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alteration of another connected driver.

transcription factors.

Background: Large tumor genome sequencing projects have now uncovered a few hundred genes involved in
the onset of tumorigenesis, or drivers, in some two dozen malignancies. One of the main challenges emerging
from this catalog of drivers is how to make sense of their heterogeneity in most cancer types. This is key not only
to understand how carcinogenesis appears and develops in these malignancies to be able to early diagnose them,
but also to open up the possibility to employ therapeutic strategies targeting a driver protein to counteract the

Methods: Here, | focus on driver transcription factors and their connection to tumorigensis in several tumor types
through the alteration of the expression of their targets. First, | explore their involvement in tumorigenesis as
mutational drivers in 28 different tumor types. Then, | collect a list of downstream targets of the all driver
transcription factors (TFs), and identify which of them exhibit a differential expression upon alterations of driver

Results: | identify the subset of targets of each TF most likely mediating the tumorigenic effect of their driver
alterations in each tumor type, and explore their overlap. Furthermore, | am able to identify other driver genes that
cause tumorigenesis through the alteration of very similar sets of targets.

Conclusions: | thus uncover these circuits of connected drivers which cause tumorigenesis through the perturbation
of overlapping cellular pathways in a pan-cancer manner across 15 malignancies. The systematic detection of these
circuits may be key to propose novel therapeutic strategies indirectly targeting driver alterations in tumors.

Background

Cancer develops as a consequence of the accumulation of
driver somatic alterations in genes which, in turn, modify
critical cellular processes often referred to as the hallmarks
of cancer [1, 2]. The catalog of driver genes involved in the
development of several malignancies has grown in recent
years, as a result of whole-exome and whole-genome ana-
lyses of cohorts of tumors, mainly within the framework of
large international consortia [3, 4]. This has opened up the
possibility to carry out systematic studies to uncover the
repertoire of functionally related groups of driver genes.
Exploiting the aforementioned catalogs of driver genes, for
example, we recently revealed the mutational landscape of
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chromatin regulatory factors (CRFs) in cancer [5]. Driver
genes have also been grouped by their proximity in a
network of functional interactions or their membership to
the same or cross-talking pathways [6-9].

There are two main reasons why the catalogs of cancer
drivers produced by the aforementioned projects and
others need to be broken down into related sets of genes
for deeper analysis. First, while the most frequent drivers
in these lists have been long known and studied in their
involvement in tumorigenesis, many novel mid- and low-
frequent drivers have emerged whose roles in cancer need
to be systematically clarified. One step in this direction is
thus to understand exactly which downstream genes and
cellular processes become affected in the outcome of
driver alterations. Second, uncovering the catalog of driver
genes has revealed that at the level of genomic alterations,
tumorigenesis possesses a very heterogeneous nature, with
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driver alterations in genes in the same pathway or in
cross-talking pathways resulting in the same pheno-
type [2, 6-8]. This is the case, for instance, of loss-of-
function mutations of TP53, amplifications of MDM2 and
MDM4, and deletions of CDKN2A, all leading to evading
apoptosis and uncontrolled proliferation in malignancies
such as glioblastoma. Such cliques of drivers, suspect of
producing the same set of downstream changes have been
identified using algorithms that take advantage of their
trend to be altered in a mutually exclusive manner across
tumor samples [6-8]. Nevertheless, to date, the actual
misregulation of genes or processes downstream these cli-
ques has not been systematically proven or exploited with
the purpose of identifying them. The heterogeneity of
driver alterations in a tumor type presents a major chal-
lenge to the efforts to develop a comprehensive toolbox
of targeted therapies to extend personalized cancer medi-
cine driven by genomics information. In a recent study we
showed that only 6 % of the tumors in a cohort of more
than 4,000 could be treated employing currently approved
targeted therapies [10].

In this work I have chosen transcription factors (TFs)
as a case study to try to make sense of the heterogeneity
of drivers in tumor types through their downstream al-
teration for two main reasons. First, several human TFs
controlling the expression of sets of target genes in-
volved in the hallmarks of cancer, as TP53 or MYC, are
frequently involved in tumorigenesis upon somatic alter-
ations. Second, because TFs directly regulate the expres-
sion of groups of genes (targets), one may intuitively
think that the tumorigenic effect of their driver alter-
ations could be measured by computing the level of mis-
regulation of these targets. Here, I start by uncovering
and describing 64 TFs involved in tumorigenesis across
28 malignancies. Then, to investigate how their somatic
alterations result in cancerogenesis across 15 tumor
types, I explore the misregulated targets of 42 of them
for which I was able to gather data. Lists of significant
targets for different TFs in the 15 tumor types under
study are thus provided as an outcome of this work.
Moreover, employing the sets of significant targets of
driver TFs, I search for other connected drivers whose
alterations result in the misregulation of significantly
overlapping sets of genes. These driver circuits involving
a TF and another connected driver (or partner) are also
provided as an outcome of the study.

