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Abstract

Background: Hemophagocytic lymphohistiocytosis (HLH) is a rapid-onset, potentially fatal hyperinflammatory
syndrome. A prompt molecular diagnosis is crucial for appropriate clinical management. Here, we validated and
prospectively evaluated a targeted high-throughput sequencing approach for HLH diagnostics.

Methods: A high-throughput sequencing strategy of 12 genes linked to HLH was validated in 13 patients with
previously identified HLH-associated mutations and prospectively evaluated in 58 HLH patients. Moreover, 2504
healthy individuals from the 1000 Genomes project were analyzed in silico for variants in the same genes.

Results: Analyses revealed a mutation detection sensitivity of 97.3 %, an average coverage per gene of 98.0 %, and
adequate coverage over 98.6 % of sites previously reported as mutated in these genes. In the prospective cohort,
we achieved a diagnosis in 22 out of 58 patients (38 %). Genetically undiagnosed HLH patients had a later age at
onset and manifested higher frequencies of known secondary HLH triggers. Rare, putatively pathogenic monoallelic
variants were identified in nine patients. However, such monoallelic variants were not enriched compared with
healthy individuals.

Conclusions: We have established a comprehensive high-throughput platform for genetic screening of patients
with HLH. Almost all cases with reduced natural killer cell function received a diagnosis, but the majority of the
prospective cases remain genetically unexplained, highlighting genetic heterogeneity and environmental impact
within HLH. Moreover, in silico analyses of the genetic variation affecting HLH-related genes in the general
population suggest caution with respect to interpreting causality between monoallelic mutations and HLH. A
complete understanding of the genetic susceptibility to HLH thus requires further in-depth investigations, including
genome sequencing and detailed immunological characterization.
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Background
Hemophagocytic lymphohistiocytosis (HLH) is a severe
hyperinflammatory syndrome that presents with unre-
mitting fever, splenomegaly and cytopenia [1]. According
to the HLH-2004 protocol, HLH can be defined as ful-
fillment of at least five of eight clinical and laboratory
criteria [2]. Primary, genetic, as well as secondary forms
of HLH have been described. HLH is typically treated by
immunosuppression, followed by hematopoietic stem
cell transplantation in familial cases [1]. Current HLH
criteria poorly discriminate underlying causes of disease.
Importantly, therapies tailored to different etiologies of
HLH may improve treatment outcome [3].
Several genetic disorders predispose to HLH, but vary

in their risk of developing disease. Congenital defects af-
fecting the perforin-mediated lymphocyte cytotoxicity,
such as autosomal recessive mutations in PRF1,
UNC13D, STX11, and STXBP2, represent the most com-
mon causes of primary HLH, termed familial HLH
(FHL) type 2, 3, 4 and 5, respectively [1, 4]. The impaired
killing of infected as well as activated immune cells results
in the sustained hyperinflammatory state characteristic of
HLH, where animal models have postulated a critical role
for CD8+ T cells and interferon (IFN)-γ [5]. Patients with
autosomal recessive mutations in RAB27A and LYST,
causative of Griscelli syndrome type 2 (GS2) and Chediak-
Higashi syndrome (CHS), respectively, also frequently
develop HLH. Besides defective lymphocyte cytotoxicity,
these syndromes are associated with hypopigmentation
[6, 7]. Only one case of HLH has been reported in
Hermansky-Pudlak syndrome type 2, another
hypopigmentation syndrome specifically caused by
mutations in AP3B1 and associated with impaired
lymphocyte cytotoxicity [8]. Moreover, HLH has so far
not been reported in Hermansky-Pudlak syndrome
type 9 patients, caused by mutations in BLOC1S6 and
also reported to display impaired lymphocyte cytotox-
icity [9]. Genetic disorders displaying a more limited
impairment of lymphocyte cytotoxicity may also
present with HLH or related lymphoproliferative
diseases. Patients with hemizygous mutations in SH2D1A
or XIAP, associated with X-linked lymphoproliferative dis-
ease, typically present with HLH or lymphoproliferative
diseases, often triggered by Epstein-Barr virus (EBV) in-
fection [10]. Lymphoproliferation and severe EBV infec-
tions are also features of autosomal recessive mutations in
ITK [11] and hemizygous mutations in MAGT1 [12], with
sporadic cases of HLH [13, 14]. Episodes of HLH have
also been reported in patients harboring other primary
immunodeficiencies [3, 15–17], providing evidence for
hyperinflammatory syndromes fulfilling current HLH
criteria in an immunological context of T-cell deficiency
or absent IFN-γ signaling. HLH may also arise in the con-
text of inborn errors of metabolism and lysosomal storage

disorders, or secondary to infections, malignancies or
autoimmune disorders in individuals without any estab-
lished genetic disease susceptibility [1].
Patients with defective lymphocyte cytotoxicity usually

