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Abstract

High-throughput sequencing of B-cell immunoglobulin repertoires is increasingly being applied to gain insights into
the adaptive immune response in healthy individuals and in those with a wide range of diseases. Recent applications
include the study of autoimmunity, infection, allergy, cancer and aging. As sequencing technologies continue to
improve, these repertoire sequencing experiments are producing ever larger datasets, with tens- to hundreds-of-
millions of sequences. These data require specialized bioinformatics pipelines to be analyzed effectively. Numerous
methods and tools have been developed to handle different steps of the analysis, and integrated software suites have
recently been made available. However, the field has yet to converge on a standard pipeline for data processing and
analysis. Common file formats for data sharing are also lacking. Here we provide a set of practical guidelines for B-cell
receptor repertoire sequencing analysis, starting from raw sequencing reads and proceeding through pre-processing,
determination of population structure, and analysis of repertoire properties. These include methods for unique
molecular identifiers and sequencing error correction, V(D)J assignment and detection of novel alleles, clonal
assignment, lineage tree construction, somatic hypermutation modeling, selection analysis, and analysis of stereotyped
or convergent responses. The guidelines presented here highlight the major steps involved in the analysis of B-cell
repertoire sequencing data, along with recommendations on how to avoid common pitfalls.
B-cell receptor repertoire sequencing
Rapid improvements in high-throughput sequencing
(HTS) technologies are revolutionizing our ability to carry
out large-scale genetic profiling studies. Applications of
HTS to genomes (DNA sequencing (DNA-seq)), tran-
scriptomes (RNA sequencing (RNA-seq)) and epigenomes
(chromatin immunoprecipitation sequencing (ChIP-seq))
are becoming standard components of immune profiling.
Each new technique has required the development of spe-
cialized computational methods to analyze these complex
datasets and produce biologically interpretable results.
More recently, HTS has been applied to study the di-
versity of B cells [1], each of which expresses a practic-
ally unique B-cell immunoglobulin receptor (BCR).
These BCR repertoire sequencing (Rep-seq) studies
have important basic science and clinical relevance [2]. In
addition to probing the fundamental processes underlying
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the immune system in healthy individuals [3–6], Rep-
seq has the potential to reveal the mechanisms under-
lying autoimmune diseases [7–13], allergy [14–16],
cancer [17–19] and aging [20–23]. Rep-seq may also
shed new light on antibody discovery [24–27]. Al-
though Rep-seq produces important basic science and
clinical insights [27], the computational analysis pipe-
lines required to analyze these data have not yet been
standardized, and generally remain inaccessible to non-
specialists. Thus, it is timely to provide an introduction
to the major steps involved in B-cell Rep-seq analysis.
There are approximately 1010–1011 B cells in a human

adult [28]. These cells are critical components of adaptive
immunity, and directly bind to pathogens through BCRs
expressed on the cell surface. Each B cell expresses a differ-
ent BCR that allows it to recognize a particular set of mo-
lecular patterns. For example, some B cells will bind to
epitopes expressed by influenza A viruses, and others to
smallpox viruses. Individual B cells gain this specificity dur-
ing their development in the bone marrow, where they
undergo a somatic rearrangement process that com-
bines multiple germline-encoded gene segments to
produce the BCR (Fig. 1). The large number of possible
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Fig. 1 An overview of repertoire sequencing data production. The B-cell immunoglobulin receptor (BCR) is composed of two identical heavy chains (gen-
erated by recombination of V, D and J segments), and two identical light chains (generated by recombination of V and J segments). The large number of
possible V(D)J segments, combined with additional (junctional) diversity introduced by stochastic nucleotide additions/deletions at the segment junctions
(particularly in the heavy chain), lead to a theoretical diversity of >1014. Further diversity is introduced into the BCR during adaptive immune responses,
when activated B cells undergo a process of somatic hypermutation (SHM). SHM introduces point mutations into the DNA coding for the BCR at a rate of
~10−3 per base pair per division [119, 120]. B cells accumulating mutations that improve their ability to bind pathogens are preferentially expanded in a
process known as affinity maturation. The biology underlying these processes has been reviewed previously [121]. BCR repertoire sequencing (Rep-seq)
experiments can be carried out on mRNA (shown here) or genomic DNA. Sequencer image: A MiSeq from Illumina/Konrad Förstner/Wikimedia
Commons/Public Domain. 5′ RACE 5′ rapid amplification of cDNA ends, UMI unique molecular identifier, 5′ UTR 5′ untranslated region
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V(D)J segments, combined with additional (junctional)
diversity, lead to a theoretical diversity of >1014, which
is further increased during adaptive immune responses,
when activated B cells undergo a process of somatic
hypermutation (SHM). Overall, the result is that each B
cell expresses a practically unique receptor, whose se-
quence is the outcome of both germline and somatic
diversity.
This review will focus on the analysis of B-cell Rep-seq

