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Abstract

that would otherwise have been overlooked.

Background: Psoriasis is a chronic disease characterized by the development of scaly red skin lesions and possible
co-morbid conditions. The psoriasis lesional skin transcriptome has been extensively investigated, but mRNA levels
do not necessarily reflect protein abundance. The purpose of this study was therefore to compare differential
expression patterns of MRNA and protein in psoriasis lesions.

Methods: Lesional (PP) and uninvolved (PN) skin samples from 14 patients were analyzed using high-throughput
complementary DNA sequencing (RNA-seq) and liquid chromatography-tandem mass spectrometry (LC-MS/MS).

Results: We identified 4122 differentially expressed genes (DEGs) along with 748 differentially expressed proteins
(DEPs). Global shifts in mRNA were modestly correlated with changes in protein abundance (r=0.40). We identified
similar numbers of increased and decreased DEGs, but 4-fold more increased than decreased DEPs. Ribosomal
subunit and translation proteins were elevated within lesions, without a corresponding shift in mRNA expression
(RPL3, RPS8, RPLTT). We identified 209 differentially expressed genes/proteins (DEGPs) with corresponding trends at
the transcriptome and proteome levels. Most DEGPs were similarly altered in at least one other skin disease.
Psoriasis-specific and non-specific DEGPs had distinct cytokine-response patterns, with only the former showing
disproportionate induction by IL-17A in cultured keratinocytes.

Conclusions: Our findings reveal global imbalance between the number of increased and decreased proteins in
psoriasis lesions, consistent with heightened translation. This effect could not have been discerned from mRNA
profiling data alone. High-confidence DEGPs were identified through transcriptome-proteome integration. By
distinguishing between psoriasis-specific and non-specific DEGPs, our analysis uncovered new functional insights

Background

Psoriasis is a common inflammation-driven disease af-
fecting 2-3 % of adults with direct and indirect costs to-
taling 35 billion dollars in the United States alone [1, 2].
Psoriasis lesions develop as a consequence of abnormal
keratinocyte (KC) proliferation, which may be driven by
key pro-inflammatory cytokines, including tumor necro-
sis factor (TNF), interleukin (IL)-17A and IL-23 [3].
Such cytokines are manufactured by immune cells that
infiltrate psoriasis lesions (e.g., T cells, macrophages and
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neutrophils), creating a pathological cascade of events in
which immunocytes, cytokines and KCs interact to pro-
mote lesion development [4]. To better understand this
process, mRNA profiles from psoriasis lesions have been
extensively studied using microarray or RNA-seq tech-
nology [5-8]. Such transcriptome studies have uncov-
ered numerous protein-coding mRNAs with altered
expression in psoriasis lesions, which has helped to bet-
ter define cellular pathways activated within lesions, sug-
gesting new disease mechanisms and possible drug
targets [5—8]. Nonetheless, it cannot be assumed that
changes in mRNA expression reliably predict changes in
protein abundance or activity [9-13]. Ultimately, there-
fore, transcriptome—proteome integration is needed to
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fully understand psoriasis from a systems biology stand-
point. This can reduce false-positive identifications and
extend transcriptome findings by identifying those differ-
entially expressed mRNAs impacting protein abundance,
which may be more consequential for the disease
process [14, 15].

The complexity of the human proteome exceeds that
of the transcriptome, with more than 290,000 unique
human peptides having been identified in one large-scale
effort [16]. Such molecular diversity is driven in part by
alternative splicing, which can generate thousands of
protein isoforms from a single mRNA molecule [17]. In
normal human skin, the exact number of proteins re-
mains uncertain, but collagen chains, elastin, cytoskeletal
keratins and vimentin are most abundant [18]. Using
two-dimensional (2D) gel electrophoresis, an early study
identified 21 skin proteins, including eight proteins with
2-fold increased abundance in psoriasis lesions (SER-
PINB4, GSTP1, SERPINB5, ARHGDIA, HSPB1, KRT14,
KRT17, YWHAQ) and two others with 2-fold decreased
abundance (KRT15, CALR) [19]. A subsequent study
used 2D electrophoresis combined with liquid chroma-
tography tandem mass spectrometry (LC-MS/MS) to
identify 36 proteins elevated 2-fold in psoriasis lesions
(e.g., GSTPI1, SEN, PRDX2), which were functionally re-
lated to diverse processes, such as apoptosis, defense re-
sponse, inflammatory response, redox balance and cell
proliferation [20]. More recently, isobaric tag for relative
and absolute quantitation (iTRAQ) labeling was used to
identify 1217 proteins in laser capture microdissected epi-
dermis from psoriasis lesional and uninvolved skin [21].
Of these 1217 proteins, 241 were differentially expressed
within lesions, many of which (25/214) were associated
with IL-1B signaling [21]. This trend appears to agree
well with transcriptome studies, which have also
shown that genes differentially expressed in psoriasis
lesions include a disproportionate number of IL-1B
targets [8, 22].

The association between mRNA and protein abun-
dance depends on many factors, including post-
transcriptional mechanisms, translation rates, mRNA/
protein half-life, and the intracellular localization of
mRNAs and their associated proteins [9-11]. Despite
apparent agreement between mRNA and protein studies
of psoriasis, formal comparisons to quantitatively assess
transcriptome-proteome correspondence have not been
carried out. This has been difficult for two reasons. First,
early studies using 2D gel electrophoresis could only iden-
tify a small number (<100) of highly abundant proteins
[19, 20], compared with the thousands of protein-coding
mRNAs detected by microarray or RNA-seq [5-8]. Sec-
ond, prior studies have not applied transcriptome and
proteome analysis to the same human samples, which
would allow transcriptome—proteome comparisons on a
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sample-specific basis, thereby accounting for molecular-
level heterogeneity among psoriasis lesions [23]. In human
and mouse, mRNA-protein abundance correlations (r)
have often been in the range of 0.40-0.60 [24], although
broader ranges of correlations have been noted in other
species or in cells under stress conditions (e.g., 0.04 <r <
0.95) [10]. Along these lines, psoriasis lesions can be
viewed as a stressful cellular microenvironment, with re-
active oxygen species that may have an impact on the sta-
bility of proteins and their higher-order conformations
[20, 25]. Beyond this, mRNA stability and translation
rate may be influenced by structural features, such as
gene length and GC content, which were previously
shown to associate with gene expression shifts in
psoriasis [26]. Potentially, such unique features of
psoriasis lesions may limit our ability to predict shifts
in protein abundance based upon changes in mRNA
alone.

In this study, we used RNA-seq and LC-MS/MS to pro-
file mRNA and protein expression within the same set of
lesional (PP) and uninvolved (PN) skin samples (# = 14 pa-
tients). This allowed us to assess correspondence between
the psoriasis transcriptome and proteome with respect to
individual samples and patients. Our analysis identified
mRNA-protein pairs with discordant and concordant
abundance shifts in the comparison between lesions and
uninvolved skin. This allowed us to identify functionally
related groups of genes for which transcriptome data do
not accurately predict protein abundance. Additionally,
from among thousands of mRNAs with significantly
altered expression in psoriasis lesions, we delineated a
narrowed set of differentially expressed mRNAs with
significantly altered protein abundance. These “differ-
entially expressed genes/proteins” (DEGPs) represent
high-confidence targets for future studies of psoriasis
disease mechanisms, therapies and biomarkers.

Methods

Ethics statement

All samples were obtained with informed written con-
sent from volunteer patients in accordance with Declar-
ation of Helsinki principles. All protocols were approved
by an institutional review board (University of Michigan,
Ann Arbor, MI, IRB number HUM00037994).

Patient cohort

Skin biopsies were obtained from a cohort of 14 patients
(October 2008 to August 2014), which included eight
males and six females between the ages of 24 and 71 years
(mean age 49.1 years; Additional file 1). Patients discontin-
ued systemic therapies for 2 weeks prior to biopsy collec-
tion (1 week for topical treatment). Two 6 mm punch
biopsies were collected from each patient following local
lidocaine injection. Paired samples from each patient



Swindell et al. Genome Medicine (2015) 7:86

included one lesional (PP) skin biopsy and one uninvolved
(PN) biopsy of macroscopically normal skin (sun-pro-
tected buttock or upper thigh region). Uninvolved biopsies
were at least 10 cm away from any active psoriasis lesion.
Each biopsy was divided into two sections and each sec-
tion was flash frozen in liquid nitrogen and stored at —-80 °
C. The two sections were subsequently processed inde-
pendently, with one section used for RNA extraction and
the other used for total protein extraction (described
below).

High-throughput sequencing (RNA-seq)

RNA extraction was performed using RNAeasy columns
(Qiagen) starting with one-half of each biopsy. RNA qual-
ity was subsequently evaluated using the Agilent 2100
Bioanalyzer (Agilent Technologies), which revealed intact
ribosomal RNA profiles (18S and 28S) for all samples. Se-
quencing of fragmented cDNA was performed using
the Illumina Genome Analyzer IIx. This yielded an
average of 29.3 million 50 bp reads per sample
(range: 22.3-42.2 million; Additional file 2a). Illumina
adaptor sequences were removed using CutAdapt
(version 1.6) with a maximum error rate setting (-e)
of 5 % and a minimum post-processing read length
(-m) of 20 bp [27]. An initial quality check of reads
was performed using FastQC [28], which indicated
nucleotide bias affecting the initial 10 bp at the 3’
end of reads. These 10 bases were removed using the
“fastx_trimmer” function from the FASTX-Toolkit
[29], after which a second FastQC analysis confirmed
lack of nucleotide bias along the entire length of
reads. Reads were then passed through running sum
and window-based trimming functions [30]. First,
reads were filtered using the CutAdapt running sum
filter, using a PHRED quality threshold of 30 (-q)
and minimum sequence length (--minimum-length)
of 20 bp [27]. Second, we applied the window-based
“fastq_quality_filter” to retain only those reads with
PHRED quality greater than 30 for at least 50 % of
the read length [29]. Finally, reads were passed
through the “fastx_artifacts_filter” function [29]. Fol-
lowing these preprocessing steps, there remained an
average of 28.6 million reads per sample (range 21.9-
41.3 million; Additional file 2b).