develop early-onset HLH with high penetrance and
require the most radical immunosuppressive therapy.
Defective natural killer (NK) cell cytotoxic activity, as
measured by the 51Cr-release assay, is included among
the HLH-2004 diagnostic criteria [2]. However, pathological
results with this assay do not necessarily reflect functional
defects in lymphocyte cytotoxicity, but can also be caused
by low NK cell numbers. Refined assays have been devel-
oped for the identification of patients with defects in
lymphocyte cytotoxicity as well as XIAP signaling [18–20].
These assays require considerable technical expertise and
rely on fresh blood samples. Therefore, improved diagnostic
procedures are required for guidance of treatment
decisions.
With current insights, patients with defective

lymphocyte cytotoxicity can also be diagnosed by DNA
sequencing. To influence the clinical management of
HLH patients, genetic diagnostics must be rapid and
accurate. Due to genetic heterogeneity, achieving a mo-
lecular diagnosis by conventional Sanger sequencing is
labor-intensive and time-consuming. Technological
advances have increased sequencing throughput, with
decreased sequencing times and costs [21]. As more
bench-top sized machines have been pushed to the
market, appealing solutions for diagnostic laboratory
settings have become available [22]. Aimed at diagnos-
ing a broad range of immune defects, high-throughput
assays have recently been reported for the simultan-
eous study of a number of primary immunodeficiency
syndromes [23–25].
Here, we report our experience in implementing a

targeted resequencing approach for identification of
HLH patients with defective lymphocyte cytotoxicity.
Moreover, we characterize the genetic variants in HLH-
related genes in the general population and discuss the
implications to interpretation of association of rare, po-
tentially damaging monoallelic variants with disease.

Methods
Patients
The study was performed using genomic DNA (gDNA)
samples from (1) 13 patients with a confirmed molecular
diagnosis in an HLH-related gene, (2) 58 patients, pro-
spectively recruited over a 12 months period, fulfilling
five or more HLH diagnostic criteria (n = 56) or with a
cytotoxicity defect suggestive of primary HLH (n = 2).
Informed consent was obtained from all study partici-
pants in accordance with the Declaration of Helsinki.
The study was approved by the Regional Ethics Review
Board in Stockholm, Sweden.
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AmpliSeq custom panel design
A targeted resequencing panel covering 12 HLH-associated
genes was designed according to Ion AmpliSeq technology
(Ion Torrent, Thermo Fisher Scientific, MA, USA; Table 1).
Using genome build hg19 as reference, the coding regions,
with 25 intronic base pairs around exons, were targeted.
For PRF1, UNC13D, STX11, and STXBP2, the evolutionar-
ily conserved non-coding regions, identified using the
software Alamut (Interactive Bio-software, Rouen, France),
were also included. Sequencing data generated by this study
has been submitted to the European Genome-phenome
Archive and is available from the authors on request.

Library preparation and sequencing
Library preparation was performed with 10 ng gDNA
using Ion AmpliSeq Library Kit 2.0 for each multiplex
PCR reaction (Ion Torrent, Thermo Fisher Scientific).
The library was thereafter ligated with sequencing adap-
tors containing barcodes (Ion Xpress Barcode Adapters
1–16 Kit, Ion Torrent, Thermo Fisher Scientific). After
purification (Agencourt AMPure XP reagent, Beckman
Coulter, Brea, CA, USA), libraries were quantified on an
Agilent 2100 Bioanalyzer (Agilent Technologies, CA, USA)
and diluted to a concentration of 100 pM. Diluted libraries
were pooled and further amplified with an emulsion PCR.
Enriched templates were loaded onto an Ion 314 or Ion 316
Chip (Ion Torrent, Thermo Fisher Scientific).

Bioinformatics analyses
Assessment of sequencing quality control, mapping,
coverage analysis and variant calling were performed
using the Ion Torrent Suite Software (versions 4.0.2 and
4.0.3, Thermo Fisher Scientific). Mapping of sequencing
reads to the genome build hg19 was performed using
TMAP software. The Ion Torrent Variant caller (version
4.2.0) was used in “Germline - low stringency” mode
with default settings. Integrative Genomics Viewer (IGV)
version 2.3.32 [26] was used for the inspection of se-
quencing reads and visual assessment of detected vari-
ants. Called variants were first annotated with Variant
Effector Predictor [27] followed by GEMINI (version
0.11.0) [28]. Further analyses were performed with R
(version 3.1.2) [29]. In silico evaluation of candidate
variants was performed by reviewing CADD [30], Poly-
Phen-2 [31] and SIFT scores [32]. NNSPLICE 0.9 was
used for predicting the effect of splice-site variants [33].

