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Abstract

academic use at https://github.com/cauyrd/Scanindel.

Comprehensive identification of insertions/deletions (indels) across the full size spectrum from second generation
sequencing is challenging due to the relatively short read length inherent in the technology. Different indel
calling methods exist but are limited in detection to specific sizes with varying accuracy and resolution. We
present Scanindel, an integrated framework for detecting indels with multiple heuristics including gapped
alignment, split reads and de novo assembly. Using simulation data, we demonstrate Scanindel’s superior
sensitivity and specificity relative to several state-of-the-art indel callers across various coverage levels and
indel sizes. Scanindel yields higher predictive accuracy with lower computational cost compared with existing
tools for both targeted resequencing data from tumor specimens and high coverage whole-genome
sequencing data from the human NIST standard NA12878. Thus, we anticipate Scanindel will improve indel
analysis in both clinical and research settings. Scanindel is implemented in Python, and is freely available for

Background

Indel is the general term that may refer to an insertion
or deletion of nucleotides in genomic DNA. Short indels
(e.g., <10 bp) are the second most common type of poly-
morphism and long indels (e.g., >1 kb) are the most
common structural variations (SVs) [1]. Detection of
indels based on next generation sequencing (NGS) tech-
nologies is becoming more common [2], and current ap-
proaches include gapped alignment, split reads and de
novo assembly [3].

Gapped alignment-based indel detection tools require
interpretation of the alignment results from a gapped
aligner such as BWA [4] in order to infer the presence
of an indel [5]. Most of the commonly used variant de-
tection programs, such as the GATK UnifiedGenotyper
[6] and FreeBayes [7], belong to this category. A major
drawback of these methods is the requirement that
indels should be completely contained within a read and
correctly identified during the initial read mapping step
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(reported as ‘T for insertion and ‘D’ for deletion in
the CIGAR string [8]). This is sufficient for small
indel detection, but is problematic for identifying
indels that are longer than 15 % of the read length.
In the long indel case, supporting reads will often
contain too few bases that match the reference and
therefore fail to map; or the supporting reads may
have one end map well to the reference genome but
the rest of the bases after the indel get trimmed or
soft-clipped by the NGS aligner [9]. Split read
methods (e.g., Pindel [10]) are designed to re-align
soft-clipped reads to facilitate the identification of
medium-sized indels, but it remains a challenge for
these methods to distinguish low frequency true indel
events from false-positive calls due to alignment
errors. De novo assembly has been used to identify
indels larger than the read length. For example,
GATK HaplotypeCaller, Platypus [11] and Scalpel [12]
employ localized or micro-assembly strategies and
FermiKit [13] performs whole genome assembly for
variant detection. Even though de novo assembly po-
tentially can identify insertions of any size, it requires
significant computational resources.
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None of the existing methods are able to detect the
full size spectrum of indels. We believe a hybrid ap-
proach that integrates multiple signals from all three
sources (gapped alignment, split reads and de novo as-
sembly) allows for more sensitive indel discovery than
methods examining merely one or two signals. Based on
this concept, we developed the Soft Clipping Analyzer
for Indels (Scanlndel). Our framework scans the initial
mapping file from a gapped NGS aligner and refines the
alignment of the soft-clipped reads meeting tiered cri-
teria. Next, de novo assembly is performed for the
selected soft-clipped reads and unmapped reads. Subse-
quent to the re-alignment and assembly, we have applied
a Bayesian haplotype-based variant caller to detect
indels. We present the results of Scanlndel analysis on
(1) simulated data, (2) clinical data from targeted ampli-
con sequencing of tumor samples, and (3) human
National Institute of Standards and Technology (NIST)
standard NA12878 individual high coverage whole gen-
ome sequencing data. We compare the performance of
Scanlndel with other existing tools for each data set.