Methods

Detection and analysis of the repertoire of driver
transcription factors

I obtained the list of human TFs employed in this study
from a catalog compiled by Vaquerizas et al. [11]. I re-
trieved all TFs rated as ‘a;‘b; or ‘other; which the authors
refer to as a high-confidence dataset. This list comprised
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1,391 TFs. From this paper I also obtained the informa-
tion on all InterPro [12] domains of these 1,391 TFs, in-
cluding the identifier and name of the domain, as well as
its boundaries and its source database. I inherited the list
of mutational driver genes across 28 malignancies from
our recent study [10], which identified them on the basis
of three methods that exploit complementary signals of
positive selection of the pattern of mutations in the
genes in the tumorigenic process [10, 13]. This catalog
of mutational drivers included 459 genes. It also con-
tained the most likely mode of action of each driver
(loss-of-function (LoF) and activating (Act)), predicted
by a random forest classifier trained on known tumor
suppressors and oncogenes [14]. Unclassified driver TFs
were considered for all relevant purposes as Act drivers.
All drivers nominated by the aforementioned study are
known to be expressed either in the tumors of the co-
hort where they act as drivers (in the case of TCGA co-
horts), in a cohort of tumors of the same cancer type or
in a cohort of tumors from the same organ [10, 13].

I retrieved all mutations detected in driver TFs across al-
most 7,000 tumors sequenced in 48 cohorts representing
the 28 aforementioned tumor types from the Integrative
Oncogenomics (IntOGen) platform [15] (www.intogen.org).
In the datasets downloaded from IntOGen, mutations had
been already mapped to the amino acid positions of the af-
fected proteins. I then computed the enrichment/depletion
of mutations in each driver TF in each cohort of tumors as
the Fisher’s test P value.

I downloaded all germline variants detected across 65,000
exomes of different cohorts of donors from the database
collected by the Exome Aggregation Consortium (ExAC),
Cambridge, MA (http://exac.broadinstitute.org, downloaded
in November 2014) [16]. Again, the data provided by the
EXAC already comprised the amino acid coordinates of var-
iants. I filtered out all variants with allele frequency below
107 For each domain of each TE, I counted the number of
variants and somatic mutations observed within and out-
side the domain, and computed the relative enrichment of
each domain for somatic mutations using Fisher’s test.

Detection of misregulated targets of TFs

I collected a list of targets of TFs gathering information
from several databases. From HTRIdb [17], pazar [18],
and TRANSFAC v. 7.4 via MSigDB [19, 20], I manually
downloaded annotated targets of 283, 190, and 283 TFs,
respectively. From the Additional Data of the paper by
Gerstein et al. [21], 1 obtained targets detected by
ENCODE, including both proximal and distal sites.

To detect all putative driver alterations (mutations,
amplifications, and deletions) across 15 TCGA cohorts
of tumors (Additional file 5), I first downloaded CNA
(continuous values per genomic segment) and expression
data (processed RNAseq in the form of RPKMs) from
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synapse (syn300013). Also from synapse, I retrieved the
mutations detected in 34 pancreatic carcinoma samples,
not included within the datasets of somatic mutations ob-
tained from IntOGen. Then, I declared the alteration of a
driver TF in a tumor sample a driver alteration according
to the following rules. (First, because drivers — and by ex-
tension driver TFs are defined by tumor type — the
process described below was carried out for the driver TFs
of each tumor type independently.) Both truncating — stop
gained or lost, frame-shift, splice donor or splice acceptor —
and missense mutations in LoF driver TFs were consid-
ered LoF driver mutations, while only missense mutations
in Act driver TFs were considered Act driver mutations.
To detect driver amplifications and deletions, I first identi-
fied LoF driver TFs whose deletions (CNA values below —
0.75) caused a downregulation of their mRNAs and Act
drivers whose amplifications (CNA values above 1) caused
an upregulation of their mRNAs. Upregulation and down-
regulation were determined as significant (P value <0.05)
Mann—-Whitney comparisons of the expression of each
driver TF in samples with deletions —or amplifications —
to samples with a number of copies close to normal
(between —0.75 and 1). Then, I declared every deletion in-
volving an LoF driver TF a driver deletion, and each amp-
lification involving an Act driver TF a driver amplification.
These were merged with LoF and Act driver mutations,
respectively, to produce the final matrices of samples with
driver alterations of each driver TF in each tumor type.