Filtered reads were mapped to the University of
California, Santa Cruz (UCSC) human genome (hgl9)
using TopHat2 (version 2.0.12) [31]. Read mapping
was performed using UCSC gene model annotations
supplied as a GTF file, with multi-mapping of reads
disallowed (i.e., using the -g 1 option). TopHat2
alignment files were sorted and indexed using SAM-
tools (version 0.1.18) [32]. Mapping quality was
assessed using RSeQC and RNA-SeQC [33, 34], which
indicated an average read mapping rate of 954 %
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(Additional file 2c), with 92.7 % of reads mapped to
intragenic sequences (Additional file 2d) and an aver-
age coverage per base of 9.84 reads (Additional file
2e). Overlap between mapped reads and known hu-
man genes was tabulated using the htseq-count func-
tion from the HTSeq python library (version 0.5.4p3)
[35]. Reads excluded from tabulation included those
ambiguously associated with more than one feature
(i.e., -m intersection-strict) as well as any reads with
quality score lower than 10 (-a 10) [35]. Cufflinks
(version 2.2.1) was used to calculate fragments per
kilobase of exon per million fragments mapped
(FPKM) for each gene feature [36]. Counts and FPKM
estimates for human genes (hgl9) are available from
Gene Expression Omnibus (GEO; GSE67785) and raw
sequence data are available from the Sequence Read
Archive (link to GEO submission [37]).

The UCSC hgl9 genome annotation includes coordi-
nates for 19,225 protein-coding human genes. Of these,
our analyses include only those genes for which expres-
sion was detected with respect to at least 25 % of PP and
PN samples (i.e., at least 7 of the 28 samples). Two cri-
teria were applied to determine whether a gene feature
had detectable expression in a given sample [26]: first, a
count per million mapped reads (cpm) greater than 0.25
was required; secondly, the lower bound on the 95 %
FPKM confidence interval generated by Cufflinks needed
to be greater than zero. Applying these criteria yielded
15,616 skin-expressed protein-coding genes. After skin-
expressed genes were identified, samples were clustered
based upon FPKM values for the 15,616 genes. This
yielded the expected pattern, with clear separation be-
tween lesional and uninvolved skin samples, suggesting
an absence of outliers (Additional file 2f). This conclu-
sion was also supported by plotting the 28 samples with
respect to the first two principal component axes calcu-
lated from FPKM values (Additional file 2g). Finally, for
each patient, we examined fold changes (PP/PN) for genes
shown to have altered expression in psoriasis lesions in a
recent meta-analysis of microarray datasets (n =237 pa-
tients) [38]. Based upon meta-analysis fold changes, we
identified the top 100 PP-increased and top 100 PP-
decreased genes; inspection of PP/PN fold changes for
these genes in our current dataset yielded the expected
trends for all 14 patients (Additional file 2h).

Differentially expressed genes (DEGs) with signifi-
cantly altered expression in PP versus PN skin were
identified using edgeR (n =14 paired PP and PN sam-
ples) [39]. Raw gene counts were normalized using
weighted trimmed mean of M-values (ie., calcNormFac-
tors method “TMM”) [39]. For each skin-expressed gene,
dispersions were estimated using the Cox-Reid-adjusted
likelihood method (function estimateGLMTrendedDisp)
followed by fitting of negative binomial generalized log-
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linear models (function glmFit). Models were fit with two
covariates (patient and sample type) and differentially
expressed genes were identified using likelihood ratio tests
(function glmLRT), in which the log-likelihood was com-
pared between the full model (both covariates) and re-
duced model (only patient as a covariate) [39]. To control
the false discovery rate (FDR), raw p values were adjusted
using the Benjamini-Hochberg procedure [40].

Liquid chromatography-tandem mass spectrometry

The second half of each skin biopsy was processed for
LC-MS/MS analysis. Processing steps included custom
protein extraction, SDS-PAGE, manual unbiased band
excision, and in-gel digestion with trypsin. Each sample
was washed twice with 0.5 mL phosphate-buffered sa-
line. Samples were homogenized by mechanical disrup-
tion in a Bullet Blender (NextAdvance) with 0.8 mL urea
lysis buffer (100 mM HEPES, pH 8.0, 1x Roche Complete,
1x Roche PhosStop) and 0.5 mm stainless steel beads. The
homogenate was centrifuged to pellet the beads and deb-
ris. The supernatant was removed and heated at 100 °C
for 15 minutes. The sample was centrifuged at 15,000 g
for 10 minutes and supernatant removed. Protein quantifi-
cation was performed on the extracted material using a
Qubit fluorometry assay (Invitrogen).

Each sample (10 pg) was processed by SDS-PAGE
using a 10 % Bis-Tris NuPAGE gel (Invitrogen) with
MES buffer system. The gel was run approximately
2 c¢cm. The mobility region was excised into 20 equal-
sized segments and in-gel digestion was performed on
each using a robot (ProGest, DigiLab) with the following
protocol: (1) washed with 25 mM ammonium bicarbon-
ate followed by acetonitrile; (2) reduced with 10 mM di-
thiothreitol at 60 °C followed by alkylation with 50 mM
iodoacetamide at RT; (3) digested with trypsin (Pro-
mega) at 37 °C for 4 h; (4) quenched with formic acid
and the supernatant was analyzed directly without fur-
ther processing.

Each gel digest was analyzed by nano LC-MS/MS with a
Waters NanoAcquity HPLC system interfaced to a Ther-
moFisher Q Exactive. Peptides were loaded on a trapping
column and eluted over a 75 pum analytical column at
350 nL/minute; both columns were packed with Jupiter
Proteo resin (Phenomenex; injection volume 30 pL). The
mass spectrometer was operated in data-dependent mode,
with the Orbitrap operating at 60,000 FWHM and 17,500
FWHM for MS and MS/MS respectively. The 15 most
abundant ions were selected for MS/MS.

LC-MS/MS data analysis

Data were searched using a local copy of the Mascot
search engine (Matrix Sciences Inc.) with the following
parameters: (1) enzyme trypsin/P; (2) database Uniprot
Human (concatenated forward and reverse plus common
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contaminants); (3) fixed modification carbamidomethyl
(C); (4) variable modifications oxidation (M), acetyl
(N-term), pyro-Glu (N-term Q), deamidation (N/Q);
(5) mass values monoisotopic; (6) peptide mass toler-
ance 10 ppm; (7) fragment mass tolerance 0.02 Da;
(8) max missed cleavages 2. Mascot DAT files were
parsed into the Scaffold software (Proteome Software
Inc.) for validation, filtering and to create a non-
redundant list per sample [41]. Data were filtered
using 99 % probability for protein and 95 % probabil-
ity for peptide (prophet scores), with 1.0 % FDR for
protein and peptide probability requiring at least two
unique peptides per protein.

Relative protein abundance was quantified using nor-
malized spectral counts (i.e., normalized SpCs; Scaffold
quantitative values) [42]. Absolute protein abundance
was quantified using the normalized spectral abundance
factor (NSAF). NSAF values were calculated using the
equation NSAF = (SpC/MW)/Z(SpC/MW)y, where SpC
is spectral counts, MW is protein molecular weight in
kDa, and N is the total number of proteins in one sam-
ple [43]. Among all 28 samples, there were 2454 proteins
with SpC>1 in at least one sample. For differential ex-
pression analyses, our analysis included 2232 proteins
with SpC>1 in at least 4 of the 28 samples. Of these
2232 proteins, 23 were associated with keratins included
within the International Protein Index contaminants
database (e.g., KRT2, KRT10, KRT15) [44]. These were
retained in our analyses, however, since keratins are ex-
pected to be among the most abundant proteins in skin
biopsies [18]. For each of the 2232 proteins, a least-
squares regression model was fit to normalized SpC
values, with covariates corresponding to patient and
sample type (PP or PN; R function lm). Differentially
expressed proteins (DEPs) were then identified based
upon significance of regression coefficients associated
with the sample type covariate. FDR-adjusted p values
were calculated from raw p values using the Benjamini-
Hochberg procedure [40].

RT-PCR, western blot and immunohistochemistry

Select genes and proteins were further evaluated using
RT-PCR, western blot and immunohistochemistry. These
analyses were performed using an independent set of skin
biopsies not evaluated by RNA-seq or LC-MS/MS, includ-
ing lesional skin from psoriasis patients (PP), uninvolved
skin from psoriasis patients (PN), and normal skin from
control subjects (NN). Following RNA extraction (Qiagen
RNeasy columns), RNA was reverse transcribed using the
High Capacity ¢cDNA Transcription kit (Applied Biosys-
tems Inc., Foster City, CA, USA) and PCR was performed
using the 7990HT Fast Real-Time PCR system (Applied
Biosystems). Tagman primers were purchased from Life
Technologies (catalog numbers 4331182 and 4351372;
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RPS8, Hs01374307_gl; RPS3A, Hs00832893_sH; RPL11,
Hs00831112_s1; GAPDH, Hs99999905_m1; FABP5, Hs023
39439 _gl; SERPINB4, Hs01691258 gl). Western blots
were performed using antibodies directed against RPL7A
(Lifespan Biosciences, LS-C287612/60982, 1:1000 dilution),
RPS8 (Lifespan Biosciences, LS-C192101, 1:500 dilution),
EEF1A1 (Lifespan Biosciences, LS-C99327/61002, 1:1000
dilution), RPS3A (Lifespan Biosciences, PA5-29398, 1:500
dilution), RPL11 (Lifespan Biosciences, PA5-34604, 1:1000
dilution) and Beta-actin (Sigma, A5316, 1:10,000 dilution).
For immunohistochemistry analysis, diaminobenzidine
staining of paraffin embedded tissue was performed
using anti-RPL7A (Lifespan Biosciences, LS-C287612/
60982, 1:20 dilution), anti-FABP5 (R&D Systems,
AF3077, 1:200 dilution), and anti-SERPINB4 (Lifespan
Biosciences, LS-C172653, 1:200 dilution) antibodies.

