
RESEARCH Open Access

Many obesity-associated SNPs strongly
associate with DNA methylation changes at
proximal promoters and enhancers
Sarah Voisin1*, Markus Sällman Almén1,2, Galina Y. Zheleznyakova1, Lina Lundberg1, Sanaz Zarei1, Sandra Castillo1,
Fia Ence Eriksson1, Emil K. Nilsson1, Matthias Blüher3, Yvonne Böttcher3, Peter Kovacs3, Janis Klovins4,
Mathias Rask-Andersen1 and Helgi B. Schiöth1

Abstract

Background: The mechanisms by which genetic variants, such as single nucleotide polymorphisms (SNPs), identified
in genome-wide association studies act to influence body mass remain unknown for most of these SNPs, which
continue to puzzle the scientific community. Recent evidence points to the epigenetic and chromatin states of the
genome as having important roles.

Methods: We genotyped 355 healthy young individuals for 52 known obesity-associated SNPs and obtained DNA
methylation levels in their blood using the Illumina 450 K BeadChip. Associations between alleles and methylation at
proximal cytosine residues were tested using a linear model adjusted for age, sex, weight category, and a proxy for
blood cell type counts. For replication in other tissues, we used two open-access datasets (skin fibroblasts, n = 62; four
brain regions, n = 121–133) and an additional dataset in subcutaneous and visceral fat (n = 149).

Results: We found that alleles at 28 of these obesity-associated SNPs associate with methylation levels at 107 proximal
CpG sites. Out of 107 CpG sites, 38 are located in gene promoters, including genes strongly implicated in obesity
(MIR148A, BDNF, PTPMT1, NR1H3, MGAT1, SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3, RPS10, SKOR1, MAP2K5, SIX5,
AGRN, IMMP1L, ELP4, ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM, MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1,
SH2B1, ATXN2L, and IL27). Interestingly, the associated SNPs are in known eQTLs for some of these genes. We also
found that the 107 CpGs are enriched in enhancers in peripheral blood mononuclear cells. Finally, our results indicate
that some of these associations are not blood-specific as we successfully replicated four associations in skin fibroblasts.

Conclusions: Our results strongly suggest that many obesity-associated SNPs are associated with proximal
gene regulation, which was reflected by association of obesity risk allele genotypes with differential DNA
methylation. This study highlights the importance of DNA methylation and other chromatin marks as a way
to understand the molecular basis of genetic variants associated with human diseases and traits.

Background
Genome-wide association studies (GWASs) have identi-
fied a plethora of common genetic variants that are asso-
ciated with obesity-associated traits (e.g., body mass
index (BMI) [1–11], fat mass [12, 13], low lean body
mass [14], blood lipid levels [15], waist circumference
[13, 16], BMI-adjusted waist-to-hip ratio [17, 18]). Some

of these single nucleotide polymorphisms (SNPs) are
located near genes whose role in obesity is well estab-
lished, such as MC4R [19]. However, most of these SNPs
are located near genes whose role in obesity is still
unclear, and the mechanisms through which they act
remain unknown. Part of this lack of understanding may
be due to a focus on the genes in closest proximity to
these SNPs. Actually, these SNPs may regulate genes that
are located quite far away, as recently demonstrated for
genetic variants within FTO. In human brains, obesity-
associated SNPs in FTO were found to be associated with
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expression of IRX3, a gene located more than half a mil-
lion base pairs downstream of the body mass-associated
genetic locus [20]. Another instance is the rs4537545 SNP
previously associated with coronary heart disease [21] and
located within IL6R: this SNP was recently found to be
associated with blood mRNA levels of ATP8B2, a gene
located 115 kb away [22]. Thus, obesity-associated SNPs
might act through long-range interactions (for example,
by disrupting enhancers) and potentially through epigen-
etic mechanisms.
The epigenome represents the pattern of chemical and

structural modifications to DNA that are heritable
through mitosis and/or meiosis, but that do not entail
changes in DNA sequence. Epigenetic mechanisms en-
compass DNA methylation, histone modifications, and
non-coding RNAs, and have the potential to modify
gene expression. Recent attention has been drawn to the
possible role of epigenetics in the pathogenesis of obesity
[23, 24]. Moreover, while the epigenome is known to be
modulated by the environment, this modulation can also
be affected by genetic variants. Studies in brain [25–28],
adipose tissue [29, 30], blood [26, 31, 32], lung [33],
fibroblasts [34, 35], T cells [35], leukocytes [36], and lym-
phoblastoid cells [35, 37] have shown that the genome
contains quantitative trait loci (QTLs) for DNA methyla-
tion, also called methylation QTLs (meQTLs). DNA
methylation levels correlate with the presence of specific
alleles at nearby SNPs, and meQTLs tend to locate out-
side of promoters, especially in intergenic regions. In a
study conducted in adipose tissue [29], meQTLs over-
lapping metabolic disease loci were enriched in histone
marks predictive of genetic enhancers. Interestingly, top
associations from a GWAS of bipolar disorder were
enriched in meQTLs [38], suggesting that this could be
a powerful approach to better understand the molecular
basis of candidate SNPs from GWASs.
In the present study, we tested associations between 52

SNPs that were previously identified in GWASs or meta-
analyses to be associated with obesity traits, and proximal
DNA methylation in whole blood of 355 healthy young
individuals. We then tested the tissue specificity of the
majority of these associations in four brain regions (n =

121–133), visceral adipose tissue (VAT; n = 149), subcuta-
neous adipose tissue (SAT; n = 149) and fibroblasts (n =
62). Finally, the genomic context of associated CpG sites
was explored, using chromatin segmentation on publicly
available histone marks from 11 tissues and long-range
interactions from five cell lines.

Methods
Discovery study group
Ethics, consent and permissions
The discovery study group comprised two sub-groups of
healthy young Caucasians from two different age ranges
(Table 1). All participants and their guardians gave in-
formed written consent and the study was approved by
the local ethics committee in Uppsala, EPN, diary num-
ber 2011/446; this study was conducted in accordance
with the principles of the Declaration of Helsinki. The
first sub-group comprised 130 individuals aged 14–16
years who were recruited by visiting schools in Uppsala
county and by post. Two 6-ml blood samples were
drawn for genotyping and DNA methylation measure-
ment, at any time during the day. The other sub-group
comprised 225 individuals of white European descent
aged 18–34 years, also recruited in Uppsala. Subjects
were fasting (at least 10 h) when blood samples were
taken for genotyping and DNA methylation measure-
ment. For individuals aged under 18 years, we used Cole
et al.’s definition to determine weight category [39]. For
individuals aged 18 years and older, the following cutoffs
were used: lean, BMI < 25; overweight, 25 ≤ BMI < 30;
obese, BMI ≥ 30. We chose to use weight category in-
stead of BMI since our cohort includes individuals aged
under 18 years whose BMI scales differ from the BMI
scales of individuals aged over 18 years.