data sets. Rep-seq studies involve large-scale sequencing
of DNA libraries, which are prepared by amplifying the
genomic DNA (gDNA) or mRNA coding for the BCR
using PCR (Fig. 1). The development of HTS technologies
and library preparation methods for Rep-seq is an area of
active research, and has been reviewed elsewhere [1, 29].
While the experimental technologies and analysis methods
are in a phase of rapid evolution, recent studies share
common analysis tasks. Many of these steps also apply to
the analysis of T-cell receptor sequencing data, and these
should be standardized and automated in the future. The
development of software toolkits, such as pRESTO/
Change-O [30, 31], take a step in this direction by provid-
ing independent modules that can be easily integrated. For
bioinformaticians and others used to dealing with different
types of HTS experimental data (such as DNA-seq and
RNA-seq data), approaching Rep-seq data requires a
change of mindset. First, BCR sequences are not encoded
directly in the genome. While parts of the BCR can be
traced back to segments encoded in the germline (that is,
the V, D and J segments), the set of segments used by each
receptor is something that needs to be inferred, as it is
coded in a highly repetitive region of the genome and
currently cannot be sequenced directly. Furthermore,
these segments can be significantly modified during
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the rearrangement process and through SHM, which
leads to >5 % of bases being mutated in many B-cell
subsets. Thus, there are no pre-existing full-length
templates to align the sequencing reads.
This review aims to provide step-by-step guidance to

fundamental aspects of B-cell Rep-seq analysis. The ana-
lysis is divided into three stages: pre-processing of se-
quencing data, inference of B-cell population structure,
and detailed repertoire analysis (Fig. 2).

Pre-processing
The goal of the pre-processing stage is to transform the
raw reads that are produced by HTS into error-corrected
BCR sequences. As discussed below, factors such as se-
quencing depth, read length, paired-end versus single-end
reads, and inclusion of unique molecular identifiers
(UMIs; sometimes referred to as UIDs) affect the analysis
steps that need to be taken. Pipelines will need to be run
many times to determine the proper parameters and data
flow. Therefore, if the data are very large (several million
reads per sample are common), it is advisable to sample a
random subset (say 10,000 reads) and carry out the steps
below to make sure quality is reasonable and the read
conforms to the experimental design. Once the analysis
steps are integrated, and the parameters are fixed, the pre-
processing pipeline can be run on the full data set. It is
Fig. 2 The essential steps in repertoire sequencing analysis. Repertoire seque
inference of B-cell population structure; and detailed repertoire analysis. P
error-corrected B-cell immunoglobulin receptor (BCR) sequences, which a
dynamic population structure of the BCR repertoire is inferred. Finally, quantita
SHM somatic hypermutation
useful to keep track of how many sequences pass each
step successfully so that outliers can be detected. The out-
liers may reflect steps for which the parameters need
further tuning or may indicate issues related to the experi-
ments. We split the pre-processing stage into three steps:
quality control and read annotation; UMIs; and assembly
of paired-end reads.

Quality control and read annotation
The typical starting point for pre-processing is a set of
FASTQ (or FASTA) files [32], and the tools used in this
stage of the analysis often utilize this file format.
Throughout processing, sequence-level annotations will
be accumulated (for example, average quality, primers
used, UMIs, and so on). These annotations can be stored
in a database and linked to the reads within the FASTQ
files through a lookup table. An alternative is to propa-
gate the accumulated annotations within the read
headers, thus maintaining all the data together in the
FASTQ format [30]. If samples are multiplexed, the se-
quencing facility will normally de-multiplex the data into
one FASTQ file for each sample. If the data are paired-
end, each sample will produce two FASTQ files (one for
each read-end). If the data have not been de-multiplexed
by the sequencing facility, the first step in the analysis is
to identify the sample identification tags (often referred
ncing (Rep-seq) analysis can be divided into three stages: pre-processing;
re-processing transforms the next-generation sequencing reads into
re then aligned to identify the V(D)J germline genes. Next, the
tive features of the B-cell repertoire are calculated. MID multiplex identifier,
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to as multiplex identifiers (MIDs) or sample identifiers
(SIDs)) to determine which reads belong to which sam-
ples. These MID tags typically consist of a short number
of base pairs (commonly 6–16) that are located near the
end(s) of the amplicon. If multiple MIDs are designed to
be in each sequence, these should be checked for
consistency in order to reduce the probability of misclassi-
fication of reads due to PCR and sequencing errors [33].
Individual reads differ in quality, which is measured at

the base level using Phred-like scores [34]. Read quality
metrics can be computed and visualized with software
such as FastQC [35]. It is important to remember that
the quality estimates output by the sequencer do not ac-
count for errors introduced at the reverse transcription
and PCR amplification steps. It is desirable to have a
Phred-like score >30 for a long stretch at the beginning
of each read. Quality will typically drop near the end of
each read [36]. If the library is designed to have a lot of
overlap in the paired reads, then low-quality positions at
the ends of the reads can be cut at this stage to allow
better assembly of the paired reads. Some reads will have
overall low quality, and sequences with low average
quality (for example, less than a threshold of ~20)
should be removed. A Phred-like score of 20 means 1
error per 100 base pairs (p = 10−Q/10), where p is the
probability of an erroneous base call and Q is the Phred-
like score associated with this base). The appropriate
quality thresholds to employ are dataset dependent, and
insight may be gained by plotting the distribution of
quality scores as a function of position in the sequence.
Although more stringent quality cutoffs will lower the
number of sequences, it is crucial to keep quality high in
Rep-seq data since BCR sequences can differ from one
another by single nucleotides.
After handling low-quality reads and bases, reads can