The expression of each target in the samples bearing
driver alterations of the TF and unaltered samples were then
compared using a Mann—Whitney test. From this compari-
son I excluded the samples bearing either amplifications or
deletions of the target, according to the criteria mentioned
above. I considered significant targets those with P value of
the comparison below 0.05 and fold-change (log2) above 1
or below —1. The aim of this differential expression test is —
regardless of the high overlap observed between the targets
of TFs and the top-ranking misregulated genes in response
to their knock-down — to identify the subset of targets of
each TF which are actually misregulated upon alterations of
the TF within the context of the tumor type under analysis.
In this case, I compared the number of differentially
expressed genes among the targets of a TF with differen-
tially expressed genes detected within groups of randomly
selected genes of the same size as the annotated targets.
The results show a varying landscape, with some TF-tumor
type combinations for which misregulated genes are mostly
confined to the annotated targets, and others where differ-
entially expressed genes are distributed both within and out-
side the targets. These are probably the result of incomplete
annotation of TF targets, or of drastic changes in the tran-
scriptional regulatory program in tumorigenesis.

To determine the coincidence of the sets of significant
targets of each driver TFs in a pair of tumor types I
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computed two metrics, the Jaccard’s index and the cor-
rected (Benjamini—-Hochberg) Fisher’s P value (q-value)
of their overlap. The universe used to compute the latter
was the whole list of potential targets of the TF collected
from the four original sources.

To compare the effect of truncating and missense muta-
tions of TP53 on the expression of its targets, I pooled the
absolute fold-change values of all targets in the compari-
son between samples bearing truncating mutations — or
missense-mutations — of the TF and non-altered samples.
I then compared both distribution of absolute fold-change
with a Mann—Whitney test.

Detecting driver circuits

I downloaded the PathwayCommons2 Functional Interac-
tions network [22] (version 6 downloaded in November
2014). I retained interactions between genes of types
‘in-complex-with, ‘interacts-with, ‘neighbor-of, ‘controls-
phosphorylation-of; and ‘controls-state-change-of” and dis-
carded the rest. For every TF-tumor type combination I
searched all connected non-TF drivers (partners) with no
more than half of the samples with driver mutations over-
lapping between TF and partner. For each TF-partner pair I
assessed whether the alterations of the partner cause
tumorigenesis through the same pathway as alterations in
the connected TF. To that end, I first repeated the search
for significant targets detailed in the previous section com-
paring this time the expression of targets of the TF in sam-
ples bearing driver alterations of the partner and samples
where neither the partner nor the TF bore driver alter-
ations. This way I ensured that targets deemed significant
in this search are not the result of alterations of the TF. As
a proxy to the strength of the link between partner and TF
in their causing tumorigenesis through alteration of
the same cellular pathway, I computed the corrected
(Benjamini—Hochberg) Fisher’s q-value of the overlap be-
tween the significant targets of alterations of the TF and the
significant targets of the alteration of the partner.

To carry out the sample level enrichment analysis
(SLEA) [23] of upregulated and downregulated targets of
sample TF-partner circuits, I first transformed the ex-
pression of targets to mean-centered values. Then, I
employed the SLEA built-in capability of Gitools [24].
All heatmaps presented across figures were also con-
structed, configured, and exported using Gitools.

Assessing mutual exclusivity of alterations of the
members of driver circuits

I employed two recently published methods [25, 26] to as-
sess the mutual exclusivity of alterations of groups of genes.
I downloaded both mutex and Comet from the sites pro-
vided by the authors (http://code.google.com/p/mutex and
http://compbio-research.cs.brown.edu/comet, respectively)
and constructed and ran them as documented. In both


http://code.google.com/p/mutex
http://compbio-research.cs.brown.edu/comet

Gonzalez-Perez Genome Medicine (2016) 8:6

cases I ran them on the set of driver alterations de-
tected in the tumor datasets employed to detect the
circuits explored in this work. In the case of Comet, I
ran the run_exhaustive.py script.