Genotyping
We selected 52 SNPs that have been associated by
GWASs or meta-analyses of GWASs with obesity-associ-
ated traits (BMI [1–10], BMI-adjusted waist-to-hip ratio
[18], fat mass [12], low lean body mass [14], blood lipid
levels [15] and waist circumference [16]) and the
discovery study group was genotyped for these SNPs

Table 1 Description of the discovery samples

Sub-group 1 Sub-group 2 Total

n 130 225 355

nmales 37 (29 %) 177 (79 %) 214 (60 %)

Age (years)a 15.3 ± 0.64 23.6 ± 3.3 20.6 ± 1.2

Weight (kg)a 72.9 ± 11.4 76.6 ± 12.4 71.6 ± 13.7

Height (m)a 1.70 ± 0.081 1.79 ± 0.078 1.76 ± 0.092

Weight categoryb 77 % lean, 18 % overweight, 5 % obese 74 % lean, 21 % overweight, 5 % obese 76 % lean, 20 % overweight, 4 % obese
aMean ± standard deviation. bFor individuals aged under 18 years, we used Cole et al.’s definition to determine weight category [39]. For individuals aged 18 years
and older, the following cutoffs were used: lean, BMI < 25; overweight, 25 ≤ BMI < 30; obese, BMI ≥ 30
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(Additional file 1). Genotyping of the 52 SNPs was carried
out at the SNP technology platform at Uppsala University
[40] using an Illumina Golden Gate Assay (Illumina Inc.,
San Diego, CA, USA). There were missing genotypes for 8
of the 52 tested SNPs, ranging from one individual to 52
individuals with missing genotypes (Additional file 1).
Individuals with missing genotypes were removed from
the analysis.

DNA methylation profiling
The genome-wide Illumina Infinium HumanMethyla-
tion450 BeadChip (Illumina), which allows interrogation
of 485,512 CpG dinucleotides covering 25,953 genes,
was applied to determine the methylation profile of gen-
omic DNA isolated and purified from the peripheral
whole blood. This chip has been shown to give a reliable
and reproducible estimation of the methylation profile
on a genomic scale [15]. First, bisulfite conversion of
genomic DNA was performed using the EZ DNA
Methylation-Gold™ Kit (Zymo Research) according to
the manufacturer’s protocol. Briefly, 500 ng of DNA was
sodium bisulfite-treated, denatured at 98 °C for 10 min,
and bisulfite converted at 64 °C for 2.5 h. After conver-
sion, samples were desulfonated and purified using
column preparation. Approximately 200 ng of bisulfate-
converted DNA was processed according to the Illumina
Infinium Methylation Assay protocol. This assay is based
on the conversion of unmethylated cytosine (C) nucleotides
into uracil/thymine (T) nucleotides by the bisulfite treat-
ment. The DNA was whole-genome amplified, enzymati-
cally fragmented, precipitated, resuspended, and hybridized
overnight at 48 °C to locus-specific oligonucleotide primers
on the BeadChip. After hybridization, the C or T nucleo-
tides were detected by single-base primer extension. The
fluorescence signals corresponding to the C or T nucleo-
tides were measured from the BeadChips using the
Illumina iScan scanner. Phenotypes, genotypes, raw data,
and processed DNA methylation data are available through
the Gene Expression Omnibus (GEO) database [41] with
accession number [GEO:GSE73103].

DNA methylation processing
All downstream data processing and statistical analyses
were performed with the statistical software R [42]
together with the minfi [43], ChAMP [44], sva [45], and
MethylAid [46] packages of the Bioconductor project.

Background correction and adjustment of type I and type II
probes
Fluorescence data were preprocessed using the GenomeS-
tudio 2009.2 (Illumina) software. First, we background
corrected the data using NOOB [47]. In the Illumina Infi-
nium HumanMethylation450 BeadChip array, the probes
come in two different designs, characterized by widely

different DNA methylation distributions and dynamic
range, which may bias downstream analyses. Therefore,
we applied the BMIQ algorithm to adjust for the two
different probe designs [48].

Removal of batch effects
The plates on which samples are run introduce a known
batch effect that is important to correct for. We used
the ComBat function to adjust directly for this batch
effect [45].

Principal component analysis
We performed a principal component analysis (PCA)
using the PCA function of the FactoMineR package [49],
first calculating the covariance matrix between all sam-
ples using only the most variable autosomal CpG sites,
measured in terms of their 95 % reference range: the
range of methylation values observed in the central 95 %
of the samples or, more precisely, the difference between
the 97.5 and 2.5 % percentiles. Using a 95 % reference
range of at least 0.20, 103,408 CpG sites were used in
the covariance matrix calculation. Together, the two first
principal components explain over 39 % of the total vari-
ance. Each subsequent vector does not add substantially
to the variance explained: 285 vectors would be neces-
sary to explain 95 % of the total variance.

Sample exclusion
We excluded from association analyses: (1) samples that
were outliers in any one of the quality control plots gen-
erated by MethylAid [46] (rotated M versus U plot, over-
all sample-dependent control plot, bisulfite conversion
control plot, overall sample-independent control plot
and detection p value plot) using the default thresholds
(0 samples); (2) samples that were outliers with respect
to any one of the first eight principal components (cor-
responding to the approximate location of the elbow of
the eigenvalue scree plot; six samples). After exclusion
of samples, we were left with 349 samples: 128 from
the first sub-group (29 % males; mean age ± standard
deviation 15.3 ± 0.64 years) and 221 from the second
sub-group (78 % males; mean age ± standard deviation
23.6 ± 3.3 years).

Probe exclusion
We removed probes with missing β values, probes hav-
ing less than 75 % of samples with detection p value <
0.01, and probes located on the sex chromosomes. Using
the annotation generated by Chen et al. [50], we also
removed cross-reactive probes and probes containing
SNPs with minor allele frequency > 1 % in European
populations. In total, 397,615 probes were included in
the analysis.
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Choice of investigated CpGs
We selected the probes within 500 kb of each SNP. A
total of 8485 probes were analyzed, with an average of
163 CpGs per SNP (Additional file 1).

Cell-type proportions
Because differences in cell-type proportions between
DNA samples can confound association results [51], we
adjusted our analyses using a surrogate for cell-type pro-
portions derived from 43 differentially methylated CpG
sites present on the HumanMethylation450 array that
have the ability to discriminate between blood cell types
[52]. As a surrogate for cell-type proportions, and to
reduce the number of variables, we used the first two
principal components associated with these 43 sites that
together explain over 70 % of the total variance in
methylation at these 43 CpG sites.
To verify that the first two principal components that

we derived from the list of 43 differentially methylated
CpG sites [52] can indeed serve as a surrogate for blood
cell proportions, we tested for associations between the
principal components and the methylation levels at all of
our sites, adjusting our analyses for sex, age, weight cat-
egory, and batch. We selected the top 10 % of the sites
that showed the strongest associations (49,035 sites, all
associated at levels p < 10−8) and extracted these sites in
data sets of purified human leukocyte subtypes [53]
[GEO:GSE39981]; 2564 sites were overlapping. A den-
drogram representation of our top sites in this data set
[53] reveals clear clustering of samples according to cell
type, indicating a good ability for principal components
to discriminate between samples with different cell com-
positions (Additional file 2).