Methods

Overview of Scanindel

Sequence data are analyzed in a stepwise manner (Fig. 1).
Input short reads are first aligned with a gapped NGS
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aligner. We used BWA-MEM [14] with default parame-
ters as the raw read aligner, since BWA-MEM supports
long-read and split-read alignment. Although BWA-
MEM is used in this study, it can be replaced by another
aligner that supports soft clipping and generates SAM or
BAM output. After initial mapping to a suitable refer-
ence, the short reads are classified as three types: high
quality soft-clipped reads, unmapped reads and all other
mapped reads. We define high quality soft-clipped reads
based on their mappability and length and the base qual-
ity of their soft-clipped fragments. Our hypothesis is that
the high quality soft-clipped reads might either com-
pletely contain medium-sized indels or span the break-
points of large indels. We next employ a binominal
distribution to evaluate the significance of observing
such soft-clipped reads caused by the presence of indels.
Only soft-clipped reads with inferred breakpoint evi-
dence are re-aligned using BLAT [15], which takes into
account larger gaps than a NGS aligner to allow the pre-
cise identification of large deletions and medium-sized
insertions covered by short reads. Simultaneously, de
novo assembly is performed using the Inchworm assem-
bler [16] for those putative breakpoint-covering soft-
clipped reads together with unmapped reads, with the
aim of constructing possible contigs that contain large
indels that are longer than the soft-clipped fragments,
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Fig. 1 The Scanindel workflow. Scanindel aligns the raw read FASTQ files with a gapped NGS aligner (BWA-MEM) to detect short indels according
to the initial mapping results. Soft-clipped reads with breakpoint evidence support are extracted for BLAT re-alignment to refine the CIGAR and
genomic positions. Those re-aligned soft-clipped reads help to identify large deletions and medium-sized insertions. Meanwhile, Scanindel carries
out de novo assembly with the Inchworm assembler from Trinity for unmapped reads and BLAT realigned soft-clipped reads to detect large
indels. All individual calling sets are merged by vcfcombine (from vcflib) to get one final VCF output containing all indel predictions
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especially for long novel sequence insertions. Finally,
indels are collectively detected by FreeBayes, a Bayesian
haplotype-based variant caller, from all three branches:
initial raw read alignment that mainly accounts for short
indels (e.g., <10 bp); soft-clipping realignment which
reveals large deletions and medium-sized insertions
(e.g., >10 bp but shorter than the read length) and de
novo assembly which reports large indels (e.g., longer
than the read length).
We describe the Scanlndel algorithm in detail below.

Input data

Scanlndel accepts two types of input data: raw fastq files
of short reads or a BAM file generated by a short read
aligner with soft-clipping. If the input data are fastq files,
Scanlndel utilizes BWA-MEM, mapping the reads first
to generate a sorted and indexed BAM file for the next
step. If the user inputs a BAM file, Scanlndel will sort
and index it using SAMtools for further analysis.

Identification of candidate soft-clipped reads

Scanlndel sorts all reads into three groups: unmapped
reads, high quality soft-clipped reads and all remaining
mapped reads from the initial mapping. Soft-clipped
reads are coded as ‘S’ in their CIGAR string in the BAM
file. Among them, high quality soft-clipped reads are de-
fined with the following criteria: (i) read mapping quality
(denoted by MAPQ in BAM) greater than a user-
specified value (in practice, MAPQ > 1); (ii) fraction of
the soft-clipping part (in practice, >20 % of read length);
(iii) proportion of high sequencing quality (in practice,
minimum Q20) of soft-clipped bases (in practice, 280 %).
With those filters, we try to exclude the reads that are
soft-clipped due to bad sequencing quality or ambiguous
alignment and only keep the reads with a long soft-
clipped part that may suggest the presence of an indel
within it.

Breakpoint prediction
After collecting the high quality soft-clipped reads, we
continue to filter those reads by examining if they
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have breakpoint evidence support. If a soft-clipped
read contains the breakpoint(s) of an indel, we antici-
pate seeing a cluster of soft-clipped reads mapped to
the same location around the breakpoints. Otherwise,
it is not likely that the soft clipping was generated
due to an indel. We calculate the probability (P) of a
high quality soft-clipped read supported by breakpoint
evidence with the following survival function of the
binominal distribution:

where k is the number of observed soft-clipped reads at
a putative breakpoint, 7 is the total number of mapped
reads at that locus and q is a user-specified heterogeneity
factor (in practice, g =0.1). We retain the high quality
soft-clipped reads with breakpoint evidence (P < 0.05) for
further realignment.

Realignment of soft-clipped reads with breakpoint
evidence

For each soft-clipped read with breakpoint evidence,
BLAT is used to remap the read sequence to the refer-
ence genome. The multiple-hit results are first sorted by
BLAT score as defined in the web-based UCSC BLAT
(http://genome.ucsc.edu/FAQ/FAQblat.html). We accept
the BLAT alignment only if the top ranked hit has a
BLAT score>30 with sequence identity>90 %. The
CIGAR string of the BLAT alignment is calculated using
the method proposed by Heng Li (https://github.com/
1h3/samtools-legacy/blob/master/misc/psl2sam.pl). Large
deletions and medium-sized insertions that originally
produced the BWA CIGAR string as soft clipping can
be revealed by the calculation of the BLAT CIGAR
string. Finally, we replace the BWA alignment of the
soft-clipped reads with its BLAT alignment as de-
scribed below:

Algorithm 1 Soft-clipping realignment by BLAT

Require: bBLAT eBLAT .r.BLAT CIGARBLAT bBWA eBWA .rBWA CIGARBWA
b — The start coordinate of the target (genome) alignment by BLAT or BWA
e — The end coordinate of the target (genome) alignment by BLAT or BWA
r — the chromosome ID of the target (genome) alignment by BLAT or BWA
CIGAR — the CIGAR string calculated by BLAT or BWA alignment

1: if rBLAT = BWA then

2: if pBLAT = pBWA gr e

if S’ is not in CIGARPXT then
CIGARB"A « CIGARB'AT

3

4

5. pBWA  pBLAT
6: end if

7 end if

8: end if

BLAT — oBWA {han
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De novo assembly of soft-clipped reads with breakpoint
evidence and unmapped reads

The soft-clipped reads used for BLAT realignment and
the unmapped reads from BWA alignment are assem-
bled into contigs with the Inchworm algorithm, a part
of the Trinity transcriptome assembler, by setting the
K-mer =25 and the minimal contig length to be at
least one base longer than the read length. Each as-
sembled contig is then aligned against the reference
genome by applying a similar alignment procedure of
short reads: BWA-MEM was used to carry out the
initial alignment and soft-clipped contigs with break-
point evidence were identified based on Eq. 1, and
then re-aligned with BLAT to refine their CIGAR
string and the leftmost mapping position in BAM file
following Algorithm 1.

Indel detection

Scanlndel produced two BAM files after soft-clipped
read realignment and assembly. One BAM file is the
alignment of all short reads from the NGS aligner with
refined CIGAR and genomic positions using BLAT. The
other BAM file is the alignment of assembled contigs
after BWA and BLAT tiered mapping. Both BAM files
are then sorted and indexed and passed as input to the
haplotype-based variant caller, FreeBayes, for indel de-
tection. Users can easily choose their own preferred vari-
ant caller (e.g., GATK) for variant calling. The short read
BAM file mainly contributes to the identification of
short indels, medium-sized insertions and large dele-
tions. The contigs BAM file reports large indel predic-
tions. Two VCF files are generated as output of
FreeBayes for each of the BAM input files and they are
merged into one final VCF file as ScanIndel output.

Simulation data sets

We generated in silico data to evaluate our algorithm
and compare it with several widely used indel detection
methods. Human chromosome 20 (GRCh37/hgl9 as-
sembly) was used as the reference genome. Unannotated
regions or assembly gaps, denoted by the letter ‘N, were
removed according to the UCSC Genome Browser gap
track file. In general, indels were placed in a non-
overlapping manner. First, the whole region was divided
into 1-kb bins and then 2000 bins were randomly se-
lected. Among the selected bins, the first half were used
for placing deletions, one each with a size ranging from
1 bp to 1 kb and the second half were used to place in-
sertions, again one each with a size ranging from 1 bp to
1 kb. The inserted sequences are randomly generated.
Finally, the genome fasta file with the applied indels was
created by svsim (https://github.com/mfranberg/svsim).
We used wgsim (https://github.com/lh3/wgsim) to simu-
late sequencing reads from the generated target genome
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by setting the outer distance between the two ends to
500, standard deviation to 50, base error rate to 0.02 and
the point mutation rate to 0.001 without allowing add-
itional indel mutations.

Evaluation metrics for indel calls

We considered the predicted indel calls for each algo-
rithm to be true positives (TP) if the prediction met the
following three criteria: (i) the predicted breakpoint was
within 100 bp of the true breakpoint; (ii) the predicted
size is equal to the true size; and (iii) the type of pre-
dicted mutation is identical to the true event. False posi-
tives (FP) are any prediction not meeting those criteria.
False negatives are any real indel that are not identified
by the detection tool. To assess the performance of each
tool, we used precision (or positive predictive value) and
recall (or sensitivity) as evaluation metrics as defined
below:

precision = TP/(TP + FP)

recall = TP/(TP + FN)

