100 % of the exomes having the
causative variant in the top ten candidates. Three
case studies where Phevor was used to identify
disease-causing alleles have also been presented. Phe-
vor is available for online use only [48].

Phen-Gen
Phen-Gen [49] uses a Bayesian framework to compare
predicted deleterious variants in the patient’s exome and
known patient symptoms to prior knowledge of human
disease-gene associations and gene interactions. Coding
variants are analyzed using a unifying framework to
predict the damaging impact of non-synonymous, splice-
site and indel variants. Phen-Gen also allows a genome-
wide approach in which evolutionary conservation and
Encyclopedia of DNA Elements (ENCODE)-predicted
functionality and proximity to coding sequences are used
to score non-coding variants.
Any variant that has a MAF above 1 % is removed

from further analysis. Healthy individuals contain many
damaging mutations and the fact that this ability to tol-
erate mutations varies from gene to gene is also taken
into account using a null model. This model uses the
observed variants from the 1000 Genomes Project to
generate a null distribution under either a dominant or
recessive inheritance model for each gene. Genes are
only retained for further analysis if the predicted dam-
aging score for the variants exceeds that seen for 99 %
of the 1000 Genomes dataset.
These remaining genes are then analyzed using the

Phenomizer algorithm to match semantically the patient’s
phenotypes encoded using HPO to known disease-gene
associations. The role of novel (non-disease genes) is
assessed by identifying functionally related genes using a
random-walk-with-restart algorithm over a gene inter-
action network. Phenotype matches are distributed to
these novel genes across the network such that the disease
gene hub gets the majority (90 %) of the score and other
genes get a share of the remainder, according to their
proximity to the disease gene.
Benchmarking using simulated exomes that were based

on 1000 Genomes Project data showed that the correct
disease variant was obtained as the top hit in 88 % of sam-
ples. Using a strategy in which known associations were
masked to simulate the discovery of novel associations,
performance figures of 56 % and 89 % were obtained for
dominant and recessive disorders, respectively. In an
evaluation using real patient data, 11 trios with recessive
or X-linked intellectual disability were analyzed and 81 %
of the reported genes were in the top ten candidates.
Phen-Gen is available for online use or download [49].

Exomiser
The original implementation of Exomiser [50] used se-
mantic similarity comparisons between patient phenotypes
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and mouse phenotype data for each candidate gene in the
exome. The PhenoDigm [51] algorithm is used to score
each gene from 0 to 1, where 1 represents the perfect
match and genes with no data received a default score of
0.6. This phenotype score is combined with a variant score
that is based on the allele rarity in the 1000 Genomes Pro-
ject and ESP datasets together with predictions of deleteri-
ousness from PolyPhen, SIFT and MutationTaster.
Benchmarking on simulated exomes based on 1000

Genomes Project data showed that 66 % of cases had
the causative variant as the top hit under a dominant
model and 83 % under a recessive model [50].
Exomiser has been improved subsequently to include

comparison with human and fish phenotypes, as well as
use of a random-walk with restart to score genes with
no phenotype data (genes are scored based on proximity
in the StringDB interaction network to other genes that
do show phenotypic similarity to the patient data) [20].
Exomiser is available as an online web service [52] or for
download as a command-line tool. Installation simply
involves unzipping the download.

PhenIX
PhenIX [5] uses the same software framework as Exomi-
ser but instead of using human, mouse, fish, and protein–
protein association data, this tool is restricted to
comparisons between patient phenotypes and known
disease gene phenotypes. This simplification is made
because PhenIX is intended for diagnostic tasks when
only known disease genes can be reported. In addition,
the semantic similarity algorithm uses the Phenomizer
algorithm [37].
Benchmarking on sequence files generated from a tar-

get enrichment panel that was based on known disease-
associated genes revealed that 97 % of samples had the
inserted variant as the top hit, regardless of inheritance
model. The same performance was observed when using
1000 Genomes Project exomes.
PhenIX is available in the same downloadable library

as Exomiser and has the same filtering options. In
addition it can be used from its website [52].