For both tools I limited the search for mutually exclu-
sive genes to size two and filtered the altered genes to
take into account for mutual exclusivity by the list of
TFs and partners integrating the circuits assessed in
each tumor type. I then categorized the mutual exclusiv-
ity of all potential driver circuits probed in this work
(with at least one significantly misregulated downstream
target gene) according to the results of both methods.

Results
Additional file 1: Figure S1 presents an overview of all
the analyses carried out in this study.

The repertoire of driver transcription factors across 28
tumor types

We had previously carried out an exhaustive analysis of
whole-exome mutations of 48 cohorts of tumors obtained
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from 28 different malignancies (approximately 7,000 tu-
mors in total) employing three computational methods that
exploit complementary signals of positive selection and
identified 459 mutational driver genes [10]. I started with
this list of cancer driver genes obtained from the IntOGen
platform. TFs are overrepresented among them (P value =
3.9 x 107®), with 64 proteins (Fig. 1 and Additional file 1:
Figure S2) identified from a catalog of 1,391 human TFs
[11]. I also retrieved the most likely mode of action of each
driver TF upon alterations in tumorigenesis (either activat-
ing, LoF, or undetermined) across approximately 4,000
TCGA samples, determined by a random forest classifier
trained on the pattern of somatic alterations of known
drivers [14]. For example, an activating driver TF (such as
MYC) is expected to be more active than normal when af-
fected by gain-of-function mutations or amplifications, and
the opposite for a LoF TF driver, such as TP53 when af-
fected by LoF mutations or deletions. Note that this classifi-
cation has no relation whatsoever with the effect of the TF
on the expression its targets, a set of which may result up-
or downregulated irrespective of the type of alterations

data of each cohort appear in Rubio-Perez et al. (20015) [10]
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Fig. 1 Enrichment for mutations of driver TFs across the 48 cohorts of tumors. The color scale of the cells follows the -log(P value) of Fisher's test
(see color legend at the bottom). Column color annotations from top to bottom represent the number of cohorts where the TF is identified as
driver (the darker the purple, the more cohorts) and the family of the TF. The abbreviations used, and full names of families of each TF appear in
Additional file 2: Table S1. Row color annotations represent the cohorts of tumors where the driver TFs were detected, with different colors
symbolizing cohorts of tumor of different tumor types, the acronyms of which are detailed in the list of abbreviations. The source of mutational
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suffered by the driver TF. According to this list, there are
22 Act and 36 LoF driver TFs, as well as six driver TFs with
undetermined mode of action. Members of 15 TF families
[11] participate in tumorigenesis in the 28 tumor types
analyzed. Twelve of them are represented by more than
one driver protein (Fig. 1 and Additional file 2: Table S1).
The largest family of TFs (Zinc fingers C2H2) also contrib-
utes the largest share of drivers to tumorigensis in the 28
cancer types.

The 64 driver TFs possess varying degrees of implica-
tion in tumorigenesis in different tumor types, as illus-
trated in Fig. 1 and Additional file 1: Figure S2. For
instance, while TP53 is significantly enriched for muta-
tions in ovarian, colorectal, head and neck, or lung can-
cers, it is mutated below expectations — set by other
driver TFs — in thyhroid and prostate carcinomas, as
well as in melanomas and medulloblastomas. The activ-
ity of some TFs as mutational drivers is very specific of
one or few tumor types. This is the case of GATA3 in
breast tumors, ZNF292 in low grade gliomas, ARID5B in
uterine carcinomas, and MYC in diffuse B-cell lymph-
omas. Well-known driver TFs such as TP53, SMAD4,
and NFE2L2 acting in 40, 15, and 11 cohorts, respect-
ively, share the top-ranking positions with others just
recently identified, like T7BX3 (14 cohorts), which pro-
motes cell migration and invasion [27], MECOM (11 co-
horts), with inhibitory effects on apoptosis [28], or
ARHGAP3S5 (11 cohorts), a GTPase-activating protein
that promotes invasion and metastasis [29].