Sanger validation and sequencing of poorly covered
amplicons
All variants considered pathogenic were validated by
Sanger sequencing. Moreover, non-covered or poorly
amplified exonic regions were Sanger sequenced in
unexplained patients. Primers and PCR conditions
are available upon request. The PCR products were

Table 1 Genes included in the panel

Gene Ensembl gene ID,
transcript ID

Locus Associated disease Number of
amplicons

Coverage (%) HGMD
coverage (%)

PRF1 ENSG00000180644,
ENST00000373209

10q22.1 Familial hemophagocytic lymphohistiocytosis type 2 11 100 100

UNC13D ENSG00000092929,
ENST00000207549

17q25.1 Familial hemophagocytic lymphohistiocytosis type 3 51 98.3 99.2

STX11 ENSG00000135604,
ENST00000367568

6q24.2 Familial hemophagocytic lymphohistiocytosis type 4 28 100 100

STXBP2 ENSG00000076944,
ENST00000441779

19p13.2 Familial hemophagocytic lymphohistiocytosis type 5 25 98.5 100

SH2D1A ENSG00000183918,
ENST00000371139

Xq25 X-linked lymphoproliferative disease type 1 5 100 98.8

XIAP ENSG00000101966,
ENST00000371199

Xq25 X-linked lymphoproliferative disease type 2 13 92.2 92.9

RAB27A ENSG00000069974,
ENST00000396307

15q21.3 Griscelli syndrome type 2 10 100 100

LYST ENSG00000143669,
ENST00000389794

1q42.3 Chediak-Higashi syndrome 120 97.7 98.4

AP3B1 ENSG00000132842,
ENST00000255194

5q14.1 Hermansky-Pudlak syndrome type 2 50 94 100

BLOC1S6 ENSG00000104164,
ENST00000220531

15q21.1 Hermansky-Pudlak syndrome type 9 8 99.1 100

MAGT1 ENSG00000102158,
ENST00000358075

Xq21.1 X-linked immunodeficiency with magnesium defect,
EBV infection, and neoplasia

18 100 100

ITK ENSG00000113263,
ENST00000422843

5q33.3 Inducible T-cell kinase deficiency 22 96.7 100

HGMD Human Gene Mutation Database
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purified and sequenced on an ABI 3730 Genetic
Analyzer (Applied Biosystems, Thermo Fisher Scientific)
and analyzed with SeqScape (version 2.5; Applied
Biosystem, Thermo Fisher Scientific). Variant segrega-
tion in the family was evaluated depending on avail-
ability of parental DNA.

Analysis of mutational load in FHL genes in the 1000
Genomes dataset
Variant call format (vcf ) files including sequencing
data from 2504 individuals from the 1000 Genomes
project were analyzed with respect to genes included
in the panel (ftp://ftp-trace.ncbi.nih.gov/1000genomes/
ftp/release/20130502/, accessed January 2015). Vari-
ants were annotated using Variant Effector Predictor [27]
and GEMINI [28]. All variants deviating from Hardy-
Weinberg equilibrium (p value < 0.05) were removed.
Further analyses were performed with R (version 3.1.2).

Immunological analyses
Intracellular expression of perforin, granzymes, CD107a,
and SAP as well as cytotoxic lymphocyte exocytosis was
evaluated by flow cytometry [20]. NK cell cytotoxicity
against K562 target cells was evaluated with a standard
4-hour 51Cr-release assay using peripheral blood mono-
nuclear cells (PBMCs) [34] and the data are shown as lytic
units at 25 % specific lysis. All flow cytometry data were
acquired on a LSR Fortessa instrument (BD Biosciences,
CA, USA). Analyses were performed in Flow Jo v9.7 and
R (version 3.1.2).

Results
Coverage analysis
A custom targeted resequencing panel was designed to
cover 12 genes in which mutations have been associated
with HLH or lymphoproliferative disorders (Table 1).
The panel consisted of 355 primer pairs, with an ampli-
con size range of 125–175 bp, covering up to 97.3 % of
the desired target. Specific primers could not be de-
signed for 1125 bp, due to repetitive regions. Following
sequencing, analyses revealed that some amplicons
repeatedly failed to generate adequate coverage, as deter-
mined by a ≤10× cut-off of mean coverage across sam-
ples (Fig. 1a; Additional file 1). Excluding two amplicons
that failed in nearly all samples (mean coverage ≤10×),
the effective coverage of our initial target sequences was
estimated to be 96.6 % of the initial regions of interest,
with an average coverage per gene over exonic and
splice-site regions of 98 % (Table 1). To ensure clinical
efficacy, we calculated the proportion of previously re-
ported mutations (based on the Human Gene Mutation
database (HGMD), accessed June 2015) with adequate
coverage. Overall, 98.6 % of the mutations listed in
HGMD were covered by our design (Table 1).

Assay validation
To validate our gene panel, we sequenced gDNA from
13 patients with previously identified genetic defects
(Table 2). The patients carried a wide spectrum of muta-
tions located in different genes (Table 2). In order to
assess the reliability of the method for detection of
homozygous exonic deletions, we also included a patient
with a 298-bp homozygous exonic deletion of STXBP2.
We could identify all 18 small genetic aberrations upon
read inspection in IGV. Nonetheless, the variant calling
software detected only 17 out of 18 small genetic aberra-
tions (Table 2). The RAB27A c.148_149delinsC InDel, lo-
cated in a homopolymer nucleotide stretch, was instead
erroneously called as a synonymous variant (c.148A>C;
Fig. S1a in Additional file 2). The exonic deletion was eas-
ily detected by visual assessment of the coverage over the
amplicons (Fig. S1b in Additional file 2).
We next sought to estimate the overall sensitivity of the

variant calling strategy by assessing all exonic polymor-
phisms (n = 56) previously identified in the 13 control
samples (Additional file 3). In total, 74 variants (n = 18
mutations and n = 56 polymorphisms) were used for the
sensitivity analysis. Out of these, 72 variants were properly
called. The overall sensitivity was 97.3 % (95 % confidence
interval 90.7–99.2, Wilson score method).