Analysis of targeted amplicon sequencing data

We tested our algorithm and the existing indel detection
methods for sensitivity and specificity of clinically rele-
vant indels in cancer with custom-designed amplicon
NGS data. We first trimmed the 5 adapter sequence
AGACCAAGTCTCTGCTACCGTA from the left end
and 3’ adapter sequence TGTAGAACCATGTCGTC
AGTGT from the right end of the 300-bp reads using
cutadapt v1.7 [17]. Then the trimmed 300-bp paired-end
reads and 150-bp paired-end raw reads were aligned to
the human reference hgl9 with BWA-MEM v7.0.10.
The sorted and indexed BAM file generated by BWA-
MEM for each data set was used as input for ScanIndel,
GATK, Pindel, Scalpel, Platypus and Delly. Raw fastq
files were used as input for FermiKit. The short fragment
nature of amplicon libraries and the uniform start-stop
genomic positions characteristic of PCR products make
the de movo assembly not well suited to analysis of
amplicon data [18]. Therefore, ScanIndel was called with
soft-clipping realignment only mode, which disabled the
assembly step. Default parameters were used throughout
for all software.

Analysis of NA12878 whole genome sequencing data

Human NITS standard NA12878 was used to validate
ScanIndel on whole genome sequencing (WGS) data.
Raw fastq files were obtained from European Nucleotide
Archives with the accession number ERA172924. Paired-
end reads were aligned to the GRCh37 human reference
using BWA-MEM v0.7.10 with default parameters and
then duplicate reads were removed using Picard
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MarkDuplicates v1.68 (http://broadinstitute.github.io/
picard/). We split the BAM file containing all reads
by chromosome. Each smaller BAM file contains all
mapped reads from only one chromosome and all un-
mapped reads without any mapping information in a
large BAM file. All programs were called for each in-
dividual BAM file separately and predictions of each
chromosome were merged into one final output file.
Default settings were used for all tools except Scalpel,
which was used with —-window 600 when running it
for WGS data as recommended by the Scalpel manual
(http://scalpel.sourceforge.net/manual html). The running
time of ScanIndel and Pindel is measured as the sum of
running times for each chromosome and the peak mem-
ory is the maximum value of each individual run.

The Genome in a Bottle high-confidence call set was
downloaded from the NCBI (ftp://ftp-trace.ncbi.nih.gov/
giab/ftp/release/NA12878_HG001/). We removed all
single-nucleotide polymorphism (SNP) calls from this
data set. We extracted the predicted indels less than
20 bp from all programs we used and compared them
against all called short indels (<20 bp) from the Genome
in a Bottle truth set to measure the recall and precision of
each method. The short tandem repeat (STR) region
indels were identified if their genomic position has
overlap with UCSC microsatellite track file measured
by BEDTools v2.0 [19].

The large deletion reference data set used in our study
was obtained by intersecting the data in Supplementary
Table 1 from [20] with the data in Additional file 4 from
[21]. All of those deletions were PCR validated and the
large novel sequence insertion reference call set was
obtained by extracting Cortex identified NA12878
sites from the 1000 Genomes Pilot 1 novel sequences
file (ftp://ftp.1000genomes.ebi.ac.uk/voll/ftp/pilot_data/
paper_data_sets/companion_papers/mapping_structural
variation/union.2010_06.novelsequences.sites.vcf.gz). We
further removed deletion and insertion calls in these
two sets overlapping with potential mis-assembly re-
gions used by SpeedSeq (https://github.com/cc2qe/
speedseq#annotations). Additional file 1 shows those
reference indel calls in BED format [22] with hgl9
assembly.

Results

Calibrating the indel detection strategy used in the analysis
Simulation was used to calibrate Scanlndel, allowing
unbiased estimation of the sensitivity and the limits of
indel detection across different length scales. To keep
runtimes short, we prepared the target genome based on
human chromosome 20, which accounts for 2 % of the
human genome but has a reasonably representative
GC content, repeat content and gene density com-
pared with the whole genome. Then, we randomly
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placed 1000 insertions and 1000 deletions throughout
the targeted genome. The size of placed indels ranged
evenly (one each size) from 1 bp to 1 kb. To assess
the impact of coverage and read length on the algo-
rithm performance, we generated two types of syn-
thetic paired-end reads, 100 bp and 200 bp in length,
and the targeted genome was ‘sequenced’ at 10x, 20x
and 50x average coverage.

The simulation data were first aligned to the human
reference genome hgl9 using BWA-MEM. Next, we car-
ried out indel analyses by going through each routine we
proposed in the ScanIndel framework to measure the
performance of each strategy. We first directly used
FreeBayes for indel calling on the mapped raw reads.
Second, we added the soft-clipping re-alignment step in
the analysis without doing de novo assembly. Third, we
performed de novo assembly only, without soft-clipping
re-alignment. And lastly we employed the complete
ScanIndel workflow on indel detection. As depicted in
Fig. 2, FreeBayes reliably detected deletions as long as
40 bp and insertions up to 25 bp across different
coverage depths when the read length was 100 bp.
The number increased to 80 bp for deletions and 50 bp
for insertions when the read length was 200 bp. Therefore,
we infer that BWA-MEM tends to mark indels over 20 %
of total read length as soft clipping. A recent study ex-
plored a range of common commercial and open source
alignment tools (including BWA), and it reported that all
those aligners failed to correctly align large indels, in
agreement with our findings [23].