In an effort to identify the domains of each TF that are
most relevant to tumorigenesis upon somatic mutations
(Additional file 1: Figure S1B), I computed the relative
enrichment of each domain (defined by InterPro [12])
for somatic mutations (SNVs and short indels) across
the approximately 7,000 tumors in the cohort versus
common variants observed in the exomes of 65,000 indi-
viduals (see Methods). In the case of somatic mutations
detected across tumor samples, only those with
consequence-types deemed to affect the protein se-
quence (that is, missense, stop-gain, stop-loss, splice-
donor, splice-acceptor, frameshift) were included. In the
case of the variants detected across non-cancer genomes
of individuals, I included SN'Vs and short indels with all
consequence types, but only those with allele frequency
above 107 which ensures that they are likely to be com-
mon polymorphisms in the human population.

This analysis therefore aimed to rank higher domains
with the greatest differences between the accumulation
of somatic mutations in tumors that signals them as
subjects of positive selection and the number of com-
mon germline variants that entail their baseline toler-
ance to variation. I thus computed the fraction of
mutations occurring in every domain of a TF out of the
total number of mutations observed in the gene across
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tumors and, similarly their share of common germline
variants. Each circle in Fig. 2a corresponds to a TF do-
main represented in a plane defined by these two quan-
tities, whereas its color represents the significance of its
relative enrichment for somatic mutations. All domains
of TP53 (annotated at the right of panel A) accumulate a
relatively low fraction of the variants observed in the
gene, except the p53 tumor suppressor family, which en-
compasses most of the protein sequence. The fraction of
mutations occurring at each domain is nevertheless sig-
nificantly higher (Fig. 2b). Whereas somatic mutations
impairing the activity of TP53 tend to accumulate in the
DNA-binding domain and the tetramerization domain
of the TF, tolerated germline variants concentrate in the
N-terminal and C-terminal portions of the protein, out-
side its most important structural and functional fea-
tures. In the case of RUNX1 (Fig. 2c) somatic mutations
tend to accumulate in the short stretches of sequence
that define the AML1/Runt domain. Although many of
the domains that appear at the top of the list of relative
enrichment for somatic mutations correspond to the
portions of the TF that directly bind the DNA (p53,
DNA-binding domain, winged helix-turn-helix, zinc fin-
ger, homeodomain, and so on), other types of TFs do-
mains are also tumorigenic. The latter include the
aforementioned tetramerization domain of 7P53 and the
ligand binding domain of NR4A2, a nuclear hormone re-
ceptor (Additional file 3: Table S2).

Pan-cancer misregulation of genes under the control of
driver TFs
The rationale of this study — the hypothesis that driver
alterations of TFs result in misregulation of their targets —
assumes that driver TFs are expressed and carry out their
functions in the tumor types where they are identified as
drivers and where I probe this misregulation. The list of
drivers employed in this study in each tumor type (and by
extension the driver TFs) are known to be expressed in the
tumors of the cohort where they act as drivers, because part
of the process of detection of mutational drivers excludes
non-expressed genes. As for their activity, driver genes are
detected as such because they exhibit signals of positive se-
lection (see references [10] and [13]) in the tumor types
where they are nominated as drivers, which implies that ei-
ther their over-activation (in the case of oncogenes), or their
inactivation (for tumor suppressors) exists and is key to the
development of tumorigenesis. (Note that in the latter case,
the inactivation in tumors bearing LoF alterations presup-
poses that they are active in the other tumors of the cohort).
To investigate the changes in expression of genes result-
ing from the alteration of driver TFs (Additional file 1:
Figure S1C), I first collected lists of genes under the regu-
lation (targets) of TFs from four sources (Additional file 1:
Table S3). These four online resources contain curated TF
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targets retrieved from the literature (HTRIdb [17], pazar
[18], and TRANSFAC v. 7.4 via MSigDB [19, 20]), and the
list of genes with either proximal or distal TF binding sites
detected through ChIP-seq analysis by the ENCODE con-
sortium [21]. Forty-two driver TFs were assigned targets
(ranging from 1 to 5,963 with median 232; Additional file 1:
Table S4) retrieved from one or more of these databases. In
every tumor sample within 15 cohorts analyzed by TCGA
(Additional file 1: Table S5), I then determined the alter-
ation status of each driver TF. In this case, because the copy
number status of each gene is available besides the list of
somatic SN'Vs and short indels (hereinafter, mutations), I
employed both types of alterations to define the samples
where each driver TF is altered. Missense mutations and

amplifications were considered driver alterations of activat-
ing driver TFs. On the other hand, driver alterations of LoF
driver TFs are truncating or missense mutations or dele-
tions (see Methods). Driver TFs with undetermined mode
of action were applied the same rule as activating driver
TFs. Finally, I compared the expression level of the target
of each driver TF in the tumor samples bearing driver alter-
ations with that of the samples where it was unaltered. A
target was considered significantly misregulated (misregu-
lated targets) upon driver alterations in a TF if the Mann—
Whitney P value of the comparison was smaller than 0.05
and the log2 of the fold-change was either smaller than —1
or greater than 1. Note that because the targets obtained
from the four aforementioned sources have been detected
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irrespective of the tissue type and normally in healthy tis-
sues, the differential expression analysis acts as a filter to
detect those targets most likely misregulated upon alter-
ations of driver TFs.