Prospective cohort of HLH patients
Following validation, we sequenced a cohort of 58 pro-
spectively recruited HLH patients (Fig. 2a). The median
age at diagnosis of HLH was 3 years, ranging from a few
days to 70 years (interquartile range = 0.4–13.2 years;
Table 3). Eight patients were above 18 years of age at
diagnosis of HLH. The included patients were of differ-
ent ethnic origin, including 43 % from Turkey. Parental
consanguinity was reported in 24 cases. Interestingly, six
patients also suffered from albinism and eight patients
had a familial history of HLH or unexplained siblings’
death in childhood (Table 3). Hyperferritinemia,
splenomegaly and hypertriglyceridemia and/or hypofi-
brinogenemia were the most common findings in our
cohort. Soluble interleukin-2 receptor (sCD25) was el-
evated in all seven patients tested (Table 3).
Overall, 246 genetic variants were identified in the

prospective cohort. Filtering for variants with a possible
impact at the protein level, and with a minor allele fre-
quency <0.05 in the Exome Aggregation Consortium
dataset [35], 71 potentially pathogenic variants were
selected for further analysis (Fig. 1b). After manual cur-
ation, 19 variants (single-nucleotide variants or small
indels), either in homozygous or compound heterozy-
gous state, were classified as disease-causing (Table 4;
Additional file 4). One additional disease-causing mutation
was found upon read inspection in IGV, namely
c.148_149delinsC in RAB27A (P53). The same disease-
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causing mutation was also missed by the variant calling
program in our validation study (Table 2; Fig. S1a in
Additional file 2).
In addition to analysis of single nucleotide variants

and small indels, we performed coverage analysis to
identify larger homozygous deletions (Fig. 1a). We iden-
tified a hemizygous deletion of XIAP in P26 and a large
homozygous deletion of STX11 in P56 (Fig. S1c, d in
Additional file 2).

Molecular diagnoses
In total, we identified and validated 22 unique disease-
causing mutations located in six different genes
(Table 4), achieving a molecular diagnosis in 22 patients
(overall diagnostic rate 38 %, 22 of 58). The diagnostic
yield was higher, 65 % (13 of 20), in the group of pa-
tients with HLH presentation before one year of age
compared with 24 % (9 of 37) among the older patients
(Fig. 2b). Excluding adult cases of HLH (n = 8), the diag-
nostic rate was 44 % (22 of 50) among the pediatric
cases. Interestingly, the oldest patient with primary
HLH in this cohort, aged 16 years (P48), had compound

heterozygous variants in PRF1, c.272C>T (p.Ala91Val)
and c.1288G>T (p.Asp430Tyr). The variant p.Ala91Val
has been associated with later onset of disease when in
trans to other PRF1 mutations [36].
We identified patients with biallelic mutations in PRF1

(n = 7), UNC13D (n = 6), STX11 (n = 4), RAB27A (n = 2)
and LYST (n = 2) as well as a patient with a hemizygous
mutation in XIAP (Fig. 2b, Table 4). The mutational
spectrum was broad, including missense, nonsense, and
splicing mutations, indels, small and large deletions.
Eight of the 22 identified mutations are novel (Table 4).
Mutations were identified in five out of six patients pre-
senting with albinism and HLH. Interestingly, one such
patient with albinism (P1) was diagnosed with a homo-
zygous UNC13D splice-site mutation (c.570-1G>A). No
patients were found to have mutations in STXBP2,
SH2D1A, ITK, MAGT1, AP3B1, and BLOC1S6.
Finally, in 36 out of 58 patients, biallelic variants that

could explain the disease phenotype were not detected.
The age at diagnosis of HLH was significantly higher
compared with genetically diagnosed patients (Wilcoxon
rank sum test, p = 0.06). Moreover, 61 % (22 of 36) were
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diagnosed with a concomitant disease known to predis-
pose to secondary HLH. The most commonly associated
diseases were EBV infection (n = 10), other infections (n
= 4), and hematological cancer (n = 3). In contrast, an in-
fectious trigger was reported in only 4 of 22 (18 %) of
the genetically diagnosed patients. Thus, the group of
undiagnosed patients had a higher frequency of
known triggers of HLH (Fisher’s exact test, p = 0.002).
Of note, seven out of the eight adult HLH cases
(88 %) were associated with a known trigger of HLH,
suggesting that these may truly represent secondary
HLH cases.