Next, we examined the detectability of indel size
through utilizing soft-clipping re-alignment or de novo
assembly, respectively. For the soft-clipping re-alignment
only method, we found it can robustly detect large dele-
tions (up to 1 kb) with high sensitivity (0.6 to 1). Higher
coverage and longer read length increase the sensitivity
for detecting deletions with lengths from 500 bp to 1 kb.
For insertion detection, the soft-clipping re-alignment
method performs better than raw read alignment. The
maximum insertion size that can be detected goes up to
around 50 bp when the read length is 100 bp and
around 100 bp when the read length is 200 bp, re-
spectively. However, soft-clipping re-alignment is still
limited in detecting insertions that are longer than
half of the total read length. We observed de novo
assembly of soft-clipped and unmapped reads over-
comes such limitation and is capable of detecting
long insertions, even as long as 1 kb. Notably, we
observed that the de movo assembly is capable of
picking up some large deletions that are missed by
soft-clipping realignment but is still less sensitive than
soft-clipping realignment towards large deletion detec-
tion. Overall, when combining both soft-clipping
realignment and de novo assembly approaches, we
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achieved the highest sensitivity for both insertions
and deletions across the full spectrum of simulated
indel sizes.

Performance comparisons

We compared Scanlndel with six widely used indel
detection tools (Pindel v0.2.5, GATK HaplotypeCaller
v3.4.46, Platypus v0.8.1, Scalpel v0.4.1, Delly v0.6.7 and
FermiKit v0.13) on our synthetic data sets. These algo-
rithms were selected due to their ability to detect indels
with base-pair resolution and to generate variants in
VCF format, which is the standard to represent sequence
variation. Pindel was the first split read-based indel
detection tool to emerge, and was employed by the
1000 Genomes Project. The GATK HaplotypeCaller is
the successor of UnifiedGenotyper, with a new local
assembly feature for indel calling. Platypus is a
haplotype-based variant caller that integrates both
mapping and assembly approaches to enable long
indel detection. Scalpel was recently developed as a
de novo assembly-based indel caller and demonstrated
substantial improvement over other popular indel
tools such as SOAPindel. Delly is capable of detecting
large deletions [24]. FermiKit is considered a better
long insertion caller [13]. All programs were called

using default parameters with minor adjustments and
the analyses were based on BWA-MEM alignment in
a manner similar to ScanIndel (Additional file 2).

We measured performance with recall (or sensitivity)
and precision (or positive predictive value) to evaluate
the ‘probability of calling a validated variant’ and the
‘probability that a called variant is correct, respectively.
We observed that ScanIndel was the only algorithm that
detected all sizes of deletions and insertions across all
coverage levels for both 100-bp and 200-bp reads (Fig. 3;
Additional file 3). Scanlndel achieved the highest recall
and precision of all of the methods tested when sequen-
cing depth was only 10x in both read length cases, sug-
gesting it reliably detected indels even in the low
coverage scenario. Scanlndel, Delly and Pindel had the
best performance in detecting large deletions (>500 bp),
but Delly and Pindel showed limited power to detect
large insertions (>100 bp). At 50x coverage, both
Scanlndel and FermiKit detected large insertions. How-
ever, at lower coverage (10x), only ScanIndel could still
reliably detect large insertions. GATK, Platypus and
Scalpel demonstrated limited capability to detect large
indels. In general, our results showed existing split read
and local assembly technologies had reduced power in
comparison with Scanlndel to detect large insertions
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and deletions (or both) when their sizes were over twice
the read length. This suggests that the combination of
split read and assembly enables better detection of long
indels than either single mode.