The volcano plot in Fig. 3a illustrates the distribution
of targets in a P value to fold-change plane resulting
from the differential expression analysis of all driver TFs
in the breast cancer cohort (BRCA), with the lines deli-
miting significance highlighted. Similar volcano plots
and results of the analysis in other tumor types appear
in Additional file 1: Figure S3 and Additional file 4:
Table S6. The distribution of the expression of six misre-
gulated BRCA targets are shown in panels (b) to (g) of
Fig. 3. BIRC5 or survivin (Fig. 3b), a target of TP53 is an
anti-apoptotic molecule that has been previously linked
to the development and progression of breast cancer
and the emergence of drug resistance, as well as with
tumorigenesis in other cancer types [30-32]. SIO0A2,
which also appears upregulated in samples bearing driver
alterations of 7TP53 (Fig. 3c) has been related to tumor
promoting processes, such as the epithelial-mesenchymal
transition. Initially, though, to act as a tumor suppressor,
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it probably plays a dual role in cancerogenesis [33-35]. In
both cases, truncating mutations of TP53 appear to cause
larger upregulation of the targets, supporting the notion
that they possess a higher driver potential, with some mis-
sense mutations actually acting as passengers. Neverthe-
less, the pooled analysis of the misregulation of all targets
of TP53 across all tumor types reveals that although in
most cases truncating mutation of the TF do affect more
the expression of its targets than missense mutations, the
differences are clearly significant only in breast tumors,
glioblastomas, and low grade gliomas (Additional file 1:
Figure S4).

EGR3 and HEPACAM are significantly downregulated
in samples with MYC amplifications (Fig. 3d and e). The
former encodes an early growth response TF related
among others to lymphocyte development and endothe-
lial cell growth and migration whose downregulation
could play a role in the proliferation, metastasis, and
progression of cancer cells [36, 37], whereas the latter is
a likely tumor suppressor gene which codes for a protein
involved in cell motility [38]. Finally, panels F and G
illustrate the misregulation of TCF7L1 and DNAJCI2,
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two significant targets of GATA3 linked to tumorigen-
esis. TCF7L1 encodes a TF in the WNT pathway which
regulates the expression of cell cycle related genes and
is a central regulator of tumor growth and initiation
[39-41]; DNAJCI12 is a chaperone upregulated in sev-
eral cancer types.

The sets of significant targets of most driver TFs differ
widely between tumor types (Fig. 4a and Additional file 5:
Table S7), with the notable exception of NFE2L2 and, to
some extent, 7P53, MYC (Fig. 4b), PAX5, and RUNXI.
Nineteen genes are significantly over-expressed in samples
of five tumor types driven by somatic alterations of
NFE2L2. These include a set of enzymes involved in the
antioxidant response promoted by this TF, such as NOQI,
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AKRIB10, AKRIC1, AKRIC3, and ALDH3A1, but also the
glucose-6-phosphate dehydrogenase, whose upregulation
sustains the elevated production of NADPH and biosyn-
thesis required by tumor proliferation [42]. NFE2L2 thus
probably causes the shift of the cellular metabolic program
to promote tumorigenesis in cancer types driven by its al-
terations. This implies that tumors driven by alterations of
NFE2L2, regardless of their tissue of origin are much more
similar to each other than tumors driven by alterations of
other driver TFs.

The coincidence of significant targets of TP53 is also
significant across several malignancies. Significant over-
lap occurs between the sets of targets in tumors of the
central nervous system (GBM and LGG) and prostate
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adenocarcinomas. These include the over-expression of
COL11A1, typical of mesenchyme-derived tumors with
high metastatic potential [43], and the under-expression
of PHLDAS3, a protein with a PH domain which inhibits
the activation of Akt [44]. A second group of tumor
types with significant overlapping targets include blad-
der, breast, lung, and uterus carcinomas (Fig. 4b).