be analyzed to identify, annotate, and mask the primers
used. The location of the primer sequences depends on
the library preparation protocol. A typical setup includes
a collection of V segment primers at the 5′ end and a
set of J (or constant region) primers at the 3′ end of the
amplicon (Fig. 2). In library preparation protocols in
which 5′ rapid amplification of cDNA ends (5′ RACE) is
used, there will not be a V segment primer [37, 38].
Primers are identified by scoring the alignment of each
potential primer to the read and choosing the best
match. In this step, it is crucial to know where on the
read (and on which read of a pair) each primer is located.
Even when primers are expected to be at a particular loca-
tion in the read, they may be off by a few bases due to in-
sertions and deletions (indels). If searching for primers
within a range of locations, plotting a histogram of the
identified locations is recommended to make sure this
conforms to experimental design. Reads produced by se-
quencing may be in unknown orientations, depending on
the experimental protocol. In this case, primers may ap-
pear in a forward or reverse orientation (and on either
read for a paired-end setup). In cases where the primer is
found in the reverse complement orientation, it is a good
idea to reverse complement the sequence so that all reads
are in the same orientation for the remaining analysis
steps.
Primers are typically associated with some informa-

tion, which should be used to annotate the reads. For ex-
ample, each constant region primer may be associated
with a specific isotype (immunoglobulin (Ig)M, IgG, and
so on). The part of the sequence that matches the pri-
mer should then be cut or masked (bases changed to N).
This is because the region bound by the primer may not
accurately reflect the state of the mRNA/DNA molecule
being amplified. For example, a primer designed to match
a germline V segment sequence may bind to sequences
with somatic mutations, thus leading to inaccuracy in mu-
tation identification in downstream analysis. Reads for
which primers cannot be identified (or do not appear in
the expected locations) should be discarded. When deal-
ing with paired-end data, annotations need to be kept in
sync between the read pairs. If discarding one read of a
pair, it may be necessary to also discard the other read of
the pair (if later steps of the analysis depend on having
both ends). Several tools for this step include PANDAseq
[39], PEAR [40], pRESTO [30], and USEARCH [41] (for a
broader list and comparison of features see [30]).

Unique molecular identifiers
UMIs are highly diverse nucleotide tags appended to the
mRNA, usually at the reverse transcription step [42].
UMIs are usually located at a specific position(s) in a
read (for example, a 12 base pair (bp) UMI at one end of
the read or split as two 6 bp identifiers at opposite ends
of the amplicon). The length of the UMI depends on
protocol, but is typically around 15 bases [12, 42, 43].
The random nature of the UMI enables each sequence
to be associated with a single mRNA molecule. They are
designed to reduce PCR amplification biases and sequen-
cing error rates through the generation of consensus se-
quences from all amplicons with the same UMI.
UMI information is first identified in each read, and

then it is removed from the read and the read is anno-
tated with the UMI sequence. Next, it should be checked
that the UMIs conform to the experimental protocol by
plotting the distribution of bases at each position in the
UMI and the distribution of reads per UMI to make sure
that there are no unexpected biases. It is possible for an
mRNA molecule to end up with multiple UMIs owing
to the accumulation of PCR and sequencing errors in
the UMI. Important factors here include UMI length
(the longer it is, the higher the potential for errors, while
shorter UMIs reduce diversity), and the number of PCR
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cycles (more cycles increase the potential for errors).
Thus, sequences with “similar” UMIs should be clus-
tered together. To get a sense of the extent to which
UMI errors affect the analysis for particular data sets,
“distance-to-nearest” plots [18] can be made for the
UMI. If two peaks are observed, the first peak is inter-
preted as the distance between UMIs originating from
the same molecule, while the second peak reflects the
distance between UMIs that originated from distinct
molecules. Clustering approaches can be used for recog-
nizing UMIs that are expected to correspond to the
same pre-amplified mRNA molecule (for example, single
linkage hierarchical clustering). However, it is possible
that each of these UMI clusters corresponds to multiple
mRNA molecules. This may be due to incorrect mer-
ging, insufficient UMI diversity (that is, UMI sequences
that are too short, or bad quality such as GC content
biases), or bad luck [44]. Thus, when merging multiple
UMIs into a single cluster, checking that the rest of the
sequence is also similar is recommended. The sequences
within the cluster would be expected to differ only due
to PCR and sequencing errors. A second clustering step
should be carried out on UMI clusters with high diver-
sity, to further partition the sequences based on the
non-UMI part of the reads.
Once the reads are partitioned into clusters, each corre-

sponding to a single mRNA molecule, the next step is to
build a consensus sequence from each cluster of reads.
The consensus sequence utilizes information from all
reads in the cluster and thus improves the reliability of the
base calls. This can take into account the per-base quality
scores, which can be propagated to the consensus se-
quence. Maintaining the quality scores and the number of
reads can help in filtering steps later in the analysis.
Overall, each UMI cluster results in a single consensus
sequence (or two in paired-end setups). Available tools for
this step include MiGEC [45] and pRESTO [30].