Detection of clinically actionable indels in tumor samples
from targeted, amplicon-based sequencing data

To test Scanlndel on clinical data, we used it on a
custom-designed amplicon NGS assay containing 93
amplicons spread over 21 genes (Additional file 4). Tar-
geted sequencing of the customized cancer gene panel
from 15 tumor specimens was performed by an Illumina
MiSeq sequencer with 300-bp paired-end reads to an
average depth of coverage over 3000x. Of these, 11 spec-
imens were FLT3 internal tandem duplication (ITD)-
positive with insertions ranging from 21-90 bp, seven
specimens were FLT3 ITD-negative, one specimen was
CALR 52 bp-deletion-positive, one specimen was EGFR
18 bp-deletion-positive, one specimen was KIT 6 bp-
deletion-positive and one specimen was NPM1 4 bp-
insertion-positive. All of the those mutations were
orthogonally detected in the clinical laboratory by either
PCR and capillary electrophoresis or outside laboratory
testing performed in Clinical Laboratory Improvement
Amendments (CLIA)-licensed laboratories. Additionally,
we also sequenced specimens for a subset of FLT3 ITD-
positive and all other genes using the V2 Illumina chem-
istry with 150-bp paired-end reads (Additional file 5).

We applied Scanlndel on both 300-bp and 150-bp
read data sets and compared it with other widely used
NGS tools to test their performance on the 300-bp read
data set (see Methods for details). The results achieved
with each software tool are summarized in Table 1. Only
Scanlndel detected all indels in these cases and the
ScanIndel results were generally compatible with PCR
and capillary electrophoresis. In contrast, existing tools
performed poorly for either deletion or insertion or in
both cases. Pindel successfully detected all FLT3-ITD in-
sertions, which agreed with a previous study [25], but
failed to detect all validated deletions in CALR, EGFR
and KIT. GATK was able to detect all deletion cases but
missed the longer insertions. Other tools either occa-
sionally reported indels or had no predictions at all, sug-
gesting that those general purpose analysis tools might
not be suited for amplicon-based NGS assays.

Scanlndel achieved 100 % sensitivity and 100 %
specificity for all FLT3 insertion detection attempts with
300-bp reads (Table 1). When we inspected the FLT3
indel detection for 150-bp reads, we noted that the
93-bp FLT3 insertion was missed (Additional file 4).
Although the choice of read length for insertion iden-
tification is a rather open-ended question; our results
suggest that longer reads (e.g., 300 bp) will enable
better identification of longer clinically actionable in-
sertions, such as FLT3 ITD. For all deletion cases we
have tested, Scanlndel demonstrated 100 % sensitivity,
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Table 1 Indel detection (bp) by diffferent methods with 2 x 300-bp amplicon sequencing reads

Dataset 1  Gene  Mutation  Tissue  Mean coverage  PCR/CE  Scanindel ~ GATK  Pindel  Scalpel  Platypus  FermiKit  Delly
1-1 CALR DEL BM 46,913 52 52 52 NC NC NC NC NC
1-2 EGFR DEL FFPE 25821 18 18 18 NC NC 18 NC NC
1-3 KIT DEL FFPE 12,990 6 6 6 NC NC 6 NC NC
1-4 NPMT —INS BM 21,387 4 4 4 4 NC NC NC NC
1-5 FLT3 INS BM 4768 21 21 21 21 NC NC NC NC
1-6 FLT3 INS BM 11,510 26 27 NC 27 NC NC NC NC
1-7 FLT3 INS BM 26,747 49 51 NC 51 NC NC NC NC
1-8 FLT3 INS BM 28,991 38 39 NC 39 NC NC NC NC
1-9 FLT3 INS BM 26,734 90 93 NC 93 NC NC 93 NC
1-10 FLT3 INS BM 16,152 75 78 NC 78 NC NC NC NC
1-1 FLT3 INS BM 3528 32 33 33 33 NC NC NC NC
1-12 FLT3 INS BM 3851 51 54 54 54 NC NC NC NC
1-13 FLT3 INS BM 21,403 23 24 24 24 NC NC NC NC
1-14 FLT3 INS BM 3070 45 48 48 48 NC NC NC NC
1-15 FLT3 INS BM 4506 33 36 36 36 NC NC NC NC
1-16 FLT3 NEG BM 4471 NC NC NC NC NC NC NC NC
1-17 FLT3 NEG BM 4321 NC NC NC NC NC NC NC NC
1-18 FLT3 NEG BM 6219 NC NC NC NC NC NC NC NC
1-19 FLT3 NEG BM 5259 NC NC NC NC NC NC NC NC
1-20 FLT3 NEG BM 4443 NC NC NC NC NC NC NC NC
1-21 FLT3 NEG BM 5236 NC NC NC NC NC NC NC NC
1-22 FLT3 NEG BM 4443 NC NC NC NC NC NC NC NC

BM bone marrow, CE capillary electrophoresis, DEL deletion, FFPE formalin-fixed paraffin-embedded, INS insertion, NC not called, NEG negative

including the largest 52-bp CALR deletion (Table 1;
Additional file 4). Our method robustly detected dele-
tions in both 300-bp and 150-bp reads, indicating it
outperformed the existing clinical amplicon-based NGS
data processing pipeline for large deletion detection [26],
which is essential for accurate clinical diagnostics.