Circuits of drivers connected to TFs

Finally, I exploited the sets of significant targets of driver
TFs to find other drivers in the same tumor type causing
similar downstream alterations, under the hypothesis
that somatic alterations of different drivers in the same
or cross-talking pathways may converge in the down-
stream alteration of the expression of similar groups of
genes (Additional file 1: Figure S1D). To this end, I first
searched for all drivers connected to each driver TF
(partner drivers) in each tumor type in a network of
functional interactions [22] with no more than 50 % of
their altered samples overlapping with those of the TF. I
then repeated the process of identifying significantly
misregulated genes — within the set of targets of the
TF — between the group of tumor samples bearing driver
alterations of the partner and the tumors where neither
the partner nor the driver TF were altered. Next, I com-
puted the significance of the overlap between the set of
upregulated genes upon driver alteration of the TF and
the set of upregulated genes upon driver alteration of the
partner, and the same for the sets of downregulated genes.
I used the two corrected P values of the overlaps between
upregulated and downregulated sets of genes as a proxy of
the strength of the tumorigenic link between the TF and
the partner in tumorigenesis. I call these connections TF-
partner ‘driver circuits’ — driver circuits in this paper, for
simplicity — and understand them as common pathways
towards tumorigenesis, with driver alterations of their two
members resulting in convergent misregulation of the
same cellular processes.

TP53 and MYC possess the highest number of signifi-
cant partners (overlap upregulation or downregulation
q-values <107°), with 26 and 25, respectively (Fig. 5a,
Additional file 6: Table S8). Circuits involving them
clearly dominate tumorigenesis in breast (16 and 12)
and uterus carcinomas (12 and 5). One of the most sig-
nificant partnerships of MYC in both breast and uterus
cancer cells involves ERBB2, whose effect on the over-
expression of the TF in HER2+ breast tumors [45, 46]
has been noted before. The results shown here (Fig. 5b)
suggest that this connection is also very prominent in
tumors of the uterus. The circuit formed by MYC and
the pair CDKN2A/CDKN2B also appears very significant
in breast tumors (Fig. 5c), in coherence with the role
that MYC amplification has on the enhancement of cell
cycle de-regulation [47, 48]. Other very significant — and
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not so well known — partners of MYC in breast and uterus
carcinomas include NDRG1, whose deficiency induces the
epithelial-mesenchymal transition [49], CARMI, a methyl-
transferase known to methylate NOTCH1 [50], DDXS, a
key mediator in the inhibition of ribosomal biogenesis by
CDKN2A [51], and ZFP36L1, a regulator of apoptosis [52].
Outside these two malignancies, MYC appears strongly
connected to STKII in lung adenocarcinomas (Fig. 5d), a
kinase related with global regulation of cell metabolism [53]
among other processes. On the other hand, the list of P53
partners in four cancer types, as expected, is populated
mainly by genes involved in the regulation of cell cycle and
DNA damage detection and repair, such as CCNEI,
MDM2, MDM4, BRCA2, CHEK2, ATM, and ATR.

Driver alterations of KEAPI in LUSC tumors result in
the upregulation of the expression of a set of genes that
very significantly (q-value = 1.42 x 1072°) overlap the up-
regulated targets of NFE2L2 (Fig. 5e), corroborating that
LoF mutations in the former cause tumorigenesis in lung
squamous cells through the same pathway as gain-of-
function mutations or amplifications of the latter. The
disruption of this partnership involving the ubiquitina-
tion of NFE2L2 through the KEAPI/CUL3/RBX1 com-
plex and its posterior proteasomal degradation, which
leads to the constitutive activation of antioxidant re-
sponse genes is known in several cancer types [54—56].
While the partnership in tumorigenesis of driver alter-
ations of KEAPI and NFE2L2 appears very prominent in
LUSC tumors, CUL3 seems a more outstanding partner in
head and neck squamous carcinomas (Fig. 5a, Additional
file 6: Table S8).

Discussion

This work presents the first systematic characterization
of the repertoire of mutational driver transcription fac-
tors in 28 human malignancies, as well as the collection
of their targets most likely involved in tumorigenesis in
15 of these cancer types. Furthermore, exploiting the
misregulation of the sets of significant targets of driver
TFs, it highlights a set of connections with other driver
genes, thus shedding light onto the mechanisms of
tumorigenesis that underlie their alterations. Additional
file 1: Figure S1 summarizes all the analyses carried out
as part of this study.