Correlation between genetic and functional findings
Results from at least one NK cell or CD8+ T cell func-
tional assay were available from 33 patients, including
13 patients with a molecular diagnosis and 20 patients
without a definitive diagnosis. Substantiating the genetic
findings, immunological analyses revealed defective NK
cell cytotoxicity and virtually absent perforin expression
in the four patients with biallelic PRF1 mutations stud-
ied (Fig. 2a, c, d). Moreover, CD8+ T-cell and NK cell
exocytosis was defective in patients with mutations in
UNC13D, STX11, RAB27A, and LYST (Fig. 2a, e, f ).
Interestingly, a patient with RAB27A mutations pre-
sented with defective NK and CD8+ T cell exocytosis,
but normal NK cell cytotoxicity, while a patient with

LYST mutations displayed defective NK cell cytotoxicity
but only abnormal NK and CD8+ T-cell exocytosis
(Fig. 2a, d, e). Overall, all patients with a genetic diagno-
sis for which functional data were available displayed a
functional defect by at least one diagnostic assay.
Among the undiagnosed patients, seven patients dis-

played defective NK cell cytotoxicity (<10 LU; n = 6)
and/or exocytosis (<5 % CD107a+ NK cells following
K562 target cell incubation; n = 4). Three such cases
belonged to the adult HLH cohort (Fig. 2a). Therefore, 4
out of 15 pediatric HLH cases (26 %) for which func-
tional data were available displayed a defective NK
cell function. In a few cases, the low NK cell cytotox-
icity could reflect the low percentage of NK cells in
PBMCs (Additional file 5). Notably, none of the un-
diagnosed patients with defective exocytosis against
K562 target cells displayed concomitant defective NK
cell exocytosis following anti-CD16 stimulation or
defective CD8+CD57+ T-cell exocytosis following anti-
CD3 stimulation (Fig. 2e). This result contrasted pa-
tients with biallelic UNC13D, STX11, STXBP2, RAB27A,
or LYST mutations, which all displayed defective exocyt-
osis in response to all stimuli. A greater variability has
been noted in assays quantifying NK cell exocytosis in
response to Fc receptor engagement or CD8+CD57+

T-cell exocytosis in response to T-cell receptor en-
gagement [20]. Taken together, it is possible that

Table 2 Disease-causing mutations used in the validation phase

Gene Mutation Effect Zygosity Type Called Reference

PRF1 c.272C>T p.Ala91Val Het Missense Yes [52]

PRF1 c.797T>C p.Ile266Thr Het Missense Yes This study

UNC13D c.2135_2137del p.Ile712_Gly713delinsSer Het Deletion Yes This study

UNC13D c.2346_2349del p.Arg782Serfs*12 Het Deletion Yes [53]

UNC13D c.1388A>C p.Gln463Pro Het Missense Yes [41]

UNC13D c.118-307G>A Reduced expression Het Regulatory Yes [41]

UNC13D C.2719_2722dup p.Ser908TyrfsX3 Het Duplication Yes This study

UNC13D c.1992+1G>C Altered splicing Het Splicing Yes This study

STXBP2 exon 2 deletion - Hom Deletion Yesa This study

STXBP2 c.56T>C p.Ile19Thr Het Missense Yes This study

STXBP2 c.704G>C p.Arg235Pro Het Missense Yes This study

XIAP c.877G>A p.Gly293Ser Hemi Missense Yes This study

XIAP c.1141C>T p.Arg381* Hemi Nonsense Yes [10]

RAB27A c.148_149delinsC p.Arg50Glnfs*35 Hom Indel No [54]

RAB27A c.514_518del p.Gln172Asnfs*2 Hom Deletion Yes [6]

LYST c.2311C>T p.Gln771* Hom Nonsense Yes this study

LYST c.1902dup p.Ala635Serfs*4 Hom Duplication Yes [55]

AP3B1 c.1254dup p.Gln419Thrfs*22 Het Duplication Yes this study

AP3B1 c.2626C>T p.Arg876* Het Nonsense Yes this study
aThe STXBP2 exonic deletion was detected by inspection of coverage plots
Hemi hemizygous, Het heterozygous, Hom homozygous
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Fig. 2 Clinical, genetic and functional characteristics of the patients included in the prospective cohort. a Heatmap of clinical and functional
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A family history refers to a positive family history for HLH or unexplained siblings’ death in childhood. b The different molecular diagnoses achieved
in the prospective cohort according to age group at diagnosis of HLH. c NK cell cytotoxic activity, displayed as lytic units at 25 % specific lysis, in
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impaired K562 target cell-induced exocytosis in these
patients does not reflect mutations in proteins gener-
ally required for cytotoxic lymphocyte exocytosis.