Validation of methylation with bisulfite sequencing
The methylation levels of two of the associated CpG sites
(cg15576492 and cg2204028, at position chr1:1015257–
1015540) were validated using bisulfite sequencing. The
sequences including target CpG sites were obtained from
the University of California, Santa Cruz (UCSC) Genome
Browser database. The sequences (bisulfite-converted
DNA template) for the primers were forward (biotin
labeled)-5′-ATGGATGTTGGTGTGAGTATT-3′ and re-
verse 5′-CCCTCTACACATCTAAACCCT-3′. Bisulfite se-
quencing primers were designed with Methyl Primer
Express® v.1.0 (Applied Biosystems) so that the amplicons
covered target CpG sites. These regions were PCR ampli-
fied in duplicate from bisulfite-treated DNA. Similar
efficiency in PCR amplification for unmethylated and
methylated fragments was controlled for using Human
Methylated & Non-methylated DNA Set (Zymo Research).
PCR reactions were performed in a final volume of 25 μl
and contained 2.5 μl of bisulfite-treated DNA (10–15 ng/
μl), 0.05 μl of each primer (100 pmol/μl), 1 μl DMSO, 0.5

μl of SYBR Green I (1:50,000; Invitrogen, Sweden) in TE
buffer (pH 7.8), 0.25 μl of 25 mM dNTP mix (Fermentas),
2.5 μl 10× buffer, 4 μl of 25 mM MgCl2, 1 U of Hot Start
Taq DNA polymerase (Thermo Scientific). Cycling condi-
tions were as follows: 10-min initial denaturation step at
95 °C, followed by 45 cycles of 95 °C for 20 s, 30 s at opti-
mal annealing temperature of primers, 20–45 s at 72 °C, 5
min of final elongation at 72 °C. Fluorescence was mea-
sured after the elongation phase. Melting curve analysis
consisted of 81 cycles of 10 s at 55 °C with increasing
increments of 0.5 °C per cycle. Bio-Rad iQ5 version 2.0
software (Bio-Rad Laboratories) was used to process real-
time PCR data.
Amplicons were purified using GeneJET PCR Purifica-

tion Kit (Thermo Scientific).
DNA sequencing was performed using BigDye® Ter-

minator v.3.1 Cycle Sequencing Kit (Applied Biosystems)
on an ABI3730XL DNA Analyzer (Applied Biosystems)
at Uppsala Genome Center. Cycle sequencing was as
follows: 30 s initial denaturation step at 94 °C, followed
by 35 cycles of 94 °C for 25 s, 50 °C for 15 s, 60 °C for
120 s. Each sample was sequenced twice and the two
methylation levels were averaged. Amplification primers
were used for sequencing. All samples were analyzed in
duplicates on different plates and the mean methylation
levels in percentage per sample were used for further
analyses. Methylation levels of CpG sites for all ampli-
cons were quantified using Epigenetic Sequencing
Methylation analysis software [54]. The software was
repeatedly used to determine the methylation profile of
several genes [55, 56]. The software algorithm analyzes
the methylation percentage of each CpG site in an
amplicon without cloning stage.

Replication study groups
VAT and SAT
VAT and SAT samples were used to test specifically the
association between alleles at rs1011731 and methylation
at cg13446689. Paired samples of VAT and SAT from
149 Caucasian subjects (35 % male) who underwent
open abdominal surgery were included in the study. This
subset is part of a study group that had already been
genotyped for rs1011731, described in detail elsewhere
[57]. Thirty-two individuals were lean (aged 63 ± 11
years, BMI 22.1 ± 2.5 kg/m2), 22 were overweight (67 ±
12 years, BMI 27.1 ± 1.4 kg/m2) and 94 were obese (age
47 ± 13 years, BMI 48.1 ± 9.7 kg/m2); BMI was missing
for one individual and 46 subjects had diabetes type 2.
Patients with severe conditions, including generalized
inflammation or end-stage malignant diseases, were ex-
cluded from the study. Samples of VAT and SAT were
immediately frozen in liquid nitrogen after explantation.
The study was approved by the ethics committee of the
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University of Leipzig and all subjects gave written
informed consent.
Genomic DNA was extracted from frozen adipose tissue

samples using GenElute™ Mammalian Genomic DNA
Miniprep Kit (SIGMA-ALDRICH, USA). All samples were
bisulfite converted using Qiagen Epitect Bisulfite Kit
(Qiagen, Hilden, Germany) according to the manufac-
turer’s protocol and applied to whole bisulfitome amplifi-
cation (EpiTect Whole Bisulfitome Kit, Qiagen, Hilden,
Germany). Finally, all samples were purified using GenE-
lute PCR Clean-up Kit (Sigma-Aldrich, USA). Methylation
levels of cg13446689 were determined using a custom de-
signed PyroMark CpG assay (Qiagen, Hilden, Germany).
The sequences (bisulfite-converted DNA template) for the
primers were forward (biotin labeled)-5′-AAGTGATGG
GAGTTGTTGG-3′ and reverse 5′- ACCCCAAAACAAT
TCAAACAAACCATA-′3. Using the sequencing primer
5′-ACAATTCAAACAAACCATACTTA-3′ the following
sequence was analyzed (5′- CACAAC[R]ACTAACTAA
TCTATAC[R]ACCTCAAACCAAAAACAACAACCAAC
AACTCC-3′). The pyrosequencing was run on a Pyro-
Mark Q24 (Qiagen, Hilden, Germany). All samples were
analyzed in duplicates on different plates and the mean
methylation levels in percentage per sample were used for
further analyses. Water was used as a non-template con-
trol using the same PCR conditions.

Fibroblasts
Methylation, SNP genotyping, and gene expression data
from primary skin fibroblasts from Caucasian individuals
(n = 62) [34] were obtained from GEO (accession num-
ber [GEO:GSE53261]).

Brain regions (cerebellum, frontal cortex, caudal pons, and
temporal cortex)
SNP genotyping data from four different brain regions
(n = 121–133) [58] were obtained from dbGAP (acces-
sion number phs000249.v1.p1). All individuals were of
Caucasian descent, but two individuals from the cerebel-
lum study samples were of African and Asian descent,
respectively. We removed these two individuals from
our analysis. Methylation data were obtained from GEO
(accession number [GEO:GSE15745]).

Annotation
Genes
The genomic positions of RefSeq genes were down-
loaded from the UCSC genome browser, and the loca-
tion of each CpG site was determined as promoter
(within 1500 bp of the transcription start site (TSS)),
gene body, intergenic, or ambiguous (overlapping a pro-
moter and a gene body).

Linkage disequilibrium
Linkage disequilibrium (LD) data were obtained from
SNAP Proxy, using CEU as the “population panel” and
the 1000 Genomes Pilot 1 as “SNP dataset” [59].