Assembly of paired-end reads
The length of the PCR amplicons being sequenced in a
Rep-seq experiment varies considerably because the
BCR sequences use different V, D and/or J segments,
which can vary in length. Nucleotide addition and dele-
tion at the junction regions further alters the sequence
length distribution. For examples of length distributions
see [46]. Also, sequence lengths depend on where the
primers are located, and can differ for each primer (for
example, isotype primers may be at different locations
relative to the V(D)J sequence). In most cases, experi-
ments using paired-end sequencing are designed so that
the two reads are expected to overlap each other. The
actual extent of overlap depends on the BCR sequence
and read length. Assembly of the two reads into a single
BCR sequence can be done de novo by scoring different
possible overlaps and choosing the most significant.
Discarding reads that fail to assemble may bias the data
towards shorter BCR sequences, which will have a longer
overlapping region. When the overlap region is expected
to be in the V segment, it is also possible to determine the
relative positions of the reads by aligning them to the
same germline V segment. This is especially useful when
not all read pairs are expected to overlap, and Ns can be
added between the reads to indicate positions that have
not been sequenced. Several tools can be used to assemble
paired-end reads [30, 39, 40]. As quality control, it is a
good idea to analyze the distribution of overlap lengths to
identify outliers. Since each read of a pair may be asso-
ciated with different annotations (for example, which
primers were identified), it is critical to merge these an-
notations so that they are all associated with the single
assembled read. Similar to the case described earlier in
which reads with the same UMI were merged, the base
quality in the overlap region can be recomputed and
propagated. At this point, another quality filtering step
can be undertaken. This could include removing se-
quences with a low average quality, removing sequences
with too many low-quality individual bases, or masking
low-quality positions with Ns. For efficiency of the next
steps, it is also useful to identify sequences that are
identical at the nucleotide level, referred to as “dupli-
cate” sequences, and group them to create a set of
“unique” sequences. Identifying duplicate sequences is
non-trivial when degenerate nucleotide symbols are
present, since there may be multiple possible groupings
(consider AN, AT and NT) or the consensus may create
a sequence that does not exist (consider AN and NT).
When grouping duplicate sequences, it is important to
propagate annotations, and keep track of how much
support there is for each unique sequence in the under-
lying data. To improve quality, each unique mRNA
should be supported by a minimum level of evidence.
One approach is to require a minimum number for the
raw reads that were used to construct the sequence (for
example, two). A more stringent approach could also
require a minimum number of independent mRNA
molecules (for example, two UMIs). This could help to
control for errors at the reverse transcription step [45],
at the expense of sequences with low BCR expression.

V(D)J germline segment assignment
In order to identify somatic mutations, it is necessary
to infer the germline (pre-mutation) state for each ob-
served sequence. This involves identifying the V(D)J
segments that were rearranged to generate the BCR
and determining the boundaries between each segment.
Most commonly this is done by applying an algorithm
to choose among a set of potential germline segments
from a database of known segment alleles. Since the
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observed BCR sequences may be mutated, the identifica-
tion is valid only in a statistical sense. As such, multiple
potential germline segment combinations may be equally
likely. In these cases, many tools for V(D)J assignment re-
port multiple possible segments for each BCR sequence.
In practice, it is common to use one of the matching seg-
ments and ignore the rest. This has the potential to intro-
duce artificial mutations at positions where the possible
segments differ from each other. Genotyping and clonal
grouping, which are described below, can help reduce the
number of sequences that have multiple segment assign-
ments. For sequences that continue to have multiple pos-
sible germline segments, the positions that differ among
these germline segments should be ignored when identify-
ing somatic mutations, for example, by masking the differ-
ing position(s) in the germline with Ns.
There have been many approaches developed for

V(D)J assignment [47–52]. Important features that dis-
tinguish these tools include web-based versus stand-
alone versions, allowing the use of an arbitrary germline
segment database, computing time, the quality of D
segment calls, allowing multiple D segments in a single
rearrangement, allowing inverted or no D segments, and
the availability of source code. This is an active field of
research, with each tool having particular strengths and
weaknesses depending on the evaluation criteria and as-
sumptions about the underlying data. Methods continue
to be developed, and contests have even been run to in-
spire the development of improved methods [53]. In
general, V and J assignments are much more reliable
than D segment assignments, as the D regions in BCR
sequences are typically much shorter and highly altered
during the rearrangement process.
The performance of V(D)J assignment methods crucially

depends on the set of germline V(D)J segments. If the seg-
ment allele used by a BCR does not appear in the data-
base, then the polymorphic position(s) will be identified as
somatic mutation(s). The most widely used database is
IMGT [47], and requires significant evidence to include
alleles, while other databases such as UNSWIg have been
developed to include alleles with less stringent criteria
[54]. However, it is clear from recent studies that the
number of alleles in the human population is much lar-
ger than the number covered by any of these databases
[55–57]. Identification of germline segments for other
species is an active area of study [58–61], and these too
are likely to expand over time. Thus, an important step
in the analysis is to try and identify novel alleles directly
from the data being analyzed using tools such as TIg-
GER [57]. Determining haplotypes [62] can further im-
prove V(D)J assignment by restricting the allowed V–J
pairings. Determining the genotype of an individual can
significantly improve the V(D)J assignment quality. Ge-
notypes can be inferred either by studying sequences
with low mutation frequencies or from sorted naive
cells [5, 57]. In the future, it may be possible to obtain
the set of germline alleles for an individual directly
from DNA sequencing of non-B cells. Currently this is
not possible as the region of the genome encoding
these segments is highly repetitive and aligning short
reads to it is challenging. However, as read lengths in-
crease and alignment algorithms are further developed
this is expected to be feasible in the near or intermedi-
ate future.
Once the V(D)J germline segments have been assigned,