Contribution of monoallelic mutations as cause of HLH
In patients without an established molecular diagnosis
based on biallelic or hemizygous mutations, we identi-
fied seven different monoallelic variants in nine patients
with damaging predictions by either SIFT or PolyPhen-2
(Additional file 6). These were regarded as monoallelic
variants of unknown significance. Three patients carried
the variant PRF1 c.272C>T p.Ala91Val in a heterozygous
state. One of these patients also carried an additional
rare variant with pathogenic prediction in STXBP2
(c.1034C>T, p.Thr345Met), a combination previously re-
ported in two patients with HLH [37]. The monoallelic
variants were identified among both pediatric (n = 7) and
adult (n = 2) patients. Four out of the nine patients with
monoallelic variants were reported to have a known trig-
ger of HLH and only one had a positive family history of
unexplained siblings’ death in childhood. Overall, 25 %

of HLH patients without an established molecular diag-
nosis carried at least one variant with an in silico dam-
aging prediction.
To interpret findings in patients without an estab-

lished molecular diagnosis and provide an overview of
genetic variations in genes linked to HLH, we examined
the frequency of variants in genes included in our
panel among 2504 unrelated individuals from the 1000
Genomes project. Discarding intronic variants outside
splice-site regions and synonymous variants, 1956 in-
dividuals carried at least one variant with a minor
allele frequency lower than 0.05. Applying more strict
filters (i.e., at least one damaging prediction by either
SIFT or PolyPhen-2), 636 individuals (25.4 %) were
identified as carrying at least one possibly damaging
variant (Additional file 7). The majority of variants
were found in LYST and UNC13D, likely reflecting
gene size (Fig. S3a, b in Additional file 8). Limiting the
analysis to FHL genes, 413 individuals carried at least one
possibly damaging variant. Surprisingly, monoallelic vari-
ants in genes linked to HLH were thus not enriched in

Table 3 Clinical characteristics of HLH patients included in the prospective cohort

Whole cohort (%) Diagnosed (%) With no diagnosis (%)

Number of patients 58 22 36

Age at diagnosis, years

0–1 20 of 57 (35) 13 of 22 (59) 7 of 35 (20)

1–5 12 of 57 (21) 4 of 22 (18) 8 of 35 (23)

5–12 9 of 57 (16) 4 of 22 (18) 5 of 35 (14)

12–18 8 of 57 (14) 1 of 22 (5) 7 of 35 (20)

18+ 8 of 57 (14) 0 of 22 (0) 8 of 35 (23)

Sex

Male 28 of 58 (48) 10(45) 18 (50)

Female 30 of 58 (52) 12(55) 18 50)

Parental consanguinity 24 of 52 (46) 14 of 21 (67) 10 of 31 (31)

Familial history of disease 8 of 50 (16) 4 of 8 (50)a 4 of 8 (50)a

Albinism 6 of 43 (14) 5 of 6 (83)a 1 of 6 (17)

Fever 49 of 54 (91) 17 of 20 (85) 32 of 34 (94)

Splenomegaly 55 of 58 (95) 21 of 22 (95) 34 of 36 (94)

Cytopenia (≥2 of 3 lineages) 42 of 48 (88) 15 of 17 (88) 27 of 31 (87)

Anemia 46 of 54 (85) 19 of 21 (90) 27 of 33 (82)

Thrombocytopenia 51 of 57 (89) 19 of 21 (90) 32 of 36 (89)

Neutropenia 26 of 50 (52) 12 of 16 (75) 14 of 34 (41)

Hypertriglyceridemia (≥3 mmol/L) 38 of 51 (75) 13 of 20 (65) 25 of 31 (81)

Hypofibrinogenemia (≤1 g/L) 18 of 50 (36) 7 of 18 (39) 11 of 32 (34)

Hypertriglyceridemia and/or hypofibrinogenemia 46 of 50 (92) 17 of 19 (89) 29 of 31 (94)

Hemophagocytosis 43 of 49 (88) 14 of 17 (82) 29 of 32 (91)

Hyperferritinemia (≥500 mg/L) 54 of 55 (98) 19 of 20 (95) 35 of 35 (100)

Elevated sCD25 (≥2400 U/ml) 7 of 7 (100) 0 of 0 7 of 7 (100)
aShown as the proportion of patients with documented familial disease and albinism, respectively
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patients with HLH lacking a molecular diagnosis (Fig. S3c,
d in Additional file 8). Nonetheless, the PRF1 c.272C>T
(p.Ala91Val) variant, in a heterozygous state, showed a
weak enrichment (Fisher’s exact test, p value = 0.07) in pa-
tients with HLH but no biallelic mutations. However, a
larger cohort of HLH patients lacking biallelic mutations
is required to study this association further. Of note, two
individuals out of 2504 were homozygous for possibly
damaging variants in HLH-related genes, namely PRF1
c.272C>T (p.Ala91Val) and UNC13D c.1579C>T
(p.Arg527Trp).