Chromatin states
ChromHMM [60] was applied for seven publicly available
histone modifications (H3K4me1, H3K4me3, H3K9ac,
H3K9me3, H3K27ac, H3K27me3, and H3K36me3) from
11 tissues: adipose nuclei (AN), pancreatic islets (PI), per-
ipheral blood mononuclear primary cells (PBMC), skeletal
muscle (SM), liver, brain angular gyrus (BrainAG), brain an-
terior caudate (BrainAC), brain cingulate gyrus (BrainCG),
brain hippocampus (BrainHIPPO), brain inferior temporal
lobe (BrainITL), and brain substantia nigra (BrainSN). Data
were downloaded from NIH Roadmap Epigenomics Project
Data Listings. An 18-state model was learned from all
binarized data and was used to produce segmentations
based on the most likely state assignment of the model.
Then, each state was assigned to one of the following seven
categories: enhancer, active TSS/poised TSS/flanking TSS,
active transcription, quiescent, heterochromatin, Polycomb-
repressed, ZNF genes/repeats.

Ubiquitous, tissue-specific, and cell-specific in vivo
transcribed enhancers
Ubiquitous, tissue-specific (adipose tissue, blood, brain,
liver, pancreas, and skeletal muscle) and cell type-
specific (preadipocytes, fat cells, hepatocytes, and skel-
etal muscle cells) enhancers, as well as TSS–enhancer
associations, as defined by CAGE tags in the FANTOM5
project, were downloaded from the Transcribed Enhan-
cer Atlas website [61, 62].

Long-range interactions
We used publicly available chromatin interaction ana-
lysis by paired-end tag sequencing (ChIA-PET) libraries
to map long-range interactions in five different cell lines,
with three different transcription factors [63] (Additional
file 3). Data were downloaded from the WashU Epige-
nome Browser.

Expression QTLs
We used the following publicly available expression
QTL (eQTL) browsers to see whether any of the associ-
ated SNPs or SNPs in strong linkage with them (r2 > 0.8)
were eQTLs for our genes of interest: the eQTL browser
of the Genotype-Tissue Expression (GTEx) project [64],
the eQTL Browser of the National Center for Biotech-
nology Information, the eQTL resources from the Gilad/
Pritchard group [65], and the blood eQTL browser
developed by Westra et al. [66].
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Statistics
For statistical analysis, we used the log2 ratio of the in-
tensities of methylated probe and unmethylated probe,
also called M value, which is more statistically valid for
the differential analysis of methylation levels [67].

Linear model
We developed the following linear model for each CpG
site k:

Mk ¼ ak þ bkSS þ bkAAþ bkWW þ bkGG

þ bkPC1PC1þ bkPC2PC2þ εk

where Mk is the M value of CpG site k, S is the dichoto-
mized sex (female = 1 and male = 0), A is the age, W is
the weight category (normal weight = 0, overweight = 1,
obese = 2), G is the genotype at the investigated SNP
(homozygotes for non-risk allele = 0, heterozygotes = 1,
homozygotes for risk allele = 2), PC1 and PC2 are the
first two principal components derived from the list of
43 differentially methylated CpG sites in blood cell
types, and εk is the unexplained variability. We chose to
use weight category instead of BMI since our study sam-
ples include individuals aged under 18 years whose BMI
scales differ from the BMI scales of individuals aged over
18 years. Rare homozygous genotypes (count of less than
10) were combined with heterozygotes.
The coefficients bkx summarize the association be-

tween methylation levels and the variables of interest.
The p value for the SNP was determined using a likeli-
hood ratio test, using the lrtest function of the lmtest
package [68], and we report the effect size as the propor-
tion R2 of the CpG methylation variance that is
explained by the SNP, among the variance not already
explained by the covariates. To control the proportion of
false positives, q values were calculated using the qvalue
function of the qvalue package [69]. A SNP was consid-
ered significant if its q value was < 0.05.

Enrichment of associated CpGs in genomic regions, in vivo
transcribed enhancers, and chromatin states
To test whether associated CpGs were enriched or un-
derrepresented in different genomic regions (promoter,
gene body, etc.), chromatin states (enhancer, TSS, het-
erochromatin, etc.) and in vivo transcribed enhancers,
we used Fisher’s exact test. To control the proportion of
false positives, q values were calculated using the qvalue
function of the qvalue package [69]. Significance was
considered at a q value < 0.05.

Number of long-range interactions
The distributions of the numbers of long-range interac-
tions per CpG were skewed. Thus, to see whether

associated CpGs had a higher or lower number of long-
range interactions, we used Mann–Whitney U-test.

Power calculations
We used the pwr.f2.test function of the pwr package in
R to determine the statistical power in the replication
datasets (fibroblasts, brain and SAT/VAT).

Results
Obesity-associated SNPs associate with methylation at
proximal CpGs in whole blood samples from healthy
individuals
We tested associations between 52 obesity-associated
SNPs and M values of all CpG sites 500 kb upstream
and 500 kb downstream of each SNP in the blood of 355
individuals (Table 1), using a linear regression model ad-
justed for age, sex, blood cell type surrogate, and weight
category (i.e., lean, overweight, or obese) instead of BMI
since our study samples include individuals aged under
18 years whose BMI scales differ from the BMI scales of
individuals aged over 18 years. In total, 8485 probes
were tested, with an average of 163 probes per SNP
(Additional file 1). Methylation levels at 107 CpGs asso-
ciated with genotypes at 28 SNPs (likelihood ratio test, q
value < 0.05; Additional file 4) and most of the associa-
tions were between SNPs and CpGs that are close to
each other (50 % of the associations are between SNPs
and CpGs that are within 40 kb of each other; Fig. 1).
Also, the closer the SNP and CpG are, the stronger the
statistical significance is (Fig. 1). One example of these
SNP–CpG associations is depicted in Fig. 2. The
rs713586 SNP explains 53.8 % of the total variance in
methylation at cg01884057, with carriers of the risk
allele (C) at rs713586 having higher methylation.
The two sub-groups that were pooled for the discovery

analysis were of two different age ranges (see “Methods”),
but they did not significantly differ in terms of global
DNA methylation patterns, as shown by PCA (Additional
file 5). To make sure that the two sub-groups were com-
parable and could effectively be combined for the discov-
ery analysis, we tested the significance of the 107 CpGs
separately in each. SNP effects were in the same directions
for all 107 CpGs in the two separate sub-groups; 105
of the 107 CpGs were significant (raw p value < 0.05)
in the first, while 86 of the 107 CpGs were significant
(raw p value < 0.05) in the second. This suggests that
our results are not driven by a specificity of one of
the two sub-groups and that it was reasonable to pool
them for the discovery analysis.

Genomic context of CpGs associated with
obesity-associated SNPs
To understand the functional significance of the CpGs
associated with alleles at obesity-associated SNPs, we
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analyzed their genomic location in relation to genes,
chromatin states in 11 tissues, ubiquitous, tissue-
specific, or cell-specific in vivo transcribed enhancers,
and long-range interactions in five cell lines.