Comparison of exome prioritization tools
Table 1 summarizes the main features of the software
solutions described above. For clinicians and many re-
searchers, a well-designed web interface solution is best
in terms of usability. Installation of the command-line
versions of the tools will be difficult or off-putting for
many such users. Nevertheless, web-based solutions
present security issues in that patient exomes have to be
uploaded onto external servers. To counter this, publically
available, secure, cloud-based versions or easy-to-install
local clients would be welcomed in the future. By contrast,
for many medium-to-large projects, the primary users of
these tools are going to be the bioinformatics teams that
support clinical researchers. For these users, a command-
line version that can be integrated into their pipelines is
the most useful platform; for example, some of the tools
can take as input VCF files from one program and can
output VCF that can feed into another.
To further compare these tools, benchmarking was

performed on 50 simulated disease exomes, generated
by randomly adding known non-synonymous disease
variants (two copies for recessive diseases and one for
dominant) from the Human Genome Mutation Database
(HGMD) to either 50 randomly chosen unaffected exomes
from the 1000 Genomes Project or 50 exomes generated
by us in-house (Fig. 1). The diseases and variants used for
the benchmarking of the 50 exomes in Fig. 1 are detailed
in Additional file 1. Two background sources of exome
data were used because the 1000 Genomes Project
exomes can over-predict the performance that will be ob-
tained for real patient exomes. This is because many of
the tools utilize the allele frequency data from the 1000
Genomes Project for filtering and prioritization. Data from
the 1000 Genomes Project variants have also been used to
train some of the algorithms. In addition, real patient
exomes typically contain many more variants than the
conservatively called 1000 Genomes Project exomes;
for example, our in-house generated exomes contain
140,000–231,000 variants compared to 24,000–42,000
in the 1000 Genomes Project exomes.
Exomiser and PhenIX were run from the command-

line with the default settings and MAF filter set to <1 %
and the appropriate inheritance model specified. Phen-
Gen was run from the command line, again with the in-
heritance model specified. EXtasy was run from the
command line using just the phenotypes as additional
arguments. EXtasy does not perform any variant filter-
ing, so to allow a better comparison with the other tools,
we ran it on the filtered variants from Exomiser. Phevor
is also just a variant prioritizer and relies on a filtered
exome from software such as VAAST or ANNOVAR.
Hence, we used the output of ANNOVAR's variant_
reduction.pl script with the default settings along with
specification of the inheritance model. Table 2 shows the
average gene counts before and after filtering by these
various strategies.
HPO annotations for the disease under consideration

were included in the prioritization analysis for each soft-
ware. We assessed performance when using: (a) all avail-
able phenotypes, (b) a maximum of three phenotypes
randomly chosen from the annotations, (c) the same
three phenotypes but with two promoted to the less-
specific parent term and two false-positive terms ran-
domly chosen from the whole of HPO. Phevor only allows
up to five HPO terms, so only the latter two options were
tested for this tool.



Table 1 Comparison of exome analysis tools

Software Exome input Types of variant analyzed Availability Software approach

VEP Various including VCF,
pileup, HGVS notations

All Website,
command line
and REST service

Filtering by allele frequency and deleteriousness scores
(SIFT, PolyPhen)

ANNOVAR Various including
multi-sample VCF

All Command line Filtering by allele frequency, inheritance model and
deleteriousness scores (SIFT, PolyPhen, MutationTaster,
MutationAssessor, LRT, FATHMM, MetaSVM, MetaLR,
GERP++, PhyloP, SiPhy, CADD)

eXtasy Single sample VCF Non-synonymousonly Website and
command line

Prioritization based on a Random Forest score from
combined deleteriousness scores (CAROL, LRT,
MutationTaster, PhastCons, PhyloP, PolyPhen, SIFT),
haploinsufficiency, and similarity of the gene to genes
annotated with the input Human Phenotype Ontology
(HPO) phenotypes as measured by sequence similarity,
co-expression, and involvement in the same pathway
or protein–protein interactions

Phevor Pre-filtered VAAST or
ANNOVAR files or
functionally annotated
multi-sample VCF

All Website Prioritization based on semantic similarity of each
candidate gene to genes annotated with the input
set of ontology terms taken from HPO, Mammalian
Phenotype Ontology (MPO), Disease Ontology (DO),
and Gene Ontology (GO)

Phen-Gen Multi-sample
family VCF

All Website and
command line

Filtering by inheritance model and stringency
or reentrance.
Prioritization based on predicted variant impact and
semantic phenotypic similarity between HPO input and
HPO-annotated diseases associated with each exomic
candidate or its neighbors in an interaction network

PhenIX Multi-sample
family VCF

All coding Website and
command line

Filtering by allele frequency, variant quality, and
inheritance model.
Prioritization based on predicted deleteriousness
(SIFT, PolyPhen, MutationTaster), allele frequency and
semantic phenotypic similarity between HPO input
and HPO-annotated diseases associated with each
exomic candidate