Integration with additional data resources

Primary data from the current study (RNA-seq and LC-
MS/MS) were compared and integrated with data gener-
ated from large-scale proteomics projects [16, 18, 45, 46],
as well as with gene expression datasets deposited within
the GEO database [47]. Secondary proteomics data were
obtained from supplemental files of research publications
[16, 18, 45], or from project data deposited in the PRoteo-
mics IDEntifications database (PRIDE; accession number
PRDO000053) [46, 48]. Normalized expression data were
obtained either from GEO series matrix files or generated
directly from raw CEL files (available as GEO supplemen-
tal files for Affymetrix datasets). Normalization of Affyme-
trix CEL files was performed using robust multichip
average [49]. Normalized expression matrices were ana-
lyzed to identify DEGs, with comparisons performed be-
tween two treatments in all cases. This was done using
linear model analysis with moderated t-statistics (R pack-
age limma) [50], yielding ordered gene lists for each two-
treatment comparison, with genes ranked according to
evidence for differential expression (i.e., using log;o-trans-
formed p values derived from linear models). A total of
2178 ordered gene lists were generated in this fashion,
based upon an aggregate total of 21,337 unique GEO
microarray samples (Additional file 3). Primary gene sets
derived from the current study were screened against
these 2178 ordered gene lists, which allowed us to identify
experiments in which the genes were disproportionately
increased or decreased [i.e., gene set enrichment analysis
(GSEA)] [6, 51, 52].

Results

Detection of 15,616 protein-coding mRNAs (RNA-seq) and
2232 proteins (LC-MS/MS) in lesional and uninvolved skin
(n =14 patients)

The transcriptome and proteome of lesional (PP) and un-
involved (PN) skin biopsies from 14 psoriasis patients was
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analyzed using RNA-seq and LC-MS/MS, respectively. As
expected, fewer proteins were detected using LC-MS/MS
(2232) compared with the number of protein-coding
mRNAs detected by RNA-seq (15,616) (see “Methods”).
mRNAs associated with detected proteins were expressed
at higher levels, with such mRNAs having FPKM values
10-17 times greater than other mRNAs (Additional file 4).
We estimate that mRNAs with FPKM < 10 are associated
with proteins for which abundance is usually below the
LC-MS/MS detection threshold (Additional file 4).

Of 2232 detected proteins, we could match 2172 with
a detected protein-coding mRNA. Among such mRNA-
protein pairs, the average NSAF correlated with average
FPKM (r;=0.52 and 0.45 for PP and PN skin, respect-
ively; Additional file 5a, b). This correlation was lower
with respect to individual patient samples (0.26 <r <
0.53; Additional file 6). The most abundant mRNAs
encoded S100s (SI00A9, SI00A8, S100A7), Keratins
(KRT10, KRT1, KRT14) and ribosomal proteins (RPS27,
RPS6, RPS12, RPS8) (Additional file 5¢). The most abun-
dant proteins, however, consisted almost exclusively of
keratins (e.g., KRT10, KRT14, KRT1; Additional file 5d).

Identification of 4122 DEGs and 748 DEPs in psoriasis
lesions (n = 14 patients)

Comparison of gene expression between PP and PN skin
biopsies yielded 4122 DEGs, including 1865 PP-
increased DEGs (fold change >1.50, FDR<0.05) and
2257 PP-decreased DEGs (fold change < 0.67 and FDR <
0.05). Similarly, using LC-MS/MS, we identified 748
DEPs, including 616 PP-increased DEPs (fold change >
1.50 and FDR < 0.05) and 132 PP-decreased DEPs (fold
change < 0.67 and FDR<0.05). Thus, whereas similar
numbers of PP-increased and PP-decreased DEGs were
identified, we detected 4.7-fold more PP-increased DEPs
than PP-decreased DEPs.

Comparisons between studies and technologies help to
establish repeatability [53]. Using 2D gel electrophoresis,
Carlén et al. [19] identified eight PP-increased proteins;
however, we identified only three of these as PP-increased
DEPs (SERPINB4, KRT17, SERPINB5) and as a group the
eight proteins were not disproportionately elevated (p =
0.63; Additional file 7). Of two PP-decreased proteins iden-
tified by Carlén et al. [19], one was significantly decreased
in our study (KRT15; p = 0.003; Additional file 6d) but the
other (CALR) was not detected. Better agreement was ob-
tained with respect to 36 PP-increased proteins identified
by Ryu et al. [20] (2D gel electrophoresis). Of these 36, we
identified 15 as PP-increased DEPs and as a group the 36
proteins were disproportionately elevated (p = 0.033; Add-
itional file 8). Unexpectedly, 3 of the 36 were PP-
decreased DEPs (SERPINF1, TF, APCS; Additional file 8).

Consistent with prior work [26], PP-decreased DEGs
were significantly longer than PP-increased DEGs
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(Additional file 9a). This relationship was also observed
among high-abundance mRNAs associated with LC-MS/
MS-detected proteins (Additional file 9c). Despite this,
however, PP-increased and PP-decreased DEPs did not dif-
fer significantly with respect to average molecular weight
(p = 0.38; Additional file 9f).
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Shifts in mRNA and protein abundance show modest
correlation in the comparison between psoriasis lesions
and uninvolved skin (rs = 0.40)

Average fold changes (PP/PN) calculated by RNA-seq
and LC-MS/MS were correlated across the 2172
mRNA-protein pairs (r, = 0.40; Fig. 1a). Consistent with
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Fig. 1 Shifts in mRNA and protein abundance show modest correlation in the comparison between psoriasis lesions and uninvolved skin
(r;=10.40). a Correlation between fold changes (PP/PN) calculated by RNA-seq and LC-MS/MS (2172 mRNA-protein pairs). The dashed red
line is a least-squares regression estimate and the yellow ellipse outlines the middle 50 % of data points nearest to the bivariate mean
(Mahalanobis distance). b Pearson residuals. Each mRNA-protein pair was assigned to one of four groups (see legend). Residuals reflect
the degree to which counts in each group (n) differ from those expected under the null hypothesis (i.e., random association between
changes in mRNA and protein abundance). Positive residuals indicate over-abundance of mRNA-protein pairs, while negative residuals
indicate under-abundance. ¢ mRNA-protein pairs showing the strongest increase in mRNA and protein abundance. d mRNA-protein pairs
showing the strongest decrease in mRNA and protein abundance. @ mRNA-protein pairs with discordant changes in mRNA and protein
abundance (PP-decreased mRNA; PP-increased protein). f mRNA-protein pairs with discordant changes in mRNA and protein abundance
(PP-increased mRNA; PP-decreased protein). In (c—f), mRNA-protein pairs were chosen based upon the strength of p values derived from
tests for differential MRNA and protein abundance (PP versus PN skin; yellow bars indicate DEGs/DEPs). Average FPKM or NSAF is listed at
the base of each bar. These values were calculated for both PP and PN skin, respectively, and the higher of the two values is listed

this, there was significant over-abundance of mRNAs/
proteins altered in the same direction (Fig. 1b), and
under-abundance of mRNAs/proteins altered in opposite
directions (Fig. 1b). With respect to individual patients,
the correlation between mRNA/protein fold changes
was significant in 13 of 14 cases (p<0.05; —-0.01<r <
0.35; Additional file 10). Fold change correlations were
not weaker among low-abundance proteins (r=0.44)
compared with high-abundance proteins (rs=0.42)
(Additional file 11).

xWe could identify individual genes and proteins show-
ing concordance or discordance at the transcriptome and
proteome levels (Fig. 1c—f). Increased mRNA-protein
pairs included SERPINB4, S100A9, and TYMP, while de-
creased mRNA-protein pairs included KRT77, SER-
PINA12 and FLG2 (Fig. 1c, d). In contrast, FASN, ELANE
and IL18 were decreased by RNA-seq but increased by
LC-MS/MS (Fig. 1le). Conflicting trends were likewise
observed for MX2, POLQ and S100A14 (increased by
RNA-seq; decreased by LC-MS/MS; Fig. 1f).

Translation machinery and ribosomal proteins are
elevated in psoriasis lesions despite decreased mRNA
levels

LC-MS/MS indicated that ribosomal subunit proteins
were elevated in psoriasis lesions, even though corre-
sponding mRNAs were decreased or unaltered according
to RNA-seq (Fig. 1e). This was indicative of a broader
trend involving translation-associated mRNAs and pro-
teins. We identified 124 mRNA-protein pairs for which
the mRNA tended to be decreased in psoriasis lesions
(p<0.10), even though the associated protein was in-
creased (p <0.10). Gene ontology (GO) analysis of the
124 genes showed enrichment for biological process
terms such as translational elongation, translational ter-
mination, translational initiation and rRNA processing
(Fig. 2a). Among mRNA-protein pairs associated with
translational elongation, several were PP-increased DEPs
for which the corresponding mRNA was decreased
(RPS3A, RPS5, RPS27, RPL11 and RPSS; Fig. 2b). Using
independent patient samples, we confirmed that mRNA

expression of RPS8, RPS3A and RPLII is decreased in
lesional skin (RT-PCR; Additional file 12a—c). In con-
trast, for several translation-associated proteins (RPL7A,
RPS8, EEF1A1, RPS3A, RPL11), western blot indicated
similar or increased abundance in lesional skin (Additional
file 12d), with heavy staining of ribosomal protein in the
lesional epidermis (Additional file 12e). Within psoriasis
lesions, therefore, changes in mRNA expression do not
predict shifts in the abundance of translation-associated
proteins.