There are caveats to both the detection of driver TFs
and their targets involved in tumoriegensis and to the
identification of driver circuits. The recognized incom-
pleteness of the list of human TFs [11] and the catalog
of driver genes — due to limitations built in the limit of
detection of current methods [10, 13] — produces a rep-
ertoire of driver TFs that is not complete. Nevertheless,
probably the predominant TFs involved in carcinogen-
esis upon somatic mutations in the tumor types studied
are included within it. The shortcoming is more acute
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when it comes to the collection of target genes
employed in the study. Although resulting from the
combination of several databases exploiting different cri-
teria to identify the targets of TFs, it is far from
complete. (See further assessment of shortcomings in
the detection of misregulated targets of driver TFs in
Additional file 1: Tables S9 and S10.) In addition, note
that the detection of differentially expressed targets of a
TF is done previously to the detection of its partners
and thus the set of samples bearing no driver mutations
may actually include samples where a connected driver
bears a mutation that result in the misregulation of the
TF targets. As a result, the significance of the Mann—
Whitney test comparing the expression of targets in
both sets of samples may be diminished, causing the loss
of some significant targets. False positive target genes, or
targets not involved in tumorigenesis, may have also

been included in the collection. Finally, the detection of
drivers connected to TFs in the development of tumori-
genesis is limited by the current extent of functional
interaction networks.

Despite these limitations, the aforementioned out-
comes of this work are relevant for the oncogenomics
research community. Although previous works have
identified cliques of drivers altered in a mutually exclu-
sive manner across tumor samples [7, 8] — under the
same rationale that this pattern signals convergent roads
to tumorigenesis — no study to date has directly tested
the hypothesis that alterations in connected drivers actu-
ally result in the misregulation of similar sets of targets.
When the TFs and partners forming potential driver cir-
cuits probed in this study (with at least one significantly
misregulated target gene shared by both the TF and its
partner) are analyzed for mutual exclusivity of their
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pattern of alterations, only few of them reveal significant
(See further details in Additional file 7: Table S11.) This
is probably because the detection of potential down-
stream relationships between pairs of driver genes rely-
ing on the mutual exclusivity of their alterations is
limited by the statistical power one can achieved from
the frequency of somatic alterations. This limitation is
probably less severe when such relationships are ex-
plored through the misregulation of downstream target
genes. This highlights the interest of developing a bio-
informatics method that exploits the overlap of misregu-
lated target genes between pairs (or among groups) of
drivers to reconstruct such relationships.

Besides the interest that the circuits of drivers detected
in 15 different malignancies (Additional file 6: Table S8)
may have for basic research dedicated to the emergence
and evolution of cancer, they also have possible implica-
tions in the framework of pre-clinical research. It is rea-
sonable to expect that tumors bearing alterations in
driver genes connected in a circuit will follow similar
evolution patterns, resulting in similar outcomes and ex-
hibit similar response to a given therapeutic strategy.
These circuits may thus represent a way of choosing
therapies to indirectly target driver alterations in a
tumor [10]. It is possible to envisage that this strategy to
detect circuits of connected driver genes may be ex-
tended beyond this work focused on driver TFs, once
more data on the functional consequences of LoF or ac-
tivation of drivers — similar to the oncogenic signatures
of MSigDB — become available.

In addition, the sets of significant targets of the driver
TFs in the 15 tumor types studied here (Additional file 4:
Table S6) constitute a source of data to formulate and test
hypotheses on the tumorigenic process underlying them.
As with the list of circuits, they have possible application
to clinically-oriented research. The rationale in this case is
that the accuracy of predictions on the outcome of tumors
and their response to drugs could improve if the alteration
status of significant targets is considered in addition to the
status of driver TFs or their partners. With respect to the
overlaps between the sets of significant targets of a TF in
different tumor types, one can imagine the development
of an ‘index of similarity’ between tumor types of different
origin driven by alterations of the same gene, based on the
overlap of their oncogenic signatures. This index could
then be applied to predict the likelihood of success of re-
positioning a therapeutic strategy developed and tested on
one tumor type [10] to another.

Conclusions

The detection of overlapping sets of misregulated genes
downstream pairs of drivers, or convergent misregulated
targets allows to identify driver circuits, which is demon-
strated as a proof of concept in this work. These driver
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circuits may provide clues to choosing therapies to
indirectly target driver alterations in a tumor.
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