Exomiser Multi-sample
family VCF

All coding Website and
command line

Filtering by allele frequency, variant quality,
deleteriousness scores and inheritance model.
Prioritization based on predicted deleteriousness
(SIFT, PolyPhen, MutationTaster), allele frequency and
semantic phenotypic similarity between HPO input and
HPO-annotated diseases, MPO-annotated mouse and
Zebrafish Phenotype Ontology (ZPO)-annotated fish
models associated with each exomic candidate or its
neighbors in an interaction network

Abbreviations: CADD Combined Annotation-Dependent Depletion, GERP Genomic Evolutionary Rate Profiling, HGVS Human Genome Variation Society, HPO Human
Phenotype Ontology, LRT likelihood ratio test (LRT), PolyPhen Polymorphism Phenotyping, REST Representational State Transfer, SIFT Sorting Intolerant from Tolerant,
VAAST Variant Annotation, Analysis, Search Tool, VCF variant call format
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Fifty exomes is too small a number to make statisti-
cally valid conclusions on the performance of each tool,
but we were limited to this number as we wanted to
include Phevor and this was only available through man-
ual, web use. However, the results from 1000 exomes
run through the other tools (Fig. 2) did not differ much
from that seen from 50 exomes, so the results are likely
to be representative. In addition, the results are in rough
agreement with previously published reports of perform-
ance using a similar strategy: 97 % as the top hit using
PhenIX or Exomiser, 88 % as the top hit with Phen-Gen,
and 95 % in the top 10 for Annovar plus Phevor.
As expected, the tools that took advantage of pheno-
type data outperformed prioritization tools that rely on
variant analysis alone. For the exomes that were based
on the 1000 Genomes Project, Exomiser, PhenIX, Phen-
Gen and Phevor clearly outperformed eXtasy, with Phe-
nIX looking like the best option when the phenotype is
clearly defined and Exomiser performing the best when
missing, generalized and atypical phenotypes are present.
The same pattern was seen for the analyses of the sam-
ples based on our in-house-generated exomes, except
that the performance of Phen-Gen decreased dramatically
such that it was the worst performing tool. Phen-Gen was
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Fig. 1 Benchmarking of all phenotype-based exome analysis tools on 1000 Genomes Project or in-house exomes. Exomes were generated by
randomly inserting known disease variants from the Human Genome Mutation Database (HGMD) into either (a, c, e) 50 unaffected exomes from
the 1000 Genomes Project or (b, d, f) 50 in-house generated exomes. These exomes were analyzed using each tool and the ability of each tool
to rank the causative variant as the top hit, in the top 10 or top 50 was recorded. Default settings, along with filtering with a minor allele
frequency cutoff of 1 %, were used for all tools. Analysis was performed using (a, b) all phenotype annotations (c, d) just three of the terms
chosen randomly, or (e, f) with two of these three terms made less-specific and two random terms from the whole of the Human Phenotype
Ontology (HPO) added
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unable to prioritize any of the disease variants as the top
hit in these samples. Phen-Gen uses a measure of genic
intolerance that is based on 1000 Genomes Project data,
and it could be that this plays a large part in the
impressive performance of this tool when analyzing the
simulated 1000 Genomes-based exomes. As shown in
Table 2, the dramatic filtering Phen-Gen achieved when
working with the 1000 Genomes Project-based exomes



Table 2 Number of genes per benchmarked sample

1000 Genomes Project exomes In-house exomes

AD AR AD AR

Before filtering 10542 ± 783 10631 ± 802 19235 ± 916 19712 ± 976

Exomiser filtered 388 ± 110 38 ± 11 973 ± 104 557 ± 74

PhenIX filtered 388 ± 110 38 ± 11 973 ± 104 557 ± 74

Exomiser filtered for eXtasy analysis 388 ± 110 38 ± 11 973 ± 104 557 ± 74

Phen-Gen filtered 100 ± 34 5 ± 4 665 ± −86 331 ± 70

Annovar filtered for Phevor analysis 88 ± 36 2 ± 1 372 ± 61 52 ± 17

Abbreviations: AD autosomal dominant, AR autosomal recessive
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was not reproduced for our in-house exomes. This is
likely to be primarily related to the fact that frequency
data are available for all variants in the 1000 Genomes
Project exomes, but in-house data are likely to have 5–10
% 'private' variants with no available frequency data.
In terms of ease of use for the benchmarking, the tools

that were available for download and command-line
usage were clearly more convenient and suitable for
high-throughput analysis. Exomiser, PhenIX and Annovar
took 1–2 minutes to run each sample, but Phen-Gen took
around 20 minutes and EXtasy took up to 50 minutes.
When running on the Annovar pre-filtered results,
Phevor takes less than a minute but a lot of initial
manual work must be performed to generate the
ANNOVAR file, upload it, enter all the HPO terms
and launch the analysis.