Proteins expressed by immunocytes, developing tissues
and transformed cell lines are biased towards increased
expression in psoriasis lesions

Gene expression in full-thickness biopsies of psoriasis le-
sions is influenced by cellular composition and may,
therefore, be associated with KC proliferation and/or in-
filtration of lesions by immunocytes [6-8, 23]. To ad-
dress this at the protein level, we assessed whether
proteins associated with specific cell populations or tissues
are biased towards increased or decreased expression in
lesions. For this purpose, we utilized proteome expression
atlases, including a skin anatomy atlas [18], a human
proteome map [16], the ProteomicsDB database [45], and
the CPL/MUW database [46].

Most DEGs from expression studies have been skin-
specific, often associated with KCs or fibroblasts [6—8, 23].
We therefore first used a human skin proteome atlas to
understand how shifts in protein abundance relate to skin
microanatomy [18]. Proteins specific to the basement
membrane region (KRT14, KRT5, KRT1) were decreased
only slightly in psoriasis lesions with no significant overall
trend (p = 0.346; Fig. 3a). In contrast, proteins specific-
ally expressed by either the papillary or reticular der-
mis were significantly biased towards decreased
expression (COL6A3, LMNA, COL1A1, COL1A2; p<
0.004; Fig. 3b, c¢). Dermis-derived proteins are therefore
biased towards decreased expression in psoriasis, in agree-
ment with observations at the mRNA level [6-8, 23].

LC-MS/MS may be insensitive to low-abundance pro-
teins derived from minority cell types, such as
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Fig. 2 Translation machinery and ribosomal proteins are elevated in psoriasis lesions despite decreased mRNA levels. a GO biological process (BP) terms
enriched among genes associated with 124 mRNA-protein pairs with discordant PP versus PN changes (i.e, PP-decreased mRNA, p < 0.10; PP-increased
protein, p < 0.10). GO BP terms were enriched with respect to a background set of 2087 genes with detectable expression (RNA-seq) and associated
with a protein identified by LC-MS/MS. b Genes and proteins associated with the “translational elongation” GO BP term. Fold-changes (PP/PN) and

p values are listed in the right margin of each panel (n = 14 patients; red font indicates DEPs)
A\

infiltrating immune cells. Surprisingly, however, analysis
of human proteome map data showed that immunocyte-
specific protein expression correlated positively with LC-
MS/MS-estimated fold changes (PP/PN), with strong
trends observed for several lymphocyte subsets (ie., B
cells, CD4 T cells, CD8 T cells and natural killer cells;
Fig. 4a, b). The human proteome map, for instance,

includes 1764 proteins detected by our analysis; among
these, there was significant positive correlation between
B-cell-specific expression and LC-MS/MS-estimated PP/
PN fold changes (r,=0.32; p=2.8 x 10~*% Fig. 4b). Pro-
teins abundant within lymphoid organs (lymph node and
spleen) were also elevated in psoriasis lesions (Additional
file 13; ProteomicsDB). These trends suggest that, despite
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their low abundance, proteins derived from immune cells
in psoriasis lesions are detected using LC-MS/MS.
Psoriatic KCs are proliferative and do not complete ter-
minal differentiation as observed in normal skin [54—56].
Two signals from our data were consistent with this. First,
proteins expressed by fetal tissues were biased towards
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increased expression in psoriasis lesions (Fig. 4a). The 12
proteins most specifically expressed in fetal spleen, for in-
stance, all trended towards increased abundance (e.g.,
RPS12, NPM1, IMPDH2; Fig. 4e). Second, proteins
expressed by transformed cell lines were elevated in le-
sions (e.g., Hep3B, HepG2 and jurkat; Additional file 14).
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Fig. 3 Proteins specifically expressed in papillary and reticular dermis are decreased in psoriasis lesions (skin anatomy atlas). Proteomic
skin atlas data were used to identify proteins specifically expressed in basement membrane (BM) (a), papillary dermis (PD) (b), and
reticular dermis (RD) (c). Left: Abundance of proteins is compared between compartments. Heatmaps show log;-transformed signed

p values for the 12 proteins most specific to each compartment, where p values are derived from least-square regression models
comparing abundance of proteins in each compartment to abundance in the other two (negative values indicate lower abundance;
positive values indicate higher abundance). Middle: LC-MS/MS-estimated fold-changes (PP/PN) for each protein (n=14 patients; yellow bars
indicate DEPs). Average NSAF was calculated for PP and PN samples, respectively, and the higher of the two NSAF values is listed at the
base of each bar. Right: Average fold change (PP/PN) was calculated for the 12 compartment-specific proteins (black arrow). This average
value was compared with that obtained in 10,000 simulation trials in which 12 proteins were sampled randomly from 2194 proteins
detected by LC-MS/MS. P values were calculated using the grey null distribution generated from the 10,000 simulation trials

Of 12 signature HepG2 proteins, for example, nearly all
trended towards increased abundance (e.g, GADD45-
GIP1, ILF3, DNAJBI1; Additional file 14e). Proliferation
and transformation proteins expressed by undifferentiated
cells are thus elevated in psoriasis lesions.

Identification of 209 DEGPs with consistent changes in
mRNA/protein abundance in psoriasis lesions versus
uninvolved skin

Numerous mRNAs with altered expression in psoriasis
lesions (DEGs) have been identified by microarray/RNA-
seq studies [5-8], but it cannot be assumed that such
DEGs encode DEPs [9-13]. In this study, changes in
mRNA were only modestly correlated with shifts in pro-
tein abundance (r,=0.40; Fig. la). We therefore inter-
sected the 4122 DEGs and 748 DEPs to define 209
DEGPs with corresponding and significant transcrip-
tome and proteome trends (Fig. 5). DEGPs provide a
high-confidence molecular fingerprint of psoriasis and,
as expected, we confirmed changes in mRNA and pro-
tein abundance for select DEGPs (FABP5 and SER-
PINB4) using RT-PCR and immunohistochemistry
(Additional file 15). GO biological process terms
enriched among PP-increased DEGPs included defense
response to virus, response to type I interferon, cell
death, regulation of MHC class I biosynthetic process,
neutrophil aggregation and establishment of skin barrier
(p <0.05; Additional file 16a). Similarly, terms enriched
among PP-decreased DEGPs included cell growth, re-
sponse to superoxide, tissue development and organ
morphogenesis (p < 0.05; Additional file 16b).

GSEA screening of ordered gene lists provides DEGP
biomarker assessment and functional characterization in
skin-associated cell types

GO terms are generic with regard to cell type and thus
may not provide insights into cell type-specific gene
functions. We therefore assembled 2178 ordered gene
lists, where each list was derived from a microarray
comparison performed using a skin-relevant cell type
(Additional file 3). GSEA was then used to screen gene
lists and identify experiments in which PP-increased and

PP-decreased DEGPs were altered but in opposite direc-
tions (Additional file 17).

Psoriasis plaque development proceeds in coordination
with an underlying cytokine network [4, 57, 58]. Consist-
ent with this, we identified cytokines that induce PP-
increased DEGPs and repress PP-decreased DEGPs in
cultured KCs (e.g., IL-20, IL-19, IL-24, IL-22, IL-17A,
IL-17C; Additional file 17a). Differences among these cy-
tokines, however, were subtle, with each cytokine tend-
ing to be similarly effective at inducing psoriasis-like
changes in gene expression (Additional file 17a). Ana-
lysis of KC gene perturbation experiments revealed that
DEGP expression is positively associated with activity of
TP63, ERK1, and FSTL1, but negatively associated with
activity of SNAI2, ETS1, and RELA (Additional file 17b).
DEGPs showed psoriasis-like changes in expression when
KCs were treated with cathelicidin antimicrobial peptide
(LL37) or scratched (wounded) in culture; conversely,
DEGPs showed psoriasis-opposite changes in expression
when KCs were treated with human papillomavirus onco-
protein E6, heparanase inhibitor (BIPBIPU) or dexametha-
sone (Additional file 17c). Psoriasis-like changes in DEGP
expression were also observed in fibroblasts transduced
with OKSM reprogramming factors (OCT4, KLF4, SOX2,
¢-MYC) [59], demonstrating pathway-level overlap be-
tween psoriasis and induced pluripotency (Additional file
17d).

DEGPs can provide psoriasis biomarkers, which
might prove useful for tracking treatment responses
or validating psoriasiform mouse phenotypes [60—64].
To illustrate this, we evaluated changes in DEGP ex-
pression in lesions of patients receiving biologic treat-
ment (e.g., etanercept, ixekizumab, guselzumab;
Additional file 17e). As expected, PP-increased DEGPs
were repressed with therapy and PP-decreased DEGPs
were elevated. These trends were most prominent in
patients following at least 2 weeks of biologic therapy,
but could be discerned as early as 1 day following the
start of etanercept therapy (Additional file 17e). Al-
though length of treatment was more important than
type, we could discern that most biologics and even
UVB treatment (10 weeks) elicited psoriasis-opposite
expression patterns more effectively than treatment
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were observed in 12-O-tetradecanoylphorbol-13-acetate
(TPA)-treated mice lacking chemokine decoy receptor D6
angiopoietin receptor Tie2 (K5-Tie2) [70], and mice with
K14-driven deletion of GlcCer-synthesizing enzyme UDP-

(D6-KO) [69], mice with KC-specific overexpression of the

17e). We next evaluated expression of DEGP ortholo-
gues in psoriasiform mouse phenotypes [64—68]. Dif-
ferences among top-ranked mouse phenotypes were minor,

with the SIRT1 activator SRT2104 (Additional file
but the most psoriasis-like changes in DEGP expression
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Average NSAF in PP samples is listed at the base of each bar