CpGs associated with obesity-associated SNPs are depleted
in promoters and enriched in intergenic regions
Thirty-eight of the associated CpGs were located in gene
promoters (MIR148A, BDNF, PTPMT1, NR1H3, MGAT1,
SCGB3A1, HOXC12, PMAIP1, PSIP1, RPS10-NUDT3,
RPS10, SKOR1, MAP2K5, SIX5, AGRN, IMMP1L, ELP4,

ITIH4, SEMA3G, POMC, ADCY3, SSPN, LGR4, TUFM,
MIR4721, SULT1A1, SULT1A2, APOBR, CLN3, SPNS1,
SH2B1, ATXN2L, and IL27), including eight also located
in a gene body (Additional file 4). Thus, associated
CpGs were underrepresented in promoters (28 % of
CpGs, Fisher’s exact test p value = 0.0097). In
contrast, 31 associated CpGs were located in inter-
genic regions, which is more than expected by chance
(30 % of CpGs, Fisher’s exact test p value = 0.0087;
Fig. 3). This is consistent with previous studies on
meQTLs [27, 30].

Fig. 2 Associations between genotypes at rs713586 and methylation at cg01884057. Distribution of methylation levels at cg01884057 is displayed
for individuals carrying zero (C/C), one (T/C), or two (T/T) risk alleles at rs713586

Fig. 1 Raw p value as a function of distance between SNP and CpG. Each point represents an associated SNP–CpG pair (107 pairs). Most associated
SNP–CpG pairs are close to each other, as illustrated by the box plot of the distance between SNP and CpG (bottom of the plot). The closer the
associated SNP–CpG pairs are, the lower the p value
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CpGs associated with obesity-associated SNPs are enriched
in enhancers in PBMCs
The activity of functional genomic elements is associated
with the state of the chromatin at these sites, such as his-
tone modification patterns and access of transcription fac-
tors to DNA. The recently developed chromHMM tool
allows interpreting chromatin states in a particular tissue
or cell type by integrating histone marks and transcription
factor binding data [60]. Using seven publicly available
histone marks in 11 tissues relevant in the pathogenesis of
obesity (AN, six brain regions, liver, PBMCs, PIs, and SM),
we interpreted the chromatin states of all regions contain-
ing the tested CpGs (Additional file 6). Consistent with
the enrichment of associated CpGs in intergenic regions
(Fig. 3), associated CpGs were enriched in enhancers in
PBMCs (Fisher’s exact test, q value = 0.0019) (Fig. 4).

Only one CpG associated with obesity-associated SNPs is
located in in vivo transcribed enhancers
The enrichment of associated CpGs in enhancers is a
prediction by chromHMM that relies on histone marks,
but we wanted to test whether associated CpGs were
also found in active enhancers, as defined by cap-
analysis of gene expression (CAGE) in the FANTOM5
project [61]. cg04588972, whose methylation was lower
in carriers of the risk allele at rs1878047, was in a ubi-
quitous enhancer showing long-range interactions with
the TSS of KLK14, IGLON5, LRRC4B, and SYT3.

However, associated CpGs were not underrepresented in
ubiquitous, tissue-specific, or cell-specific enhancers
(Fisher’s exact tests, all p values > 0.05). FANTOM5 uses
very stringent criteria to detect active enhancers using
whole transcriptome sequencing [61], thus possibly
explaining why none of the associated CpGs were in ac-
tive enhancers as defined by CAGE in the FANTOM5
project. Indeed, chromHMM predicted 33–266 times
more active enhancers from the FANTOM5 project
depending on the tissue, and there was little overlap
between the two.

CpGs associated with obesity-associated SNPs show
long-range interactions with promoters and other
genomic regions
Following the enrichment of associated CpGs at en-
hancers, we mapped all tested CpGs to long-range inter-
actions as defined by ChIA-PET libraries from five cell
lines and three transcription factors (Additional file 3)
[63]. Of the 107 associated CpGs, 103 (96 %) were
located in regions with at least one long-range inter-
action with another genomic region, and 73 of the
107 associated CpGs (68 %) were located in regions
with at least one long-range interaction with a gene
promoter (Additional file 4). For instance, five CpGs
negatively associated with rs2444217 and located in
enhancers in brain, PBMCs, liver, PIs, and SM
showed long-range interactions with the same five

Fig. 3 Distribution of associated versus all tested CpGs in promoters, gene bodies, and intergenic regions. A CpG was classified as “promoter” if
located within 1500 bp of the TSS of a gene, and as “ambiguous” if it was both in a promoter and within a gene body. Associated CpGs (top)
were underrepresented in promoters, and overrepresented in intergenic regions (Fisher’s exact test). *q value < 0.05
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gene promoters (Additional file 4; Fig. 5). Also, 6 of
the 15 CpGs associated with alleles at rs3934834
were found to interact with no less than 11 pro-
moters, and were in enhancers in PIs (Additional
files 4 and 6; Fig. 6). The graphic results for all sig-
nificant SNPs can be found in Additional file 7.
Associated CpGs were not enriched in long-range in-
teractions across all five cell lines and three target

transcription factors (Mann–Whitney U-test p value >
0.05; Fig. 7).

Associated CpGs are located in or show long-range
interactions with the promoters of genes for which
the corresponding SNPs are known eQTLs
We showed that some of the associated CpGs are
located in gene promoters, and some are in regions

Fig. 4 Distribution of associated versus all tested CpGs in seven chromatin states in 11 tissues. Associated CpGs were overrepresented in enhancers in
PBMCs (Fisher’s exact test). **q value < 0.01