Application to WGS (50x) of human individual NA12878
To assess the performance of Scanlndel on WGS data,
we analyzed a well-studied HapMap sample NA12878.
The 100-bp paired-end data with an average coverage of
50x were provided through Illumina’s Platinum genomes
project. Genome in a Bottle Consortium has provided a
high-confidence call set for sample NA12878, which
includes SNPs and indels [27]. Most of the called indels
are less than 20 bp (Figure S2a in Additional file 6).

We tested Scanlndel against the Genome in a Bottle
call set by measuring its recall and precision on short
indels and compared them with Pindel, Scalpel,
Platypus and FermiKit. For short indels, we observed
that Scanlndel achieved the highest sensitivity (over
90 %) and exhibited comparable precision with the
existing tools (Figure S2b, c in Additional file 6). A major

source of error in short indel detection is within STR
structures [28]. Hence, we specifically compared the per-
formance of Scanlndel with other tools in regions contain-
ing STRs. The Genome in a Bottle set contains 33,676
called indels from STRs. Additional file 7 displays the sen-
sitivity and precision of short indel (<20 bp) detection at
STR regions between methods. Scanlndel and FermiKit
performed the best for predicting the true positives.
Scalpel worked slightly better than the other tools for
reducing the false positive rate.

To test the performance on large indels, we applied
Scanlndel and the other tools tested in the simulation
data to this sample and compared their predictions with
two curated reference sets: (i) 138 validated deletions
from the literature; and (ii) 105 previously predicted novel
sequence insertions identified by the 1000 Genomes
Project (see "Methods" for details).

As shown in Fig. 4a, Delly predicted the highest num-
ber of expected deletions, which is not surprising since
it was designed to detect large scale SVs. Scanlndel
ranked second for large deletion detection and predicted
almost as many as Delly, suggesting that ScanIndel was
able to perform as well as SV detection tools for large
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sized deletions. Figure 4b shows the results of novel
sequence insertion detection. ScanIndel detected 50
insertions, which was very close to the performance of
the best predictor, FermiKit. Our results suggest that
Scanlndel is capable of predicting longer insertions with
similar performance as the true assembly-based methods
which tend to be most efficient in the detection of large
insertions. Taken together, ScanIndel generally outper-
formed the other tools when calling across the spectrum
of both short and large indels.

Finally, we compared the run time and memory usage
of our method with Pindel when analyzing this high
coverage WGS data set using an 8-core Intel Xeon @
2.66 GHz with 16 GB of memory. Scanlndel is mainly
composed of three steps: soft-clipping realignment,
assembly and variant calling. Figure 5 shows that the
major part of the running time is spent on the soft-
clipping realignment step. This was expected consid-
ering that BLAT, which was used for soft-clipping re-
alignment, was time-consuming when the set of reads was
large. However, with our heuristic algorithm, we limited
BLAT realignment to only a small fraction of soft-clipped
reads from the WGS data to significantly decrease the

350 15.4
Total 269
VC: 55
. AS: 13
8.2
Scanindel Pindel Scanindel Pindel

RAM (GB)

Fig. 5 Time and peak memory used by Scanindel and Pindel on
NA12878 individual 50x WGS data. The run time of Scanindel is
counted in each module: split read re-alignment (SR), de novo assembly
(AS) and variant calling (VO). All the measurements refer to the program
itself, and do not include BWA-MEM alignment

Time (hours)
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running time. As a result, ScanIndel spent 81 hours less
than Pindel to complete the analysis. Notably, ScanIndel
only required 8.2 GB peak memory, which was only half
of Pindel's memory cost. Taken together, we have shown
ScanIndel is a fast and memory-efficient indel detection
algorithm for a large-scale data set.

Discussion

We introduced a new algorithm for detecting indels by
integrating both mapping and assembly technologies.
Our method is efficient in detecting medium-sized inser-
tions and large deletions by heuristic re-mapping of soft-
clipped reads produced by a short read aligner which
may contain the breakpoints of longer indels. Our
method employed a K-mer-based assembly algorithm to
identify larger novel sequence insertions. Our testing on
simulated and real data demonstrates that Scanlndel
outperforms the existing split read- or assembly-based
indel calling tools for accurately detecting indels across
the whole size spectrum.