Fig. 4 Proteins expressed in immunocytes and fetal tissues are elevated in psoriasis lesions (human proteome map). a Human proteome map cell
types ranked by the correlation between cell type-specific expression and LC-MS/MS-estimated fold-change (PP/PN) (1764 proteins; magenta font
indicates p < 0.05). b Association between B-cell-specific expression and fold change (PP/PN). B-cell-specific expression is quantified based upon
the ratio of SpC values between B cells and all other cell types (B cells/Other, horizontal axis). The dashed red line is the least-square regression
estimate and the yellow ellipse outlines the 50 % of proteins nearest to the bivariate mean (Mahalanobis distance). ¢ Human proteome map cell
types ranked according to how strongly the 12 best signature proteins for each cell type are enriched among proteins with elevated abundance
in PP skin (magenta font indicates p < 0.05). d Enrichment of fetal ovary signature proteins among PP-increased proteins. The 1764 proteins were
ranked in descending order from left to right based upon the LC-MS/MS-estimated fold change (PP/PN). The figure shows cumulative overlap
between this ranked list of proteins and the 12 fetal ovary signature proteins (vertical axis). The ranking of each signature protein is indicated
(vellow hash marks, top). Enrichment of the 12 proteins among PP-increased proteins is demonstrated by the positive area between the
cumulative overlap curve and diagonal. e Fetal ovary signature proteins and their relative abundance across human proteome map cell types
(heatmap of normalized SpC values). The LC-MS/MS-estimated fold change (PP/PN) is shown for each protein (right; yellow bars indicates DEPs).

glucose:ceramide glucosyltransferase (UGCG; K14-Ugcg-
KD) [71] (Additional file 17f).

Most DEGPs are not psoriasis-specific but are similarly
altered in skin cancers and/or lesions from other
inflammatory skin diseases

Expression shifts in psoriasis lesions may be associated
with disruption of homeostasis or cutaneous inflam-
mation, which is characteristic of many skin conditions
[6, 60, 72, 73]. For this reason, only a fraction of genes
with altered expression in psoriasis lesions are ex-
pected to be psoriasis-specific [6, 60, 72, 73]. Consist-
ent with this, we noted strong and significant overlap
between DEGPs and sets of genes altered in other skin
conditions, with the strongest overlap observed for
Mediterranean spotted fever eschars, eczema, squa-
mous cell carcinoma and acne (Additional file 17k). In
fact, only one DEGP (NCCRP1) was not significantly
and similarly altered in another skin disease (Fig. 5).
All other DEGPs could be placed along a continuum, with
some showing greater psoriasis specificity (e.g., DBI,
GLTP, HRNR, KRT73, ELOVL?), and others showing
similar expression shifts in many or most skin diseases
(e.g, MX1, S100A8, SI00A9, STAT1, LAP3) (Fig. 5).

Stratified GSEA reveals that psoriasis-specific and
non-specific DEGPs have divergent responses to IL-17A
and pro-differentiation stimuli

Given that DEGPs showed varying degrees of psoria-
sis specificity, we asked whether functional properties
of the most psoriasis-specific DEGPs differ from those
of the least specific. These analyses were performed
using only PP-increased DEGPs, since there were too
few PP-decreased DEGPs to enable robust compari-
sons based on psoriasis specificity (Fig. 5).

Using a “stratified GSEA” approach, we identified cyto-
kine treatments that induce expression of the most
psoriasis-specific DEGPs but not non-specific DEGPs.
Six of the seven top-ranked cytokine treatments identi-
fied from this analysis involved IL-17A (Fig. 6a). Of the

most psoriasis-specific DEGPs, the majority were in-
duced by IL-17A (e.g, FERMT1, GLUL, SULT2BI;
Fig. 6b); in contrast, the most non-specific DEGPs were
not disproportionately induced by IL-17A and several
were repressed (e.g., AKR1B10, RNF213, ISG15; Fig. 6¢).
In contrast to this trend, most other cytokines associ-
ated with the psoriasis gene expression profile in the
current study (Additional file 17a), and in previous
studies [6, 8, 22, 74], appeared to primarily target
non-specific DEGPs; such cytokines include TNEF,
interferon (IFN)-y, IFN-a and IL-1-family cytokines
(e.g., IL1-F8, IL1-F9 and IL-1A; Fig. 6a).

Psoriasis-specific and non-specific DEGPs also showed
divergent responses to treatments regulating KC differen-
tiation (Fig. 7). Psoriasis-specific DEGPs were induced by
treatments promoting KC differentiation, whereas non-
specific DEGPs were repressed. Such pro-differentiation
treatments included dexamethasone, calcium, epidermal
growth factor receptor inhibitor (tyrphostin and AG1478)
and epidermal regeneration (within devitalized human
dermis matrix) (Fig. 7a). The most non-specific DEGPs,
for example, were overwhelmingly repressed by dexa-
methasone (p <0.001; Fig. 7c), but psoriasis-specific
DEGPs tended to be increased (p =0.116; Fig. 7b). In
contrast, psoriasis-specific DEGPs were repressed by
pro-proliferative treatments interfering with KC differ-
entiation, whereas non-specific DEGPs were induced
by these treatments (Fig. 7a). Consistent with these
trends, psoriasis-specific and non-specific DEGPs were
oppositely regulated by RNA interference treatments
targeting pro- and anti-differentiation genes, respect-
ively (e.g., SNAI2, ANCR, STAU, ZNF750; Additional
file 18).

Our initial analysis identified a number of mouse
skin phenotypes showing psoriasis-like changes in
DEGP expression, but among top-ranked phenotypes
the strength of this trend was similar and it was dif-
ficult to make distinctions quantitatively (Additional
file 17f). Closer inspection using stratified GSEA,
however, revealed that, for several mouse
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Fig. 5 Differentially expressed genes/proteins with consistent changes in mRNA/protein abundance in psoriasis lesions versus uninvolved
skin. We identified 209 DEGPs with corresponding and significant changes in mRNA and protein abundance in PP skin compared with PN
skin (n=14 patients). The figure lists the 209 DEGPs along with LC-MS/MS-estimated fold changes (PP/PN; horizontal axis). Average NSAF
is listed at the base of each bar. Average NSAF was calculated with respect to PP and PN samples, respectively, and the higher of the
two average values is listed. The fraction listed for each protein (right) indicates the proportion of skin diseases evaluated in which a
corresponding change in mRNA expression was observed (white font indicates relatively psoriasis-specific; green font indicates relatively
non-specific). The fraction denominator differs among DEGPs because skin diseases were analyzed using various microarray platforms, with
some platforms lacking probes for assaying expression of certain DEGPs

phenotypes, psoriasis-like changes in DEGP expres-
sion were primarily driven by activation of non-
specific rather than psoriasis-specific responses (e.g.,
D6-KO, K5-Stat3c and K14-ADAM17-KO; Additional
file 18b). Conversely, other mouse phenotypes mani-
fested increased expression of DEGPs most specific
to psoriasis (e.g., K5-Tie2, Krtl-KO and imiquimod;
Additional file 18b). Applying GSEA to groups of
DEGPs with differing psoriasis specificity thus un-
covered trends not discerned from aggregate GSEA
analysis of all DEGPs.

Discussion

Technological advances have profoundly improved our
ability to measure mRNA abundance, but proteins are the
direct determinants of health and disease. We thus per-
formed the first study using RNA-seq and LC-MS/MS to
interrogate the transcriptome and proteome of lesions
from an inflammatory skin disease (psoriasis vulgaris).
Our findings reveal moderate transcriptome-proteome
correspondence, but also uncover “dark recesses” of psor-
iasis biology not illuminated by transcriptome analysis. Al-
though RNA-seq did not reveal increased abundance of
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Fig. 6 Psoriasis-specific and non-specific DEGPs have divergent cytokine responses (stratified GSEA). a Cytokine treatments that differentially
impact expression of psoriasis-specific and non-specific DEGPs (cultured KCs; *HaCaT cells; **reconstituted epidermis). The 153 PP-increased DEGPs
were ranked according to the percentage of skin diseases in which the mRNA’s expression was correspondingly increased. Sliding DEGP windows
(10 DEGPs/window) were analyzed to assess enrichment of DEGPs among genes induced by the cytokine treatment (red indicates windows with
cytokine-induced DEGPs; blue indicates windows with cytokine-repressed DEGPs). Robust regression was used to quantify the left-to-right trend in
enrichment statistics, and listed experiments were associated with the most negative (top) or positive (bottom) enrichment statistic trends (out of
59 experiments screened). The concentration, treatment duration, and GEO series identifier is listed for each cytokine treatment. Enrichment
statistics and p values were also calculated using the complete set of 153 DEGPs (right margin; red/blue font indicates FDR < 0.05, Wilcoxon rank
sum test). b The 25 most psoriasis-specific PP-increased DEGPs are enriched among genes induced by IL17A (p < 0.001; GSE52361). Genes were
ranked along the horizontal axis according to how strongly they are induced by IL17A (left/red, IL17A-induced; right/blue, IL17A-repressed). The
figure shows cumulative overlap between the 25 psoriasis-specific DEGPs and this ranked gene list. ¢ The 25 most non-specific PP-increased
DEGPs are not enriched among genes induced by IL17A (p=0.619; GSE52361). Genes were ranked along the horizontal axis according to how
strongly they are induced by IL17A (left/red, IL17A-induced; right/blue, IL17A-repressed). The figure shows cumulative overlap between the 25
non-specific DEGPs and this ranked gene list