indels in the BCR sequence can be identified within
these segments. Several methods assume that any identi-
fied indels in the V/J segments are the result of sequen-
cing error, and will “correct” them (for example, by
introducing a gap for deletions or removing insertions).
Indels can occur during affinity maturation [63], al-
though the frequency of occurrence is not yet clear, and
these can be lost with many computational pipelines.
Having determined the germline state, it is common

to partition the sequences into functional and non-
functional groups. Non-functional sequences are de-
fined by characteristics including: having a frameshift
between the V and J segments; containing a stop codon;
or containing a mutation in one of the invariant posi-
tions. These non-functional sequences may represent
real sequences that were non-productively rearranged
or acquired the modification in the course of affinity
maturation. However, many are likely the result of ex-
perimental errors, especially when the data are derived
from sequencing platforms that are prone to introdu-
cing indels at high rates in photopolymer tracts. It is
common to discard non-functional sequences from the
analysis. If it is desired to analyze non-productively
rearranged sequences, it is important to focus on the
subset of non-functional sequences that are most likely
to have been produced during the rearrangement
process (for example, those having frameshifts in the
junction areas separating the V–D and D–J segments
identified as N-additions or P-additions [64]).

Population structure
Clonal expansion and affinity maturation characterize the
adaptive B-cell response. The goal of this stage is to infer
the dynamic population structure that results from these
processes. Available tools for inferring population struc-
ture include Change-O [31], IgTree [65], and MiXCR [66].
In this section we split the population structure inference
stage into two steps: clonal grouping and B-cell lineage
trees.

Clonal grouping
Clonal grouping (sometimes referred to as clonotyping)
involves clustering the set of BCR sequences into B-cell
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clones, which are defined as a group of cells that are des-
cended from a common ancestor. Unlike the case for T
cells, members of a B-cell clone do not carry identical
V(D)J sequences, but differ because of SHM. Thus,
defining clones based on BCR sequence data is a difficult
problem [67, 68]. Methods from machine learning and
statistics have been adapted to this problem. Clonal
grouping is generally restricted to heavy chain sequences,
as the diversity of light chains is not sufficient to distin-
guish clones with reasonable certainty. As newer experi-
mental protocols allow the determination of paired heavy
and light chains [69, 70], these can both be combined.
The most basic method for identifying clonal groups in-

volves two steps. First, sequences that have the same V
and J segment calls, and junctions of the same length, are
grouped. Second, the sequences within each group are
clustered according to a sequence-based distance meas-
ure. Most commonly, the distance measure is focused on
the junction region, and is defined by nucleotide similarity.
When calculating this “hamming distance”, it is important
to account for degenerate symbols (for example, Ns). Al-
though it is common to look for clonal variants only
among sequences that have junction regions of the same
length, it is possible that SHM can introduce indels during
the affinity maturation process [63]. Clonal groups should
be defined using nucleotide sequences, and not amino
acids, since the rearrangement process and SHM operate
at the nucleotide level. Moreover, convergent evolution
can produce independent clonal variants with similar
amino acid sequences [71, 72]. Other distance measures
have been proposed that take into account the intrinsic
biases of SHM [31]. The idea behind these methods is that
sequences that differ at an SHM hotspot position are
more similar than those that are separated by a coldspot
mutation. Given a distance measure, clustering can be
done with standard approaches, such as hierarchical clus-
tering using single, average or complete linkage. Each of
these methods require a distance cutoff. This is commonly
determined through inspection of a “distance-to-nearest”
plot [18]. An alternative to the clustering approach is to
construct a lineage tree (see below), and cut the tree to
create sub-trees, each of which corresponds to a clonal
group [73]. Maximum likelihood approaches have also
been used [63, 74]. So far, there have not been rigorous
comparisons of these methods. Once the clonal groups
have been determined, these can be used to improve the
initial V(D)J allele assignments, as all the sequences in a
clone arise from the same germline state [75]. In principle,
clustering sequences into clones can also be done before
or in parallel with V(D)J assignments [76].
It is important to consider the set of sequences on

which clonal grouping is carried out. For example, if cells
are collected from multiple tissues or different sorted B-
cell subsets, these can be merged together before analysis
to identify clonal groups that span multiple compart-
ments. Sometimes reference sequences are also available
(for example, antigen-specific sequences from other sam-
ples of the same subject [15, 77] or from the literature
[72]), and these may also be added to the set of sequences.
As the clonal groups can change depending on the full set
of data, it is important to be consistent in the choice of
data being used for the analysis. Clonal grouping could
also be impacted by experimental factors such as sampling
and sequencing depth. Two members of a clone that differ
significantly may only be recognized as such if intermedi-
ate members — that share mutations with both — are se-
quenced. By definition, clones cannot span different
individuals. Thus, looking at the frequency of clones that
are shared across individuals can provide a measure of
specificity for the clonal grouping method. Although so-
called “public” junction sequences have been observed,
these tend to be rare (at least in heavy chains) [18].