Fig. 5 Genomic context of the CpGs associated with rs2444217. Genomic positions of RefSeq genes and rs2444217 are displayed in the top panel.
Within the two vertical red dotted lines, the LD r2 > 0.8. The positions of the tested CpGs are displayed. Long-range interactions as defined by ChIA-PET
libraries from five cell lines using chromatin immunoprecipitation with antibodies targeting three transcription factors (Additional file 5) are displayed
as arcs. For clarity of visualization, we chose to display only the long-range interactions of genomic regions containing associated CpGs.
Two interacting genomic regions are represented by an arc that links them, and the thickness of the arc line is proportional to the strength of this
interaction. The color of the arc corresponds to the target transcription factor and the shade of the color corresponds to the cell line: red for RNA
polymerase II, blue for ERα, and green for CTCF. In the bottom panel, chromatin states in 11 tissues are displayed. Chromatin states were
obtained using chromHMM prediction using data on seven histone marks (see “Methods”). The color of each band corresponds to a
particular state. AN adipose nuclei, BrainAC brain anterior caudate, BrainAG brain angular gyrus, BrainCG brain cingulate gyrus, BrainHIPPO
brain hippocampus, BrainITL brain inferior temporal lobe, BrainSN brain substantia nigra, PBMC peripheral blood mononuclear primary cells,
PI pancreatic islets, SM skeletal muscle
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Fig. 6 Genomic context of the CpGs associated with rs3934834. a The entire investigated region. b Zoom on the region surrounding rs3934834.
Genomic positions of RefSeq genes and rs3934834 are displayed in the top panel. Within the two vertical red dotted lines, the LD r2 > 0.8. The positions
of the tested CpGs are displayed. Long-range interactions as defined by ChIA-PET libraries from five cell lines using chromatin immunoprecipitation
with antibodies targeting three transcription factors (Additional file 5) are displayed as arcs. For clarity of visualization, we chose to display only the
long-range interactions of genomic regions containing associated CpGs. Two interacting genomic regions are represented by an arc that links them,
and the thickness of the arc line is proportional to the strength of this interaction. The color of the arc corresponds to the target transcription factor
and the shade of the color corresponds to the cell line: red for RNA polymerase II, blue for ERα, and green for CTCF. In the bottom panel, chromatin
states in 11 tissues are displayed. Chromatin states were obtained using chromHMM prediction using data on seven histone marks (see “Methods”).
The color of each band corresponds to a particular state. AN adipose nuclei, BrainAC brain anterior caudate, BrainAG brain angular gyrus, BrainCG
brain cingulate gyrus, BrainHIPPO brain hippocampus, BrainITL brain inferior temporal lobe, BrainSN brain substantia nigra, PBMC peripheral blood
mononuclear primary cells, PI pancreatic islets, SM skeletal muscle
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showing putative long-range interactions with gene pro-
moters. In order to make the link between SNP, methy-
lation, and mRNA expression, we searched four eQTL
databases (see “Methods”); we browsed all associated
SNPs and SNPs in strong LD with them (with r2 > 0.8),
and retrieved the genes for which they were eQTLs
(Additional file 8). We found that associated CpGs are
located in or show long-range interactions with the pro-
moters of genes for which the corresponding SNPs are
known eQTLs. For instance, rs10838738 is a known eQTL
for several genes in blood, including C1QTNF4, CELF1,
and NUP160. Interestingly, rs10838738 associated with
three CpGs showing long-range interactions with
C1QTNF4 (Additional file 4), four CpGs showing long-
range interactions with CELF1 (Additional file 4), including
three in enhancers in PBMCs (Additional file 6), and one
CpG showing long-range interactions with NUP160
(Additional file 4) that was in an enhancer in PBMCs
(Additional file 4). Another example is rs713586, a known
eQTL for ADCY3 in blood and monocytes. rs713586 asso-
ciated with a CpG located in the promoter of ADCY3
(Additional file 4) that was also promoter-associated in
PBMCs (Additional file 6).

Genome-scale measurements are validated by bisulfite
sequencing
We validated one of the tested CpGs (cg15576492) by
bisulfite sequencing, using DNA from 17 individuals
from the discovery study group who were homozygous
for rs3934834 (six A/A and 11 G/G). Our criteria for
choosing this site were the following: 1) significant asso-
ciation with risk alleles; 2) strongest association with risk
alleles; 3) located in a gene promoter and/or having
long-range interactions with a gene promoter. The cor-
relation between methylation assessed by Illumina and
bisulfite sequencing was good (Pearson’s correlation
coefficient r = 0.68, p value = 0.0025; Additional file 9).
Methylation in A/A was higher than methylation in G/G,
but the methylation difference did not reach statistical
significance (p value > 0.05), which could be explained
by reduced statistical power (17 individuals).

SNP–CpG associations might not be blood-specific
Four of the initial SNP–CpG associations in blood are
replicated in skin fibroblasts
The open-access dataset of skin fibroblasts consists of
DNA methylation data assessed with the Illumina
HumanMethylation450 BeadChip and genotype data
assessed with the Illumina Human1M-Duov3 DNA
Analysis BeadChip. Thus, we had data to test 65 of
the 107 significant SNP–CpG associations in skin
fibroblasts (n = 62). Fourteen SNP–CpG associations
had a raw p value < 0.05, and seven had a q value <
0.05, including four having a concordant effect sign
with results obtained in blood (Additional file 10).
Notably, genotypes at rs1011731 associated with
methylation at cg13446689 (regression coefficient =
0.254, q value = 0.012).

The single SNP–methylation association tested in SAT and
VAT was not significant
The SAT and VAT study group of 149 individuals
(mostly overweight/obese) was used to test specifically
the association between genotypes at rs1011731 and
methylation at cg13446689, which was assessed by bisul-
fite sequencing. We chose to test this SNP–CpG pair
because there was an association between cg13446689
and rs1011731 in both blood and fibroblasts, and
because this study group had already been genotyped for
rs1011731. There was no association between methyla-
tion at cg13446689 in VAT or SAT and genotypes at
rs1011731 (p value > 0.05; Additional file 10).

The two SNP–methylation associations tested in cerebellum,
frontal cortex, caudal pons, and temporal cortex were not
significant
The open-access dataset of four brain regions con-
sists of DNA methylation assayed using the Illumina

Fig. 7 Distribution of the number of long-range interactions for
associated versus all tested CpGs. For each associated and tested
CpG, we counted the number of genomic regions containing the CpG
that interacted with another genomic region. For clarity and because
the number of interactions was skewed, we chose to display the
log10(number of interactions)
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HumanMethylation27 BeadChip, and genotype data
assessed with the Illumina Human1M-Duov3 DNA Ana-
lysis BeadChip. Thus, we had data to test two of the 107
associated CpGs (cg05585544 and cg11385473). There
was no association between genotypes at rs10838738 and
methylation at cg05585544 in any of the four brain
regions; there was no association between genotypes at
rs652722 and methylation at cg11385473 in any of the
four brain regions (p values > 0.05; Additional file 10).

Discussion
Our findings suggest that carriers of obesity-associated
risk alleles display complex alterations of the gene regu-
latory landscape. We find that obesity-associated SNPs
can be linked to DNA methylation levels in several prox-
imal locations, which implies that they may affect mul-
tiple genes. These SNPs associated with proximal DNA
methylation levels in whole blood of healthy individuals,
but these associations might not be blood-specific. Inter-
estingly, several obesity-associated SNPs associated with
CpGs that were in the promoters of genes known to par-
ticipate in the pathogenesis of obesity, or were located in
regions that interact with such genes. In addition, associ-
ated CpGs were enriched in enhancers in blood, which
highlights their potential in gene regulation.
It is well established that DNA methylation levels cor-