mRNAs associated with ribosome and translation pro- RNA-seq and LC-MS/MS findings, moreover, we could
teins, LC-MS/MS indicated that peptides from such pro-  define 209 DEGPs showing consistent trends with both
teins are elevated in psoriasis lesions. By intersecting technologies. Subsequent bioinformatic analysis showed
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Fig. 7 Psoriasis-specific and non-specific DEGPs have divergent responses to differentiation-associated stimuli (stratified GSEA). a Non-cytokine
treatments that differentially impact expression of psoriasis-specific and non-specific DEGPs (cultured KCs; *HaCaT cells; **reconstituted epidermis). The
153 PP-increased DEGPs were ranked according to the percentage of skin diseases in which the mRNA's expression was correspondingly increased.
Sliding DEGP windows (10 DEGPs/window) were analyzed to assess enrichment of DEGPs among genes induced by each treatment (red indicates
windows with induced DEGPs; blue indicates windows with repressed DEGPs). Robust regression was used to quantify the left-to-right trend in
enrichment statistics, and the listed experiments were associated with the most negative (top) or positive (bottom) trends (out of 170 experiments
screened). Enrichment statistics and p values were also calculated using the complete set of 153 DEGPs (right margin; red/blue font indicates FDR <
0.05, Wilcoxon rank sum test). b The 20 most psoriasis-specific PP-increased DEGPs are marginally enriched among genes induced by dexamethasone
(p=0.116; 48 h treatment, GSE26487). Genes were ranked along the horizontal axis according to how strongly they are induced by dexamethasone
(left/red, dexamethasone-induced; right/blue, dexamethasone-repressed). The figure shows cumulative overlap between the 20 psoriasis-specific DEGPs
and this ranked gene list. ¢ The 20 most non-specific PP-increased DEGPs are enriched among genes repressed by dexamethasone (p < 0.001; 48 h
treatment, GSE26487). Genes were ranked along the horizontal axis according to how strongly they are induced by dexamethasone (left/red,
dexamethasone-induced; right/blue, dexamethasone-repressed). The figure shows cumulative overlap between the 25 non-specific DEGPs and this
ranked gene list

that most DEGPs exhibit similar mRNA expression shifts
in other skin diseases. However, we noted disparities be-
tween DEGPs that are most and least psoriasis-specific,
with only the former induced by IL-17A in cultured KCs

(Fig. 8). Our findings thus uncover a new IL-17A signa-
ture, discernable at the transcriptome and proteome
levels, which is prominent in psoriasis but attenuated or
absent in other skin conditions.
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Fig. 8 Cytokines and genes with differential effects on psoriasis-specific and non-specific DEGPs (cultured KCs). We identified 153 DEGPs
for which RNA-seq and LC-MS/MS indicated elevated mRNA and protein abundance in psoriasis lesions. Nearly all DEGPs were similarly
elevated in at least one other skin disease. Nonetheless, all DEGPs can be placed along a continuum separating those that are most
psoriasis-specific (similarly altered in few other diseases) from those that are most non-specific (similarly altered in many other diseases).
Analysis of microarray data using stratified GSEA revealed different cytokine response profiles and gene functional associations in these
two groups (Figs. 6 and 7). The figure shows cytokines and genes that positively regulate expression of psoriasis-specific DEGPs but
repress expression of non-specific DEGPs (e.g., IL-17A, STAU, miR-198). Conversely, the figure shows cytokines and genes that repress
expression of psoriasis-specific DEGPs but induce expression of non-specific DEGPs (e.g., TNF, IL-1F5, IL-1F8). Arrows denote activation and

Trademark features of psoriasis lesions include acceler-
ated turnover of epidermal layers, aberrant KC differenti-
ation, and enhanced proliferation of basal KCs [54, 55].
This proliferative phenotype requires heightened pro-
tein synthesis, which has previously been described in
psoriasis but not fully understood [75, 76]. Freedberg
first noted 7-fold elevated translation in psoriasis le-
sions and later suggested that such hyper-translation
might be “a very central issue to the solution of the
pathogenesis of psoriasis” [75]. This same author had
indicated that increased translation may be attribut-
able to deficiency of ribosome degradation, rather
than de novo ribosome synthesis [76]. In agreement
with this degradation-resistant ribosome hypothesis,
LC-MS/MS showed that peptides associated with
ribosomal proteins and elongation factors are more
abundant in psoriasis lesions, even though encoding
mRNAs are not elevated or decreased (Fig. 2; Add-
itional file 12). Potentially, such ribosome-associated
mRNAs are repressed in psoriasis lesions in response
to increased abundance of the proteins they encode
(i.e., negative feedback). Similar feedback mechanisms
may operate genome-wide to limit transcriptome-

proteome correspondence [77, 78], consistent with
observations in this study (Fig. 1la) and some previ-
ously reported findings [9, 10].

Ribosomal protein accumulation may ultimately con-
tribute to heightened translation by augmenting the
quantity of protein generated per mRNA molecule in
lesional skin, with global effects favoring increased ra-
ther than decreased protein abundance. Along these
lines, we identified similar numbers of increased and de-
creased mRNAs, but 4.7-fold as many elevated (616) as
decreased (132) proteins. Similar imbalances were ob-
served in prior proteomic studies of psoriasis. Using 2D
electrophoresis, for instance, Carlén et al. [19] identified
eight PP-increased DEPs and two PP-decreased DEPs.
Ryu et al. [20] did not report quantitative data, but iden-
tified 145 differentially expressed spots and noted that
“most of the proteins were up-regulated.” These studies
used a “top-down” proteomics approach differing from
the “bottom-up” LC-MS/MS strategy we used. Such ap-
proaches differ in their resolution ability, sensitivity, and
dynamic range [79], which may account for discrepan-
cies between our study and earlier work at the level of
individual proteins (e.g., see Additional files 7 and 8).
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Both technological strategies, however, support an
imbalance that favors increased over decreased pro-
tein abundance in psoriasis lesions, consistent with
heightened translational activity.

Previous studies have highlighted activation of the mam-
malian target of rapamycin (mTOR)/S6K pathway in psor-
iasis lesions [80-83], although our findings suggest that
mechanisms governing hyper-translation in psoriasis are
broader, involving proteins besides the canonical mTOR
targets (Fig. 2). mTOR is a cellular hub that controls
translation and cell growth through activation of target
proteins, such as eukaryotic initiation factor 4E (eIF4E),
elF4E binding proteins (4E-BPs), and ribosomal S6 kinases
(S6K1 and S6K2) [84, 85]. Within psoriasis lesions, mTOR
kinase is elevated throughout the epidermis and activated
phospho-mTOR (Ser2448) is prominent in the basal layer
[80, 83]. Consistent with this, S6K1 (Thr389) is activated in
psoriasis lesions [80] and ribosomal protein S6 is activated
at multiple phosphorylation sites, with S6 (Ser235/236)
more active in the suprabasal epidermis and S6 (Ser240) ac-
tive throughout the epidermis and basal layer [80, 81]. An
important question is whether targeted inhibition of these
pathways will provide the basis for effective psoriasis treat-
ment. Thus far, efforts to inhibit mTOR-associated path-
ways (e.g., rapamycin) have achieved only limited efficacy
for treatment of plaque psoriasis [86, 87], although some
efficacious topical agents are known to inhibit AKT/
mTOR signaling [88, 89]. Rapalogs, next-generation
mTOR inhibitors, and novel plant-derived phytochemicals
thus continue to be investigated as possible mTOR-based
psoriasis treatments [83, 90-92]. Based on our findings,
an interesting possibility is that stronger therapeutic re-
sponses may be obtained by targeting specific stages of
translation initiation, elongation or termination (Fig. 2). It
is noteworthy, for instance, that cycloheximide, an in-
hibitor of translation elongation [93], is surprisingly
well tolerated and effective as a topical treatment for
psoriasis [94—96].