B-cell lineage trees
B-cell lineage trees are constructed from the set of se-
quences comprising each clone to infer the ancestral re-
lationships among individual cells. The most frequently
applied methods are maximum parsimony and max-
imum likelihood, which were originally developed in
evolutionary biology [78]. Briefly, maximum parsimony
attempts to minimize the number of independent muta-
tion events, while maximum likelihood attempts to build
the most likely tree given a specific nucleotide substitution
matrix. These methods were developed using several as-
sumptions, such as long timescales and independent evo-
lution of each nucleotide, which do not hold for B-cell
affinity maturation. Significant work remains to be done
in order to validate and adapt these methods to B-cell
Rep-seq analysis. Nevertheless, the existing approaches
still form the basis for current Rep-seq studies. Many tools
exist in evolutionary biology for phylogenetic tree con-
struction [79–81]. The output of these tools is usually
modified in B-cell trees to reflect common conventions in
immunology, such as allowing observed sequences to ap-
pear as internal nodes in the tree and listing the specific
nucleotide exchanges associated with each edge. Insights
can be obtained by overlaying other sequence-specific in-
formation on the tree, including mutation frequencies
[82], selection strengths [83], number of mRNAs observed
[12], isotype [13, 14], or tissue location [9, 12, 77]. Lineage
trees provide information on the temporal ordering of
mutations, and this information can be used along with
selection analysis methods to study temporal aspects of
affinity maturation [73, 84, 85]. Quantitative analysis of
lineage tree topologies has also been used to gain insights
into the underlying population dynamics [86] and cell traf-
ficking patterns between tissues [12, 13, 87]. In most
current pipelines, grouping the sequences into clones and
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constructing lineage trees are separate steps. However,
they are highly related and future methods may integrate
these two steps.

Repertoire analysis
The goal of this stage is to calculate quantitative features
of the B-cell repertoire that can further be utilized for dif-
ferent aims such as: classification of data from different
cohorts; isolating specific BCR populations for further
study (for example, drug candidates); and identifying
active and conserved residues of these specific BCR
sequences. Effective visualizations are crucial to simplify
these high-dimensional data, and Rep-seq analysis methods
are associated with different types of plots that highlight
specific features of these data (Fig. 3).

Diversity
Estimating repertoire diversity, and linking changes in
diversity with clinical status and outcomes is an active
area of research [88, 89]. Multiple diversity measures
have been studied intensively in the field of ecology, and
many of the attempts that have been made so far to
characterize diversity in immune repertoires have used
these concepts and methods. In ecological terms, an in-
dividual animal is the analogue of a B cell while a species
is the analogue of a clone. All diversity analyses begin
from a table of clonal group sizes. Traditionally, the
three main diversity measures are species richness, the
Shannon entropy, and the Gini–Simpson index. Each re-
flects different aspects of diversity and has biases when
applied to particular underlying populations in terms of
size and abundance distribution. When two populations
(repertoires in our case) are being compared, it can be
the case that one diversity measure shows a certain
trend while the other shows the opposite since they rep-
resent different aspects of the underlying abundance dis-
tributions [89]. Moreover, these measures are dependent
on the number of sampled B cells. Thus, sampling issues
need to be addressed before diversity measures are com-
pared. One strategy is to subsample the larger repertoire
to the size of the smaller one and compare the two [12].
Another approach is to interpolate the diversity measure
for smaller sampling sizes and then to extrapolate from
these subsamples the asymptotic values of each of the
samples and compare them [90]. It is important to note
that when a repertoire is subsampled, the partitioning of
sequences into clones needs to be redone on each sub-
sampled population as clone definitions are influenced
by sampling depth. In order to capture more informa-
tion about the full clone size distribution, use of the Hill
family of diversity indices has been advocated [91, 92].
The Hill indices are a generalization of the three measures
mentioned above, and define diversity as a function of a
continuous parameter q. q = 0 corresponds to clonal
richness (number of clones), q = 1 is the exponential of
the Shannon index, q = 2 is the reciprocal of the original
Simpson index or one minus the Gini–Simpson index,
and as q approaches infinity, the corresponding Hill index
approaches the reciprocal of the largest clone frequency.
Subsampling approaches can also be applied to the full
Hill curve [90], resulting in a powerful set of repertoire
features that can be used to characterize cells from differ-
ent subsets, tissues, or disease states [89].
In the above discussion, clonal abundances were defined

by the number of B cells in each clone. However, this is
usually not measured directly. The mRNAs being se-
quenced are commonly pooled from many individual cells.
Thus, observing multiple occurrences of the same se-
quence could be caused by PCR amplification of a single
mRNA molecule, sampling multiple molecules from the
same cell, or multiple cells expressing the same receptor.
One strategy to estimate diversity is to group identical se-
quences together and analyze the set of unique sequences
(these groups can be defined to include sequences that are
similar as well to account for possible sequencing errors
[33]). If each unique sequence corresponds to at least one
independent cell, this provides a lower bound on diversity
and other repertoire properties. Including UMIs in the ex-
perimental method helps to improve the diversity estima-
tion by correcting for PCR amplification. However, some
bias may be introduced because different cell subsets can
express widely varying levels of BCR gene mRNAs, with
antibody-secreting cells being especially high [93]. Se-
quencing from multiple aliquots of the same sample can
be used to estimate the frequency of cells expressing the
same receptor [94]. Emerging single-cell technologies will
eventually provide a direct link between sequences and
cells [70, 95], and may also provide insight into the contri-
bution of transcription errors, estimated to be ~10−4 [96],
to the observed mRNA diversity.