relate with the presence of specific alleles at nearby
SNPs [25–37], such as Grundberg et al. [29], who found
that 28 % of CpGs were associated with SNPs within 100
kb in adipose tissue. If we restrict our analysis to 100 kb,
we find 103 SNP–CpG associations at a q value < 0.05,
corresponding to 27 unique SNPs (52 % of tested SNPs).
It would be difficult to assess whether this percentage is
particularly high, but the present study shows that
obesity-associated SNPs discovered in GWASs may me-
diate their effect through alterations of the regulation of
transcription. Indeed, the global results for each signifi-
cant SNP display fascinating patterns. Several obesity-
associated SNPs may affect “transcription factories”,
clusters of gene promoters and their enhancers that
interact in three-dimensional space and are brought to-
gether by DNA-binding proteins such as CTCF [70].
The most striking example is rs7498665 since the 12
CpGs associated with this SNP are located in ten distinct
gene promoters. rs3888190, one of the top loci of the
most recent BMI GWAS [11], is in perfect LD with
rs7498665 (r2 = 1) and is known to be an eQTL for five
of these ten gene promoters (APOBR [71], SH2B1 [71],
SULT1A2 [72], ATXN2L [11], and TUFM [11]). Another
interesting example is rs10838738, which associated with
three CpGs showing long-range interactions with
C1QTNF4, four CpGs showing long-range interactions
with CELF1, and one CpG showing long-range interac-
tions with NUP160. rs10838738 is a known eQTL for

these three genes in blood [64, 66]. Thus, our results
suggest that the effect of obesity-associated SNPs may
be mediated by multiple and quite distant genes, as illus-
trated by three of our investigated SNPs (rs3934834,
rs2287019, and rs7498665) that associated with CpGs
interacting with no less than 15 promoters (Additional
files 4 and 7). This underlines the importance for a
rational and inclusive selection process for candidate
genes for GWAS hits rather than the common practice
of only focusing on the closest gene.
At a more detailed level, patterns of DNA methylation

at specific CpGs between carriers and non-carriers of risk
alleles were consistent with previous studies. Alleles at
rs713586 explained 54 % of the variance in methylation at
cg01884057, with an increase of almost 10 % methylation
for each risk allele. The very same pattern was also found
in adipose tissue in another study [29]. More interestingly,
some patterns of DNA methylation between carriers and
non-carriers of risk alleles was consistent with what is
known about these genes and obesity. For instance,
MIR148A is upregulated during normal adipogenesis but
downregulated in obese adipocytes [73], and its expression
is regulated by DNA methylation at its CpG island [74].
Consistently, carriers of the risk allele at rs1055144 had
higher methylation levels in the promoter of MIR148A.
Also, carriers of the risk allele at rs10838738 had lower
methylation in the promoter of PTPMT1, a gene that
codes for a mitochondrial phosphatase whose inhibition
lowers glucose concentration [75] and a suggested drug
target for treatment of type II diabetes [76]. Last but not
least, three of the associated CpGs were located within
two of the numerous promoters of BDNF, which encodes
a neurotrophin that plays several roles in regulating en-
ergy homeostasis [77]. It is suggested that BDNF is finely
regulated by DNA methylation and histone modifications
[78, 79], and differential BDNF transcripts are expressed
at different time points and in different cellular compart-
ments [79]. Carriers of the risk allele at rs10767664 had
higher methylation in the pII promoter of BDNF, and
lower methylation in the pVI promoter of BDNF. How-
ever, the roles of specific BDNF promoters in obesity
remain unexplored. Also, the SNPs may affect other genes
linked to obesity: NR1H3, a member of the liver X recep-
tors that regulate cholesterol catabolism [80] and
expressed during adipose tissue remodeling [81]; PAC-
SIN3, a kinase that induces glucose uptake by adipocytes
[82]; LGR4, a G protein-coupled receptor whose ablation
potentiates the white-to-brown fat transition [83]; POMC,
a peptide that decreases food intake and increases energy
expenditure [84]; CLN3 and ITH4, two proteins positively
associated with obesity [85, 86]; and the developmental
genes HOTAIR and HOXC11, responsible for differential
fat accumulation between upper and lower body, and
under epigenetic control [85, 87].
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Our study aimed at unraveling the molecular effects of
body mass-associated genetic variants on chromatin
structure, with a special focus on DNA methylation. We
benefited from a large sample size for the discovery ana-
lysis (n = 355) and from the use of a large battery of
open access datasets to map associated CpGs to mean-
ingful genomic annotations, such as promoters, pre-
dicted and in vivo transcribed enhancers, and long-range
interactions. In addition, we tested the tissue-specificity
of 65 of the initial associations in skin fibroblasts, two of
the initial associations in four brain regions, and one in
SAT and VAT. It is possible that some of the associa-
tions discovered in blood are limited to this tissue, or
that unmeasured environmental factors such as smok-
ing, diet, physical activity, and tissue-specific molecular
factors impacted DNA methylation at the measured
CpG sites and confounded our results. It should be
noted, however, that we could not test all of the 107
initial associations in the replication samples, and the
sample sizes of the replication samples were smaller
than the discovery study group. Analysis of statistical
power (probability of detecting a “true” effect when it
exists) suggests that we have a high probability of repli-
cating our results in the VAT and SAT replication sam-
ples, where power was 95 %. In contrast, power was only
23–25 % for cg11385473 and 42–47 % for cg05585544
for the brain replication samples and 39 % on average
for the skin fibroblast replication samples, which implies
that we are likely unable to replicate our results due to
too small sample groups for these conditions. Besides,
pan-tissue SNP–CpG associations are consistent with a
genome-wide study where genotype-dependent methyla-
tion differences between blood and brain were associ-
ated, making genetic influence on DNA methylation in
blood relevant for other tissues [26]. Finally, it should be
kept in mind that the probes of the methylation array
used in this study (Illumina 450 k) are enriched in CpG
islands, gene promoters, and gene regions; it is thus
possible that we missed important CpGs linked to
obesity-associated SNPs.
In the paradigm of genetics–epigenetics–environment

relationships, it is still unknown whether obesity-
associated SNPs directly cause differential DNA methy-
lation at genes and enhancers that contribute to the
pathogenesis of obesity, or if the observed differential
methylation levels are merely a consequence of a modi-
fied gene regulation caused by the presence of risk
alleles at obesity-associated SNPs. In a recent review on
the function and information content of DNA methyla-
tion, DNA methylation is thought to have both an active
and passive role in gene regulation, and it seems to be
highly contextual [88]. In particular, it has been pro-
posed that mutations within regulatory regions affect
binding of transcription factors, which in turn influence

DNA methylation [88]. If DNA methylation does not ne-
cessarily actively impact on gene regulation, it is at least
an informative marker of the underlying regulatory ac-
tivity. Therefore, the differential methylation observed in
carriers of risk alleles at obesity-associated SNPs in our
study likely reflects allele-specific effects on gene regula-
tory mechanisms.

Conclusions
In this study we report strong associations between
obesity-associated SNPs discovered in GWASs and
methylation levels at proximal CpG sites. The methyla-
tion sites associated with alleles at obesity-associated
SNPs were enriched in enhancers in PBMCs, and some
of these sites were located in the promoters of genes, or
were located in regions showing long-range interactions
with established roles in appetite regulation as well as
regulation of body mass. We also found indications that
some of these genotype–methylation associations exist
in different tissues. This study has implications for un-
derstanding how obesity-associated variants mediate
their effects. Further studies are needed to unravel the
mechanisms that govern the interplay between genetic
variants and the activity of functional DNA elements.