Widely used Burrows—Wheeler transform (BWT)-
based short read aligners are poor at correctly mapping
reads with large gaps. Although modifying default pa-
rameters, such as gap opening and extension penalty
options in BWA, can improve indel detection, soft-
clippings remain due to the existence of missed larger
indels. Therefore, split read realignment without using
BWT is necessary to allow reads to be globally mapped.
Scanlndel employs BLAT to refine the alignment of split
reads, since it is known that BLAT is much better than
short read aligners at mapping sequences with gaps. The
main drawback of BLAT is its poor speed of execution
when the set of reads is large. Instead of realigning all
split reads generated by a BWT aligner, Scanlndel ap-
plies a novel heuristic search method to create a small
set of split reads with putative breakpoint information
for BLAT mapping. This significantly decreases the total
running time, and makes even high coverage WGS
analyzable in a reasonable time.

Soft-clipped read realignment can theoretically find
deletions of any size, but it has limited power to detect
insertions owing to the short read length of current se-
quencing technologies. To extend the power of detect-
able mutations using short reads, Scanlndel employs an
assembly strategy to detect large indels. Two major para-
digms are used for existing assembly-based variant de-
tection technologies. The first approach is to perform de
novo whole-genome assembly of the reads and detect
variations between the assembled contigs and the
reference genome (e.g., Fermi [29]). The other, recently
popular paradigm is to perform localized micro-
assembly of soft-clipped reads and unmapped reads that
are anchored by their mapped mate around specific re-
gions of interest in a genome (e.g., Scalpel [12]).
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Although the global assembly paradigm has the potential
to detect larger mutations, in practice it is less sensitive
and more time consuming because a large proportion of
reads used for assembly are not from candidate indels.
In contrast, the local assembly paradigm is efficient to
determine longer insertions, but is limited by the size
(since completely unmapped read pairs are discarded
which may be part of inserted sequences). ScanIndel in-
corporates a semi-global assembly strategy by collecting
only soft-clipped reads with breakpoint evidence and all
unmapped reads for assembly all at once. By this ap-
proach, only a small set of reads is processed to save
running time without losing breakpoint information pro-
vided by soft-clipped reads.

Assembly algorithms are a crucial component of an
indel detection pipeline. Despite the fact that many de
novo assembly programs have been developed and are
publicly available, they are designed for maximizing the
coverage of the underlying genome sequence [30].
Therefore, all of these algorithms attempt to organize
the sequencing reads into very long contigs (median
length of 10-50 kb). This is substantially different from
our goal to identify disjoint, medium length (median of
1 kb) sequences each of which contains the novel se-
quence insertion. To achieve this goal, we chose the
Inchworm assembler [16] because it is fast and was ori-
ginally designed for organizing reads into a suitable
length contig to predict gene isoforms.

Amplicon-based targeted NGS assays are widely used
to identify clinically actionable somatic alterations in
cancer [31]. In our analysis, we observed that alignment-
based variant callers such as GATK, Pindel and Platypus
were able to detect some of the known indels from our
amplicon data. However, assembly-based methods such
as Scalpel and FermiKit did not work in our case, which
is not surprising since analysis of targeted amplicon
sequencing data presents some unique challenges in
comparison with the analysis of random fragment se-
quencing data. Whereas reads from randomly fragmen-
ted DNA have arbitrary start positions, the reads from
amplicon sequencing have fixed start positions that coin-
cide with the amplicon boundaries. As a result, assembly
will not extend amplicon reads into longer contigs. Be-
cause of the fundamentally different nature of the ampli-
con sequencing from whole genome and hybrid capture
sequencing assays, it precludes the application of a var-
iety of assembly-based indel detection algorithms com-
monly used for random fragment sequencing data [18].

Our simulation results have shown that split read
methods perform better than assembly-based methods
for larger deletion detection, while assembly methods
are able to detect longer insertions than split read
methods. Therefore, utilizing both strategies is essential
to successfully detect indels of any size. To our
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knowledge, Scanlndel is the only method that has
been specifically developed to perform both soft-
clipping realignment and de novo assembly for indel
detection. Our application of Scanlndel to targeted
resequencing and WGS data has shown its success
for both somatic and germline indel detection.

Conclusions

We present Scanlndel as a robust method for detecting
indels from targeted amplicon-based to WGS data. In
particular, ScanIndel reliably detects medium-size indels
and has comparable performance with existing methods
for detecting very large indels. ScanIndel is capable of
detecting indels across the full size spectrum with base-
pair resolution. We anticipate ScanIndel will enable
identification and elucidation of indels that are currently
difficult to characterize.
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