Somatic hypermutation
During adaptive immune responses, B cells undergo a
process of SHM. Thus, even cells that are part of the
same clone can express different receptors, which differs
from T cells, in which all clonal members share the same
receptor sequence. A crucial step in B-cell Rep-seq ana-
lysis is therefore to identify these somatic mutations.
Having identified the germline state of the sequence
using the methods described above, somatic mutations
are called when the observed sequence and the inferred
germline state differ. In carrying out this comparison, it
is important to properly account for degenerate nucleo-
tide symbols (that is, a “mismatch” with an N should not
be counted as a mutation). It is common to calculate
mutation frequencies for the V segment (up to the start
of the junction) since the inferred germline state of the
junction is less reliable. Mutations in the J segment (after



Fig. 3 Example outcomes of repertoire sequencing analysis. a A violin plot comparing the distribution of somatic mutation frequencies (across B-cell
immunoglobulin receptor (BCR) sequences) between two repertoires. b The observed mutation frequency at each position in the BCR sequence, with
the complementarity determining regions (CDRs) indicated by shaded areas. c Comparing the diversity of two repertoires by plotting Hill curves using
Change-O [31]. d A “hedgehog” plot of estimated mutabilities for DNA motifs centered on the base cytosine (C), with coloring used to indicate
traditional hot- and coldspots. e A lineage tree with superimposed selection strength estimates calculated using BASELINe [110]. f Pie chart depicting
V segment usage for a single repertoire. g Comparison of selection strengths in two repertoires by plotting the full probability density function for the
estimate of selection strength (calculated using BASELINe) for the CDR (top) and framework region (FWR; bottom). h Stream plot showing how clones
expand and contract over time. i V segment genotype table for seven individuals determined using TIgGER [57]
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the end of the junction) may also be included in the ana-
lysis. Somatic mutation frequencies are expressed in per
bp units, so it is important to calculate the number of
bases included in the analysis, and not use a per sequence
average, in which the number of bases in each sequence
may differ (for example, due to different primers, different
V segment lengths, or the number of low-quality bases
that were masked).
SHM does not target all positions in the BCR equally.

There is a preference to mutate particular DNA motifs
(hotspots) and not others (coldspots). WRCY is a classic
hotspot motif, while SYC is a well-known coldspot motif
[97]. However, there is a wide range of mutabilities that
depends on the local nucleotide context of each position
[98, 99]. Mutability models can be estimated directly
from Rep-seq data [99, 100], using tools such as Change-
O [31]. These models have a number of uses as differences
in mutation patterns may be linked to the various en-
zymes involved in SHM [101]. Mutability models also pro-
vide critical background models for the statistical analysis
of selection, as described below. Methods to estimate mut-
ability need to account for biases in the observed muta-
tion patterns due to positive and/or negative selection
pressures. Strategies include focusing on the set of non-
functional sequences, using intronic sequences, or bas-
ing models on the set of silent (synonymous) mutations
[99, 102, 103].
The frequency of somatic mutations is not uniform

across the BCR. The V(D)J region of the BCR can be parti-
tioned into framework regions (FWRs) and complementar-
ity determining regions (CDRs) [104]. FWRs typically have
a lower observed mutation frequency, in part because they
code for regions important to maintain structural integrity,
and many mutations that alter the amino acid sequence
are negatively selected [105]. CDRs have higher observed
mutation frequencies, in part because they contain more
hotspot motifs and their structure is less constrained. Mut-
ability models can be used to estimate the expected fre-
quency of mutations in different regions of the V(D)J
sequence. Deviations from the expectation provide useful
biological information. It is common to look for an in-
creased frequency of replacement (non-synonymous) mu-
tations as evidence of antigen-driven positive selection, and
a decreased frequency of replacement mutations as evi-
dence of negative selection [106]. Selection analysis has
many applications, including the identification of poten-
tially high-affinity sequences, understanding how different
genetic manipulations impact affinity maturation, and in-
vestigating whether disease processes are antigen driven.
Methods to detect selection based on the analysis of clonal
lineage trees have also been proposed [107], as well as
hybrid methods [108]. Enrichment for mutations at
specific positions can also be done by comparing the
observed frequency with an empirical background
distribution from a set of control sequences [72, 100, 109].
When comparing selection across biological conditions, it
is important to remember that lower P values do not ne-
cessarily imply stronger selection, and methods such as
BASELINe [110], which quantifies the strength of selec-
tion (rather than simply detecting its presence), should be
employed. BASELINe defines selection strength as the
log-odds ratio between the expected and observed fre-
quencies of non-synonymous mutations, and estimates a
full probability density for the strength using a Bayesian
statistical framework. When discussing “selection”, it is
important to distinguish between different types of selec-
tion that can occur during different phases of B-cell mat-
uration. SHM and affinity maturation are processes that
operate on mature B cells during adaptive immune re-
sponses. During development, immature B cells progress
through several stages and are subject to central and
peripheral checkpoints that select against autoreactive
cells, leading to biased receptor properties (for example,
changes in V segment usage, or the average length of the
CDR3 region) [46]. Probabilistic frameworks have been
developed to model these properties, allowing them to be
compared at various stages of development to determine
which properties are influenced by this selection [100].