Transcriptome analysis of skin disease has provided a
powerful tool and has so far identified thousands of dif-
ferentially expressed mRNAs in psoriasis lesions (DEGs)
[5-8]. It has seldom been possible, however, to investi-
gate on a large-scale whether DEGs are in fact associated
with DEPs. To address this, we overlapped RNA-seq and
LC-MS/MS findings to identify 209 DEGPs with con-
cordant mRNA and protein shifts in psoriasis lesions.
These likely represent only a subset of true psoriasis
DEGPs, since LC-MS/MS is not expected to comprehen-
sively quantify all cellular proteins [42]. Nevertheless,
DEGPs we identified can be viewed as DEGs with an
additional layer of validation supporting their bio-
logical significance, affirming that DEGs are not false
positives or associated with transient/unstable mRNAs
that are only weakly translated. With DEGPs as a
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starting point, therefore, we used GSEA to screen
2178 ordered gene lists derived from microarray ex-
periments performed with skin-associated cell types
(Additional file 3). This data-driven approach uncov-
ered experiments in which DEGPs were altered in a
psoriasis-like or psoriasis-opposite fashion (Additional
file 17). Two findings from this analysis were unex-
pected. First, we identified a psoriasis-like expression
response in KCs treated in vitro with cathelicidin
antimicrobial peptide (CAMP/LL37). CAMP was
among PP-increased DEGPs identified in this study
(Fig. 5) and may have important auto-antigen activity
in psoriasis [97], either by forming complexes with
self-derived nucleic acids to trigger innate immune
responses [98], or by interacting with and stimulating
T cells [99]. Secondly, induction of pluripotency in
skin fibroblasts [59] generated shifts in DEGP expres-
sion mirroring those observed in human psoriasis
(Additional file 17d). In a novel way, this result reflects
the proliferative and de-differentiated status of psoriasis
lesions, consistent with increased abundance of proteins
expressed by fetal tissues (Fig. 4), transformed cell types
(Additional file 14), and skin cancers (Additional file 17k).
Nearly all DEGPs we identified were similarly altered
in other skin diseases besides psoriasis (Fig. 5). Expres-
sion shifts of DEGPs in psoriasis versus normal skin, for
instance, paralleled those observed in the comparison
between normal skin and eschars, eczema, and squa-
mous cell carcinoma (Additional file 17). These condi-
tions are mechanistically distinct from psoriasis,
suggesting that DEGPs are to some degree associated
with generic cutaneous responses, such as those arising
from disrupted homeostasis and secondary inflammation
[6, 60, 72, 73]. Based upon this, we used stratified GSEA,
which identified microarray experiments in which expres-
sion of psoriasis-specific and non-specific PP-increased
DEGPs are differentially altered (Figs. 6 and 7). This re-
vealed that many cytokines previously associated with the
psoriasis gene expression profile (e.g., TNF, IFN-a, IFN-g
and IL-1 family) [6, 8, 22, 74] are primarily inducing a
gene expression response that is not specific to psoriasis,
but is instead associated with a broad spectrum of skin
diseases (Figs. 6 and 8). In contrast, genes induced by
IL-17A (or IL-17A plus TNF) in cultured KCs tend to
be more psoriasis-specific and less commonly elevated
in other skin conditions (Figs. 6 and 8). This unique
aspect of IL-17A would have been overlooked by ana-
lyzing all PP-increased DEGPs in aggregate, without
differentiating between psoriasis-specific and non-
specific DEGPs. This result, however, resonates with
clinical findings, which have emphasized that the
most efficacious psoriasis therapies block IL-17A ac-
tivity [100, 101], even when such treatments primarily
target another cytokine such as TNF [102, 103].
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We anticipate that the complete set of DEGPs identi-
fied in this study can be used as high-confidence bio-
markers for future work. However, given distinct
functional properties of psoriasis-specific and non-
specific DEGPs (Fig. 8), it may be appropriate for such
applications to assign greater emphasis to the most
psoriasis-specific DEGPs, such as NCCRPI, DBI and
GLTP (Fig. 5). For instance, as in previous studies [64],
we here identified statistically significant similarities be-
tween the gene expression profile of human psoriasis
and that of psoriasiform phenotypes in the laboratory
mouse (Additional file 17f) [64—68]. We showed, how-
ever, that in some cases this similarity is driven by non-
specific DEGPs, rather than those that are most specific to
psoriasis (e.g., D6-KO, K5-Stat3c and K14-ADAM17-KO;
Additional file 18b). Potentially, such mouse phenotypes
may be useful as a model for any one of several human
skin diseases, but may be less appropriately viewed as
“psoriasis mouse models” per se. On the other hand,
some mouse phenotypes exhibit psoriasis-matching
expression patterns for those DEGs/DEGPs that are
most psoriasis-specific (e.g., K5-Tie2, Krtl-KO and
imiquimod; Additional file 18b). Potentially, these
mouse phenotypes will better recapitulate unique
mechanistic features of psoriasis lesion development,
which appear to involve aberrant KC maturation and
activation of IL-17A-directed pathways (Fig. 8). In
these respects, findings from this study carry implica-
tions for a range of contexts in which selected
mRNAs or proteins are employed as psoriasis bio-
markers [60-63]. Such contexts may include the
evaluation of psoriasis mouse models, but may also
include the monitoring of treatment responses in
psoriasis patients or screening of candidate drug com-
pounds [60-63].

Conclusions

Previous psoriasis studies have emphasized transcrip-
tome analysis, leaving the psoriasis proteome less well
explored and prompting the need for transcriptome-—
proteome integration. We thus used RNA-seq and LC-
MS/MS to profile mRNA and protein abundance in the
same set of skin samples from 14 psoriasis patients. This
multi-omics strategy brings key aspects of psoriasis into
focus, with three main implications for future work.
First, in psoriasis and possibly other skin diseases,
changes in mRNA and protein abundance are only mod-
estly associated (r, = 0.40). Transcriptome analysis alone,
therefore, may not be sufficient for understanding key
aspects of skin disease at the cellular level. Second,
mechanisms underlying heightened translation in psoria-
sis lesions may be broader than currently understood,
involving some proteins besides canonical mTOR targets
(e.g., ribosomal subunits and translation factors).

Page 18 of 22

Potentially, therefore, therapies interfering with specific
stages of translation may hold greater promise than
treatments narrowly targeting mTOR/S6K. Finally, an
unexpected finding was that DEGPs with psoriasis-
specific and non-specific expression patterns have dis-
tinct functional properties. Only psoriasis-specific
DEGPs, for example, were enriched with IL-17A targets.
In gene expression studies of skin disease, therefore,
stratified GSEA and other bioinformatic approaches to
deconvolute disease-specific and non-specific signals
may bring new insights into pathogenic mechanisms.

Additional files

Additional file 1: Clinical characteristics of psoriasis patients
providing lesional and uninvolved biopsies for RNA-seq and LC-MS/
MS analysis (n = 14). The table lists sex, age range, body mass index
(BMI), body weight (kg), psoriasis total body surface area (TBSA) and
psoriasis area severity index (PASI). For some patients, information was
absent from clinical records and is thus not included in the table
("unknown” entries). (PDF 120 kb)

Additional file 2: RNA-seq quality control. RNA-seq was used to
analyze 28 skin samples from 14 psoriasis patients (PP and PN skin).
a Number of reads prior to filtering. b Number of reads after filtering.
¢ Percentage of reads mapped to the UCSC human genome (hg19).
d Percentage of reads mapping to intragenic regions. e Mean read
coverage per genomic base. f Cluster analysis of the 28 samples. The
dendrogram was generated using average linkage hierarchical
clustering. Euclidean distance between samples was estimated based
upon FPKM for the 15,616 protein-coding mRNAs detected in at least
25 % of samples (i.e, at least 7 of 28 samples). g Two dimensional
principal component plot. The 28 samples were plotted with respect
to the first two principal component axes. Principal component axes
were calculated using FPKM values for the 15,615 protein-coding
mRNAs. h Expression patterns of known psoriasis DEGs. PP-increased
(horizontal axis) and PP-decreased DEG scores (vertical axis) were
calculated for each patient, based upon DEGs identified from an
earlier meta-analysis of microarray data (n =237 patients). The
PP-increased score (horizontal axis) is equal to the average
fold-change (PP/PN) of the 100 DEGs most strongly elevated in the
meta-analysis. The PP-decreased score (horizontal axis) is equal to the
average fold change (PP/PN) of the 100 DEGs most strongly
repressed in the meta-analysis. (PDF 3507 kb)

Additional file 3: Curated ordered gene lists from microarray
experiments performed with skin-associated cell types. We
aggregated 2178 gene lists generated from microarray experiments
included in Gene Expression Omnibus (GEO). Gene lists were derived from
one of 11 types of experiments: a KCs stimulated with cytokines (59 lists;
*HaCaT; **reconstituted epidermis); b KC gene perturbations (65 lists;
*HaCaT; **reconstituted epidermis; “ + " denotes overexpression of a gene
rather than interfering RNA knockdown); ¢ non-cytokine treatments applied
to KCs (169 lists; *HaCaT; **reconstituted epidermis); d fibroblast treatments
(182 lists; *non-primary cells); e psoriasis treatment responses (26 lists;
*comparison to lesions prior to treatment rather than lesions from
placebo-treated patients); f laboratory mouse phenotypes (35 lists); g
Peripheral blood mononuclear cell (PBMC) treatments (461 lists); h T-cell
treatments (358 lists; *transformed cell line rather than primary T cells); i
dendritic cell treatments (360 lists); j macrophage treatments (337 lists), and
(K) human skin diseases (123 lists; *comparison to uninvolved skin from
patients rather than normal skin from independent controls). All lists except
(f) were generated from experiments using human cells or tissues. For (f),
lists of mouse genes were converted to human genes based upon a
mapping of human-mouse orthologues. This additional file includes a

description of each list along with GEO series accessions, GEO platform
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identifiers, and Pubmed IDs (PMIDs) of any associated publications.
(XLSX 113 kb)

Additional file 4: Genes associated with LC-MS/MS-detected
proteins have FPKM values 10-17 times greater than genes not
associated with LC-MS/MS-detected proteins. FPKM values for each
sample were compared between genes associated with detected
proteins (21 SpC) and all other protein-coding genes not associated with
a detected protein. Boxes outline the middle 50 % of FPKM values
among genes belonging to each group (i.e, 25th-75th percentile). The
ratio between median FPKM values for genes belonging to each group is
listed (right margin). (TIFF 306 kb)

Additional file 5: Correlation between mRNA and protein
abundance as measured by RNA-seq (FPKM) and LC-MS/MS (NSAF).
We identified 2172 mRNA-protein pairs for which the mRNA was
detected by RNA-seq and the protein was detected by LC-MS/MS.
For each mRNA, average FPKM was calculated across the 14 patients in
PP and PN skin, respectively. Likewise, for each protein, average NSAF
was calculated across the 14 patients in PP and PN skin, respectively.
Scatterplots compare average FPKM and NSAF values in PP (a) and PN (b)
skin. The dashed red line is a least-square regression estimate and the
yellow ellipse outlines the middle 50 % of data points nearest to the
bivariate mean (Mahalanobis distance). c mRNAs most highly expressed
in PP and PN skin (FPKM). mRNAs were ranked and selected based upon
the larger of the two average FPKM values calculated for PP and PN skin,
respectively. d Proteins most highly expressed in PP and PN skin (NSAF).
Proteins were ranked and selected based upon the larger of the two
average NSAF values calculated for PP and PN skin, respectively.

(TIFF 1109 kb)

Additional file 6: Association between mRNA (FPKM) and protein
(NSAF) abundance for each patient sample. Scatterplots show the
correlation between FPKM and NSAF values with respect to each
individual patient sample (PP and PN). Dashed red lines represent the
least-squares regression estimate and yellow ellipses encompass the 50 %
of proteins nearest to the bivariate median (Mahalanobis distance).