Discussion
Current HLH diagnostic criteria are not specific in dis-
criminating patients with a strong genetic predisposition,
typically involving defects in lymphocyte cytotoxicity,
from those with a number of other etiologies also associ-
ated with HLH [1, 3]. As treatment recommendations
may differ between the groups, molecular studies can
have a direct impact on clinical management. Recent
technological advances in DNA sequencing have enabled
more comprehensive approaches for genetic screening

[38–40]. In this study, we developed and validated a tar-
geted high-throughput sequencing approach in order to
rapidly identify patients with mutations in genes re-
quired for lymphocyte cytotoxicity. Furthermore, we
tested the efficacy of our approach on a prospective
cohort of 58 patients fulfilling clinical HLH criteria.
Twelve genes, previously linked to HLH, albinism with

HLH, or susceptibility to severe EBV infections, were
included in our panel. Overall, we achieved 96.6 %
coverage of the genes of interest, with an average cover-
age per gene of 98 %. Moreover, our design covered al-
most all sites previously reported as mutated. Lack of
coverage was mainly due to difficulty of primer design in
repetitive regions. Of the designed primer pairs, only a
few amplicons failed sequencing. While panels for the
simultaneous analysis of several primary immunodefi-
ciency genes have recently been described [23–25], this
is the first report of an HLH gene-specific panel imple-
mented on a substantial number of HLH patients. To
our knowledge, this also represents the first resequencing
panel that targets evolutionarily conserved intronic re-
gions, which is of importance because such regions harbor

Table 4 Details of disease-causing mutations identified in the prospective cohort

Patient ID Gene Mutation Effect Zygosity Type Associated disease Reference

P48 PRF1 c.272C>T p.Ala91Val Het Missense FHL2 [52]

c.1288G>T p.Asp430Tyr Het Missense [56]

P20 PRF1 c.659G>A p.Gly220Asp Hom Missense FHL2 This study

P35 PRF1 c.673C>T p.Arg225Trp Hom Missense FHL2 [57]

P16, P40 PRF1 c.1122G>A p.Trp374* Hom Nonsense FHL2 [57]

P17 PRF1 c.1349C>T p.Thr450Met Hom Missense FHL2 [58]

P19 PRF1 c.1179C>A p.Cys393* Het Nonsense FHL2 This study

c.1434G>T p.Leu478Arg Het Missense This study

P11 UNC13D c.569+5G>A Altered splicingb Het Splicing FHL3 [53]

inversiona Het Inversion [34]

P1 UNC13D c.570-1G>A Altered splicingb Hom Splicing FHL3 This study

P37 UNC13D c.753+1G>T Altered splicingb Hom Splicing FHL3 [59]

P10 UN13D c.2236C>T p.Gln746* Het Nonsense FHL3 This study

c.2346_2349del p.Arg748Serfs*12 Het Deletion

P50 UNC13D c.2709+2T>A Altered splicingb Hom Splicing FHL3 This study

P58 UNC13D c.2544delT p.Ile848Metfs*67 Hom Deletion FHL3 This study

P9, P38, P39 STX11 c.369_376delinsTGG p.Val124Glyfs*60 Hom Indel FHL4 [60]

P56 STX11 Exonic deletion - Hom Large deletion FHL4 NA

P26 XIAP Exonic deletion - Hemi Large deletion XLP2 NA

P2 LYST c.9107-20_9109_del Altered splicing Hom Splicing CHS [61]

P22 LYST c.2749_2750del p.Arg917Glyfs*5 Hom Deletion CHS This study

P53 RAB27A c.148_149delinsC p.Arg50Glnfs*35 Hom Indel GS2 [54]

P41 RAB27A c.514_518del p.Gln172Asnfs*2 Hom Deletion GS2 [6]
a The UNC13D inversion was detected with a specific multiplex PCR assay [34]
b As predicted by NNSPLICE 0.9
Hemi hemizygous, Het heterozygous, Hom homozygous, NA not applicable, XLP X-linked lymphoproliferative disease type 2
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disease-causing mutations in HLH patients [34, 41]. The
combination of exonic and intronic targets and the
spectrum of genes targeted make our panel a comprehen-
sive solution for the molecular diagnostics of HLH
patients.
For validation of our variant calling strategy we analyzed

13 patients with a known molecular diagnosis that har-
bored 18 different mutations and 56 additional variants.
The patients were selected in order to cover different
kinds of mutations distributed over multiple genes. Our
analysis revealed a sensitivity of 97.3 %, comparable to
other panels based on Ion Torrent technology [24]. The
only missed disease-causing mutation was located in a
homopolymer stretch, regions that are challenging to se-
quence with Ion Torrent technology [42–44]. All variants
were correctly visualized in IGV, suggesting that sensitivity
potentially can approximate 100 % through further
optimization of variant calling software.
When applied to a heterogeneous cohort of 58

patients, with a clinical diagnosis of HLH (n = 56) or with
a functional defect suggestive of primary HLH (n = 2; de-
fective NK cell activity combined with defective exocytosis
or decreased perforin expression), we identified 22
disease-causing mutations, of which eight were novel, in
six of the twelve genes included in the panel. In agreement
with the results from the validation cohort, the spectrum
of mutations identified in the prospective cohort clearly
demonstrated that our method identified different kinds
of mutations, including a 22-bp homozygous deletion in
LYST. Notably, three patients were found to carry a homo-
zygous indel (STX11 c.369_376delinsTGG), which was not
detected in another resequencing study [23]. Moreover,
large homozygous deletions were readily identified by
coverage analysis and inspection of sequencing reads in
both the validation and implementation cohorts. Overall,
we achieved a definitive molecular diagnosis in 22 patients
(38 %). Biallelic mutations in PRF1 (n = 7) and UNC13D
(n = 6) represented the most common finding.
The diagnostic yield was high in the group of patients