Stereotypic sequences and convergent evolution
B cells responding to common antigens may express BCRs
with shared characteristics. These are referred to as ste-
reotyped BCRs, and their identification is of significant
interest [111]. Stereotypic receptors can reflect germline
characteristics (for example, the use of common V, D or J
segments), or arise through convergent evolution, in
which the accumulation of somatic mutations results in
common amino acid sequences. These common patterns
may serve as diagnostic markers [112]. Stereotyped recep-
tors have been observed in infections, autoimmunity and
cancer [111].
Stereotyped sequences are commonly defined by having

similar junctions. One way to observe them is to pool the
data from several individuals together before carrying out
the clonal grouping step. In this case, the distance func-
tion used for clonal grouping can be based on the amino
acid sequence, rather than the nucleotide sequence (but
note that these results no longer represent true clones).
Sets of sequences that span multiple individuals can then
be identified and extracted for more focused study. Al-
though they exist, the percentage of such sequences is
usually low. Significant overlap across individuals is most
often the result of experimental problems, such as sample
contamination or MID errors in multiplexed sequencing
runs. Identification of shared amino acid motifs across the
entire BCR sequence can be carried out using widely
used motif finding tools [113]. In these analyses, the
choice of a control sequence set is critical and should
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account for germline segment usage and SHM. When
looking for sequences with common features across in-
dividuals (or time points), it is important to consider
statistical power. If the relevant sequences constitute a
small percentage of the repertoire, then the ability to
detect such sequences will depend on many experimen-
tal factors, including the number and type of cells sam-
pled, the sequencing depth, and cohort heterogeneity.
Statistical frameworks for power analysis in Rep-seq
studies are lacking, and are an important area for future
work.
Conclusions
Like the experimental technologies used to generate
HTS data, the development of Rep-seq analysis methods
is a fast-moving field. While computational methods
have been developed to address important questions,
many of the proposed tools have yet to be rigorously
evaluated. Comparative studies, conducted on reference
experimental and simulated data, are critical to have a
quantitative basis for selecting the best methods to use
in each step of the analysis. This will be facilitated by
making the source code available for Rep-seq analysis
tools, and not only providing web-based interfaces or
services. Ideally, the source code should be posted in a
public version control repository (such as bitbucket,
github, Google source, or others) where bugs and com-
ments can be reported. The community will also be
aided by an active platform for informal discussions and
evaluation of existing and new tools for Rep-seq analysis.
The OMICtools directory [114] provides a promising
step in this direction, and includes a dedicated Rep-seq
section where a large list of current software tools can
be found.
A challenge in developing computational pipelines using

the kinds of methods described here is that each tool may
require its own input format. Considerable effort is neces-
sary to reformat data. For example, different V(D)J assign-
ment tools can output the “junction sequence” but use
different region definitions or numbering schemes. Ontol-
ogies can provide a formal framework for standardization
of data elements, and a source of controlled vocabularies
[115]. A common data format for sequences and results
can facilitate data sharing, as well as integration of
methods and tools from multiple research groups. Many
tools use tab-delimited files for data and analysis results,
and XML-based schemes have also been proposed [116].
Standardizing the terms used in column headers, or the
XML tags, would greatly enhance interoperability. Some
integrated frameworks are emerging, such as pRESTO/
Change-O [30, 31], to provide standardized analysis
methods in modular formats so that analysis pipelines can
be rapidly developed and easily customized.
Many of the steps in Rep-seq analysis are computation-
ally intensive, making them difficult to carry out on stand-
ard desktop computers. High-performance computing
clusters, cloud-based services, as well as graphics process-
ing unit (GPU)-enabled methods can help relieve this
bottleneck. These approaches require programming ex-
pertise, or specifically designed tools. Some tools, such as
IMGT/HighV-QUEST [47] or VDJServer [117], offer web-
based front ends for some analysis steps, in which users
can submit data to be analyzed on dedicated servers. For
human studies, ethical issues with regards to patient confi-
dentiality (for example, US Health Insurance Portability
and Accountability Act (HIPAA) privacy restrictions) and
governance over the use of sample-derived data need to
be considered before uploading data onto public servers.
These considerations are also important when the data
are submitted to public repositories. Many current Rep-
seq studies are made available through SRA or dbGAP
[118], and only the latter has access control.
Novel computational methods continue to be devel-

oped to address each new improvement in sequencing
technologies. Emerging techniques for high-throughput
single-cell analysis (allowing for heavy and light chain
pairing) will soon be adapted to sequence multiple
genes along with the BCR, and eventually the full genome.
This technological progress offers new opportunities for
biological and clinical insights, and the computational
methods discussed here will continue to evolve in this on-
going effort.
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