Outlook: the future of phenotypic-driven analysis
of genomic data
In this review, we have examined contemporary phenotype-
driven exome analysis software. We performed an evalu-
ation of several contemporary programs. Although the
performance of the programs in tests such as ours is likely
to depend on the way testing is performed, our results give
a general idea of the performance that may be expected
from phenotype-driven analysis of exomes in real exper-
iments. We note, however, that not all individuals
undergoing exome sequencing to evaluate a suspected
rare disease will have a mutation that can be detected
by exome sequencing; for instance, some patients with
Mendelian disease may have mutations in distal enhancer
sequences [53]. Every simulated patient in our analysis
had a mutation that was detectable by exome sequencing,
and so the rate of identification of causal mutations by
phenotype-driven analysis of real exome data may be
lower than that in our simulations. In addition, all of the
tools we examined, with the exception of Phen-Gen, are
likely to be systematically biased by training on known
disease variants, which are almost always in coding
regions. Finally, we suggest that the performance of
phenotype-driven exome analysis software would be im-
proved by better and more detailed phenotypic annota-
tions [54]. Even with these limitations, however, the
performance of programs such as Phevor, eXtasy, Phen-
Gen, PhenIX, and Exomiser [5, 38, 41, 49, 50, 55] has
clearly demonstrated the value of computational phenotype
analysis for the interpretation of exome sequencing data
from individuals with rare genetic disease.
While large-scale phenotyping initiatives have become

almost routine for model organisms such as the mouse
[56], rat [57, 58], and zebrafish [59], similar large-scale
efforts for human disease have been lacking. The HPO
project [32] and the Monarch Initiative [60] are develop-
ing resources towards providing a sound foundation for
the annotation and computational analysis of phenotypic
abnormalities in human disease and model organisms. A
spate of challenges and opportunities remain: for ex-
ample, improved ontological resources and more de-
tailed annotations are required, especially for conditions
such as behavioral abnormalities [33] and for 'new' phe-
notypes that are observable only with recently intro-
duced technologies, such as abnormalities found upon
glycomics analysis or muscle anomalies detectable by
magnetic resonance imaging. More detailed phenotyping
of larger cohorts of patients together with mutation data
may help us to understand genotype–phenotype correla-
tions. In this sense, it is important that the Leiden Open
Variation Database (LOVD) software is increasingly cap-
turing phenotype data on individual mutations, and of-
fers the ability to use HPO terms [61].
One of the major goals of computational phenotype

analysis of the kind described here is to empower the
analysis of NGS data, not only in the context of rare dis-
ease but also in the context of personalized medicine.
One of the goals of personalized medicine is to classify
patients into subpopulations that differ with respect to
disease susceptibility, phenotypic or molecular subclass
of a disease, or the likelihood of a positive or adverse re-
sponse to a specific therapy. The related concept of 'pre-
cision medicine', whose goal is to provide the best
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Fig. 2 Benchmarking of command-line exome analysis software.
Exomes were generated by randomly inserting known disease
variants from the Human Genome Mutation Database (HGMD) into
1000 unaffected exomes from the 1000 Genomes Project. These
were analyzed using each tool and the ability of each to rank the
causative variant as the top hit, in the top 10 or top 50 was recorded.
Default settings along with a minor allele frequency cutoff of 1 % were
used for all. Analysis was performed using all phenotype annotations
(a), just three of the terms chosen randomly (b), or with two of these
three terms made less-specific and two random terms from the whole
of the Human Phenotype Ontology (HPO) added (c)
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available care for each individual, refers to the stratifica-
tion of patients into subsets each with a common bio-
logical basis of disease, such that stratified medical
management is most likely to benefit the patients [62].
All medically relevant disease sub-classifications can be
said to have a distinct phenotype, with the understand-
ing that a medical phenotype comprises not only the ab-
normalities described but also the response of a patient
to a certain type of treatment (for example, responsive-
ness of seizures to valproic acid can be considered to be
a phenotype of certain forms of epilepsy). Therefore,
comprehensive and precise phenotypic data, combined
with ever increasing amounts of genomic data, appear to
have an enormous potential to accelerate the identifica-
tion of clinically actionable complications and of disease
subtypes with prognostic or therapeutic implications.
The algorithms presented in this review probably rep-

resent only the first generation of increasingly powerful
computational tools that will combine phenotype ana-
lysis and the investigation of genetic variants identified
by WES or whole genome sequencing with the study of
human disease and the practice of medicine.

Additional file

Additional file 1: Table S1. Detailing the diseases and variants used for
the benchmarking of the 50 exomes in Fig. 1.
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