diagnosed with HLH before one year of age (65 %). In
the largest collection of patients with a suspected diag-
nosis of HLH studied for mutations in PRF1, UNC13D
and STXBP2, biallelic mutations were found in 11 % of
all cases, and 24 % of cases with onset of disease before
1 year of age [45]. The larger proportion of patients with
a genetic diagnosis in our cohort may reflect the larger
number of genes studied, more specific inclusion
criteria, and a high frequency of consanguinity. Rather,
our results compare well with data from the Italian HLH
registry, where 40 % of HLH patients overall received a
definitive molecular diagnosis [46]. In this cohort, 64 %
of HLH patients with an age at onset below 1 year re-
ceived a molecular diagnosis. Of note, one patient with
albinism and HLH was reclassified post-sequencing as

FHL3, illustrating a case where phenotypic characteristics
potentially could misguide targeted genetic investigations.
Conversely, genetic analyses can correct for overlooked
phenotypic manifestations [47]. Moreover, RAB27A muta-
tions have recently also been reported in patients without
albinism, necessitating RAB27A sequencing in all HLH
patients with defective exocytosis [48].
Despite our efforts, 36 patients remained without a de-

finitive molecular diagnosis. Bioinformatics analyses
were complemented by visual inspection of sequencing
reads and Sanger sequencing of poorly covered ampli-
cons, reducing the likelihood of overlooking mutations.
Regulatory mutations or mutations in genes not in-
cluded in this panel, as well as secondary forms of HLH,
are plausible explanations for the lack of genetic findings
in these patients. For instance, our small cohort of adult
HLH cases may represent secondary HLH. Nonetheless,
adult HLH cases should still be studied for primary
HLH, as a relatively small proportion of them do harbor
biallelic mutations in HLH-related genes [45, 46, 49].
For three undiagnosed patients with a family history of
unexplained siblings’ death in childhood, the medical re-
cords of the siblings’ disease were scarce. Thus, we could
not be sure that these represented familial HLH. Con-
versely, the sister of an additional undiagnosed patient
with EBV-driven HLH (P7) also suffered from a pro-
longed EBV infection with hepatitis, leukopenia, anemia,
and prolonged fever at the age of 7 years, suggesting a
familial susceptibility to severe EBV infections in this
family. Generally, undiagnosed patients had a higher me-
dian age at diagnosis and frequency of known triggers
for secondary HLH, with the most common trigger
being EBV infection. Four undiagnosed pediatric HLH
patients displayed defective NK cell cytotoxicity and/or a
selective defect in NK cell exocytosis against K562 target
cells, possibly suggesting an immune defect more
restricted to NK cell function in these patients.
Interestingly, rare monoallelic variants in genes re-

quired for lymphocyte cytotoxicity have previously been
reported in HLH patients [37, 45]. However, their contri-
bution to disease development is unclear. We identified
nine patients with seven distinct rare monoallelic vari-
ants with in silico pathogenic predictions, without any
obvious enrichment by age at onset or HLH trigger.
Three patients carried the variant PRF1 p.Ala91Val. To
gain understanding of the role of monoallelic variants in
HLH, we determined the mutational load of the genes
included in our panel among 2504 adults from the 1000
Genomes project [50]. Remarkably, in comparison to
our cohort of undiagnosed patients and even to a larger
cohort from the Italian registry with 18 % of monoallelic
variants in sporadic HLH [46], a similar frequency of
rare possibly pathogenic variants was found in the 1000
Genomes cohort. Of the 25 rare, possibly pathogenic
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heterozygous PRF1 variants identified in the 1000 Ge-
nomes project cohort, 11 (36 %) have previously been
reported as homozygous or compound heterozygous
mutations in patients diagnosed with FHL2. Although
rare genetic variants may contribute to disease susceptibil-
ity, such conclusions require more rigorous experimental
validations as recently exemplified for a dominant-negative
STXBP2 variant [51]. Although limited in scale and demog-
raphy, our results suggest a similar burden of heterozygous
variants with pathogenic prediction in HLH-associated
genes between HLH patients without a known genetic de-
fect and healthy individuals. Thus, prudence is warranted
with respect to interpreting causality between rare monoal-
lelic variants and HLH.

Conclusions
We have demonstrated the efficacy of a high-
throughput sequencing approach for the molecular
diagnosis of patients with suspected HLH. With more
than half of the patients lacking an identified genetic aber-
ration, the genetic susceptibility to HLH remains to be
discovered with further genome sequencing and immuno-
logical characterization. Moreover, we determined the
burden of heterozygous variants with pathogenic predic-
tion of HLH-related genes in the general population and
unexpectedly found it similar to that observed in HLH
patients without a clear genetic diagnosis. Albeit based on
a small cohort, our results imply prudence in ascertaining
any causality between monoallelic mutations and HLH.
Despite the good accuracy in high-throughput sequencing,
such diagnostic approaches are best combined with sensi-
tive functional assays for reliable molecular diagnoses of
patients with HLH.
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