Additional files
The following additional data are available with the online
version of this paper. Additional file 1 is a is a table de-
scribing the 52 investigated SNPs. Additional file 2 is a
heatmap showing the top CpG sites associated with blood
cell type surrogates (principal components), evaluated in
purified human leukocyte subtype methylation data sets.
Additional file 3 is a table listing the cell lines and target
transcription factors of the ChIA-PET libraries. Additional
file 4 is a table describing the 107 associated CpGs found
in blood and their annotation. Additional file 5 is a PCA
showing the two discovery study samples on the first three
principal components, using only the most variable auto-
somal CpG sites. Additional file 6 is a table showing the
chromatin state at the genomic position of the 107 associ-
ated CpG, in 11 tissues. Additional file 7 is a figure show-
ing the genomic context of the CpGs associated with the
28 significant SNPs. Additional file 8 is a table showing
the eQTLs found in four eQTL databases for each of the
28 significant SNPs. Additional file 9 is a figure showing
the correlations between Illumina 450 K and pyrose-
quence analysis of cg15576492. Additional file 10 is a table
summarizing the replication of the 107 SNP-CpG associa-
tions found in blood.

Additional file 1: Description of the 52 investigated SNPs. SNPs in
bold are SNPs for which significant associations with DNA methylation
were found. *Number in parenthesis = number of individuals with
missing genotypes. (DOCX 108 kb)
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Additional file 2: Top CpG sites associated with blood cell type
surrogates (principal components), evaluated in purified human
leukocyte subtype methylation data sets. (TIFF 26367 kb)

Additional file 3: Cell lines and target transcription factors of the
ChIA-PET libraries. #Cell types are described in ENCODE project [89].
*Target transcription factors and their corresponding antibodies are
described in the ENCODE project [90]. (DOCX 11 kb)

Additional file 4: Description of the 107 associated CpGs found in
blood and their annotation. *Coefficient of the linear model associated
with the obesity-associated SNP: positive for increased methylation
with presence of risk allele; coefficients are calculated using M values.
(DOCX 38 kb)

Additional file 5: Principal component analysis of the two study
groups (n = 355) on the first three principal components, using only
the most variable autosomal CpG sites. Red dots are individuals from
study sub-group 1 (n = 130), black dots are individuals from study
sub-group 2 (n = 225). (TIFF 26367 kb)

Additional file 6: Chromatin states at the genomic position of the
107 CpGs, in the 11 investigated tissues. AN adipose nuclei, BrainAC
brain anterior caudate, BrainAG brain angular gyrus, BrainCG brain
cingulate gyrus, BrainHIPPO brain hippocampus, BrainITL brain inferior
temporal lobe, BrainSN brain substantia nigra, PBMC peripheral blood
mononuclear primary cells, PI pancreatic islets, SM skeletal muscle.
(DOCX 36 kb)

Additional file 7: Genomic context of the CpGs associated with the
significant SNPs. Each plot corresponds to a SNP for which associations
with DNA methylation were found (28 plots in total). Genomic positions
of RefSeq genes and the obesity-related SNP are displayed in the top panel.
Within the two vertical red dotted lines, the linkage disequilibrium r2 > 0.8.
The positions of the tested CpGs are displayed. Long-range interactions
as defined by ChIA-PET libraries from five cell lines using chromatin
immunoprecipitation with antibodies targeting three transcription
factors (Additional file 4) are displayed as arcs. For clarity of
visualization, we chose to display only the long-range interactions
of genomic regions containing associated CpGs. Two interacting
genomic regions are represented by an arc that links them, and
the thickness of the arc line is proportional to the strength of this interaction.
The color of the arc corresponds to the target transcription factor and the
shade of the color corresponds to the cell line: red for RNA polymerase II, blue
for ERα, and green for CTCF. In the bottom panel, chromatin states in 11
tissues are displayed. Chromatin states were obtained using chromHMM
prediction using data on seven histone marks (see “Methods”). The color of
each band corresponds to a particular state. AN adipose nuclei,
BrainAC brain anterior caudate, BrainAG brain angular gyrus, BrainCG
brain cingulate gyrus, BrainHIPPO brain hippocampus, BrainITL brain
inferior temporal lobe, BrainSN brain substantia nigra, PBMC peripheral
blood mononuclear primary cells, PI pancreatic islets, SM skeletal
muscle. (TIFF 9613 kb)

Additional file 8: eQTLs found in four eQTL databases for each of
the significant 28 SNPs. 1Investigated tissues: subcutaneous adipose
tissue, aorta artery, tibial artery, esophagus mucosa, esophagus muscularis,
heart left ventricle, lung, skeletal muscle, tibial nerve, sun-exposed skin,
lower leg, stomach, thyroid, whole blood. 2Investigated tissues/cell lines:
lymphoblastoid cell line (LCL), liver, monocytes, fibroblasts, T cells, brain
cortex. 3Investigated tissues/cell lines: lymphoblastoid cell line (LCL), liver,
brain cerebellum, brain frontal cortex, brain temporal cortex, brain pons.
(DOCX 25 kb)

Additional file 9: Correlations between Illumina 450 K and
pyrosequence analysis of cg15576492. Methylation at cg15576492,
as determined by the Illumina 450 k Chip and expressed as β value,
is plotted against methylation at cg15576492, as determined by
pyrosequencing and expressed as β value (n = 17). (TIFF 12920 kb)

Additional file 10: Replication of the 107 SNP-CpG associations
found in blood. *Coefficient of the linear model associated with the
obesity-associated SNP: positive for increased methylation with presence of
risk allele; coefficients are calculated using M values. Coefficients with a hash
symbol correspond to associations with raw p value < 0.05 and coefficients
in bold correspond to associations with q value < 0.05. (DOCX 31 kb)

Abbreviations
AN: adipose nuclei; BMI: body mass index; BrainAC: brain anterior caudate;
BrainAG: brain angular gyrus; BrainCG: brain cingulate gyrus;
BrainHIPPO: brain hippocampus; BrainITL: brain inferior temporal lobe;
BrainSN: brain substantia nigra; CAGE: cap-analysis of gene expression;
ChIA-PET: chromatin interaction analysis by paired-end tag sequencing;
eQTL: expression quantitative trait locus; GEO: Gene Expression Omnibus;
GWAS: genome-wide association study; LD: linkage disequilibrium;
meQTL: methylation quantitative trait locus; PBMC: peripheral blood
mononuclear primary cell; PCA: principal component analysis;
PCR: polymerase chain reaction; PI: pancreatic islet; QTL: quantitative trait
locus; SAT: subcutaneous adipose tissue; SM: skeletal muscle; SNP: single
nucleotide polymorphism; TSS: transcription start site; UCSC: University of
California, Santa Cruz; VAT: visceral adipose tissue.
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