(PDF 1055 kb)

Additional file 7: Differentially expressed proteins previously
identified by Carlén et al. [19]. Carlén et al. identified eight proteins
with significantly increased abundance in psoriasis lesions. a The eight
proteins are not significantly enriched among the PP-increased proteins
identified in our analysis (p = 0.63). Proteins we detected by LC-MS/MS
were ranked in descending order according to the estimated PP/PN
fold-change (horizontal axis; red, PP-increased; blue, PP-decreased). The
cumulative overlap between the eight proteins and this ranked protein
list is shown. Yellow hash marks (top) denote placement of the eight
proteins relative to the ranked protein list from our analysis. b Association
between SpC values in PP and PN skin for the eight proteins (yellow
symbols indicate DEPs). ¢ mRNA (RNA-seq) and protein (LC-MS/MS) fold
change estimates. Average FPKM or NSAF values are listed at the base of
each bar. Average values were calculated for PP and PN samples,
respectively, and the higher of the two values is listed. d Carlén et al.
identified KRT15 as decreased in PP skin. The bar graph shows the
average normalized SpC value with respect to PP and PN skin samples
(+1 standard error). (TIFF 1061 kb)

Additional file 8: Differentially expressed proteins previously
identified by Ryu et al. [20]. Ryu et al. identified 36 proteins with
significantly increased abundance in psoriasis lesions compared with
normal skin. a The 36 proteins significantly enriched among the
PP-increased proteins identified in our analysis (p = 0.033). Proteins we
detected by LC-MS/MS were ranked in descending order according to
the estimated PP/PN fold-change (horizontal axis; red, PP-increased; blue,
PP-decreased). The cumulative overlap between the 36 proteins and this
ranked protein list is shown. Yellow hash marks (top) denote placement
of the 36 proteins relative to the ranked protein list from our analysis. b
Association between SpC values in PP and PN skin for the 36 proteins
(vellow symbols indicate DEPs). ¢ LC-MS/MS-estimated fold changes for
each of the 36 proteins (n = 14 patients; yellow bars indicate DEPs). d
Twelve of the 36 proteins showing the strongest mRNA and protein
increase. e Twelve of the 36 proteins showing the strongest mRNA and
protein decrease. (TIFF 1598 kb)

Additional file 9: Shifts in protein abundance in psoriasis are not
associated with molecular weight, despite gene length bias
affecting mRNA differential expression. a Gene length bias affecting
differential MRNA expression in psoriasis (15,616 skin-expressed genes).
The figure shows the percentage of DEGs among genes within different
bins varying by gene length (red, percentage of PP-increased DEGs; blue,
percentage of PP-decreased DEGs). The percentage of PP-increased and
PP-decreased DEGs is listed within each bar (yellow: p < 0.05, Fisher's exact
test). Asterisks above bars indicate significant over-abundance of DEGs
(PP-increased plus PP-decreased) with respect to a given gene bin (FDR
< 0.05, Fisher's exact test). b Median gene length among PP-decreased
DEGs is greater than among PP-increased DEGs. Boxes outline the middle
50 % of gene lengths in each DEG group (25th percentile, median and
75th percentile; whiskers span the 10th to 90th percentile). The median
gene length is listed for each group along with the number of DEGs,
with p value generated from the comparison of gene lengths between
groups (Wilcoxon rank sum test). Parts (c) and (d) are the same as (a) and
(b), respectively, except only 2088 genes associated with detected
proteins are analyzed. Similarly, parts (e) and (f) are the same as (a) and
(b), respectively, except 2194 proteins are analyzed to assess whether the
percentage of PP-increased and PP-decreased DEPs differs according to
protein molecular weight (kDa). (TIFF 1532 kb)

Additional file 10: Association between mRNA (RNA-seq) and
protein (LC-MS/MS) fold changes (PP/PN) with respect to individual
patients. Fold changes generated by RNA-seq and LC-MS/MS were
compared for each individual patient (2087 mRNA-protein pairs). Dashed
red lines represent least-square regression estimates and yellow ellipses
encompass 50 % of proteins nearest to the bivariate mean (Mahalanobis
distance). (PDF 459 kb)

Additional file 11: The association between mRNA (RNA-seq) and
protein (LC-MS/MS) fold changes (PP/PN) does not differ between
low- and high-expressed genes. The 2087 mRNA-protein pairs were
divided into four groups based upon average FPKM. Average FPKM was
calculated with respect to PP and PN samples, respectively, and the
higher of the two values was used to assign mRNA-protein pairs to each
group (approximately 520 pairs per group). The figure shows the
association between RNA-seg- and LC-MS/MS-estimated fold changes for
mMRNAs with average FPKM values beneath the 25th percentile (a), within
the 25-50th percentile (b), within the 50-75th percentile (c), and above
the 75th percentile (d). Dashed red lines represent least-square regression
estimates and yellow ellipses encompass the 50 % of proteins nearest to
the bivariate mean (Mahalanobis distance). (TIFF 185 kb)

Additional file 12: Decreased abundance of ribosomal subunit
mRNA and protein in psoriasis lesions. a—c RT-PCR was used to
measure expression of three genes in lesional skin from psoriasis patients
(PP), uninvolved skin from psoriasis patients (PN), and normal skin from
healthy control subjects (NN) (n =8 per group; £1 standard error). Gene
expression for each sample is normalized to the expression of
glyceraldehyde-3-phosphate dehydrogenase (GAPDH). Fold-changes
from p values are listed for the comparison between PP and PN
groups (top; paired Wilcoxon rank sum test) and between PP and NN
groups (bottom; Wilcoxon rank sum test). b Western blot analysis of
RPL7A, RPS8, EEFTAT, RPS3A and RPL11T in PP, PN and NN skin (n=3
per group). ¢ Immunohistochemical staining of RPL7A in lesional
psoriasis skin. (TIFF 3429 kb)

Additional file 13: Proteins expressed in lymphoid organs are
elevated in psoriasis lesions (ProteomicsDB). a ProteomicsDB cell
types ranked by the correlation between cell type-specific expression and
LC-MS/MS-estimated fold change (PP/PN; 2198 proteins). b Association
between cell type-specific expression and fold change (PP/PN) for lymph
node. ¢ ProteomicsDB cell types ranked according to how strongly the
12 best signature proteins for each cell type are enriched among those
proteins with elevated abundance in PP skin. d Enrichment of spleen
signature proteins among PP-increased proteins. e Spleen signature
proteins and their relative abundance across ProteomicsDB cell types. See
Fig. 4 legend for further details. (TIFF 1865 kb)

Additional file 14: Proteins expressed in transformed cells are
elevated in psoriasis lesions (CPL/MUW database). a CPL/MUW
database cell types ranked by the correlation between cell type-specific
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expression and LC-MS/MS-estimated fold change (PP/PN; 1656 proteins).
b Association between cell type-specific expression and fold change
(PP/PN) for Hep3B cells. ¢ CPL/MUW database cell types ranked according
to how strongly the 12 best signature proteins for each cell type are
enriched among those proteins with elevated abundance in PP skin. d
Enrichment of HepG2 signature proteins among PP-increased proteins. e
HepG2 signature proteins and their relative abundance across CPL/MUW
cell types. See Fig. 4 legend for further details. (TIFF 1652 kb)

Additional file 15: Fatty acid binding protein 5 (FABP5) and serpin
peptidase inhibitor 4 (SERPINB4) show correspondent increases in
mRNA and protein abundance in psoriasis lesions. (A) Expression of
FABP5 in lesional (PP), uninvolved (PN) and normal skin from healthy
controls (NN) (RT-PCR; n =8 per group). (B) FABP5 immunohistochemistry
staining in PP skin. (C) FABP5 immunohistochemistry staining in PN skin.
(D) Expression of SERPINB4 in lesional (PP), uninvolved (PN) and normal
skin from healthy controls (NN) (RT-PCR; n =8 per group). For RT-PCR
analyses (A and D), two sets of fold-changes and p values are listed (top:
PP versus PN; bottom: PP versus NN). Gene expression for each sample is
normalized to glyceraldehyde-3-phosphate dehydrogenase (GAPDH).
(TIFF 4624 kb)

Additional file 16: GO biological process terms enriched among
PP-increased DEGPs and PP-decreased DEGPs. a Top-ranked GO
biological process (BP) terms enriched among the 153 PP-increased
DEGPs. b Top-ranked GO BP terms enriched among the 56 PP-decreased
DEGPs. In both (a) and (b), enrichment was evaluated with respect to a
background set of 2087 genes associated with mRNAs and proteins
detected using RNA-seq and LC-MS/MS, respectively. The right margin
lists example DEGPs associated with each GO BP term. (TIFF 1028 kb)

Additional file 17: DEGP enrichment with respect to ordered gene
lists from microarray experiments. We screened 2178 ordered gene
lists to identify microarray experiments in which PP-increased and
PP-decreased DEGPs were disproportionately increased or decreased but
in opposite directions. The top-ranked 20 experiments are listed for each
of 11 experiment types (a-k; see Additional file 3). Each figure (a—k)
shows enrichment statistics for both the 153 PP-increased (left panel) and
56 PP-decreased DEGPs (right panel) with respect to each ordered gene
list (described in left margin). Positive enrichment statistics indicate that
DEGPs are elevated in the experiment relative to control samples.
Negative enrichment statistics indicate that DEGPs are repressed in the
experiment relative to control samples. P values are listed in the right
margin (Wilcoxon rank sum test). For each experiment, p values were
calculated for PP-increased DEGPs and PP-decreased DEGPs, respectively,
and experiments are ranked according to the higher of these two

p values. (PDF 6387 kb)

Additional file 18: Psoriasis-specific and non-specific DEGPs show
divergent responses in KCs following gene perturbations and in
mouse skin phenotypes. Analyses shown in Figs. 6 and 7 were
repeated with respect to KC gene perturbations (a) (65 lists; *HaCaT;
**reconstituted epidermis; “+ " denotes overexpression of a gene rather
than RNA interference knockdown) and laboratory mouse phenotypes (b)
(35 lists). For each ordered gene list set, the sliding window approach
was used to identify the ten lists with the strongest enrichment
differences between psoriasis-specific DEGPs and non-specific DEGPs
(see Figs. 6 and 7 legends). (TIFF 2368 kb)
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