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There is increasing interest in investigating how the compositions of microbial communities are associated with
human health and disease. Although existing methods have identified many associations, a proper choice of a
phylogenetic distance is critical for the power of these methods. To assess an overall association between the
composition of a microbial community and an outcome of interest, we present a novel multivariate testing method
called aMiSPU, that is joint and highly adaptive over all observed taxa and thus high powered across various scenarios,
alleviating the issue with the choice of a phylogenetic distance. Our simulations and real-data analyses demonstrated
that the aMiSPU test was often more powerful than several competing methods while correctly controlling type |
error rates. The R package MiSPU is available at https://github.com/ChongWu-Biostat/MiSPU and CRAN.

Background

A variety of microbial communities (i.e., microbiotas)
and their genomes (i.e., microbiome) exist throughout the
human body [1] and play an important role in one’s over-
all health, such as food digestion, nutrition, development
and regulation of the immune system, and prevention
of the invasion and growth of pathogens [2]. On the
other hand, disruptions of the human microbial commu-
nities are associated with a wide range of human diseases,
such as liver cancer [3], obesity [4], colorectal cancer [5],
inflammatory bowel disease (IBD) [6], type 2 diabetes
[7], and antibiotic-associated diarrhea [8]. Understanding
the association between human microbiotas and diseases
might help in diagnosing disease and developing person-
alized medicine [9] that restores a disturbed microbial
ecosystem to a healthy state, for instance, using a per-
sonalized synthetic community and complementary set of
nutrients [2].

Recent advances in sequencing technologies have made
it feasible to profile microbiotas in a large number of
samples via targeted sequencing of the 16S rRNA gene
[10], and extend the study of the human genome to the
human microbiome, which consists of the collection of
the microbial genomes at various sites of the human body
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and is seen as an extended human genome [11]. Many
human microbiome studies aim to detect a possible asso-
ciation of the human microbiome with a phenotype, such
as a disease status, called an outcome (of interest) here,
after adjusting for potential confounders. These associa-
tion studies not only can improve our understanding of
the non-genetic components of complex traits and dis-
eases, but also might open up an entirely new way for drug
development. Although univariate tests (on a single taxon
one by one) are widely used in the analysis of differential
abundance, multivariate tests (on multiple taxa jointly and
simultaneously) have become increasingly popular due to
their higher statistical power in aggregating multiple weak
associations and reducing the burden of multiple testing.
Furthermore, many univariate tests critically depend on
some strong parametric assumptions on the distributions
or mean-variance functional forms for microbiome data,
leading to inflated type I errors when the assumptions are
violated [12]. In contrast, no such assumption is imposed
in our proposed multivariate test, which, coupled with a
proposed permutation procedure for p value calculation,
is essentially semi-parametric and applicable to even small
sample size problems. In this paper, we mainly focus on
multivariate tests.

One popular method for testing the association between
an overall microbiome composition and an outcome of
interest is to use a distance- or dissimilarity-based test,
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such as PERMANOVA [13]. Via the standard pipelines
such as QIIME and mothur [14, 15], the 16S sequence
tags are usually clustered into operational taxonomic units
(OTUs), which can be considered surrogates for biolog-
ical taxa within a specified amount of sequence diver-
gence allowed for each OTU. At 97 % similarity, these
OTUs represent common species. A specific distance
measure is chosen to measure the dissimilarity between
each pair of samples, taking into account the phylogeny
among taxa. Then the pairwise distance is compared to
the distribution of the outcome of interest for evaluating
the association between the overall microbiome compo-
sition and the outcome. Recently, a new method called
the microbiome regression-based kernel association test
(MiRKAT) was proposed [16]. Incorporating phylogenetic
relationships among taxa, MiRKAT transforms a phyloge-
netic distance metric into a kernel to measure similarities
among samples. Then a semi-parametric kernel machine
regression framework is applied to evaluate the associ-
ation. MiRKAT allows for an easy covariate adjustment
and extensions to other types of outcome. By the corre-
spondence between the distance-based association test-
ing and kernel machine regression [16, 17], MiRKAT is
closely related to distance-based methods, such as PER-
MANOVA. In addition, MiRKAT provides an omnibus
test that combines several relevant kernels making it more
robust across different scenarios. However, the choice of
kernels has to be decided by the end user, and more
importantly, no automatic taxon selection or weighting is
implemented in the framework.

Up till now, numerous distance measures have been
developed to depict community differences between two
samples. Among many possible distance metrics, the
UniFrac-type distance metrics are most popular. They
account for phylogenetic relationships among microbial
taxa [18-20]. There are several different versions of
UniFrac. The unweighted UniFrac distance [18], which is
defined as the fraction of the branch length of the tree
that leads to descendants from either sample, but not
both, is a qualitative diversity measure and is very effi-
cient in detecting abundance changes in rare taxa given
that more prevalent species are likely to be present in
all individuals. In contrast, the weighted UniFrac dis-
tance [19], which weights the branches of a phyloge-
netic tree based on the abundance differences, is more
sensitive to changes in abundant taxa. The general-
ized UniFrac distance [20] was introduced to unify the
weighted and unweighted versions by striking a balance
in weighting between relative differences and absolute
differences. Many other distances ignoring phylogenetic
information are also available. The Bray—Curtis distance
[21], for example, quantifies the taxonomic dissimilarity
between two samples on the basis of the OTU counts
only.
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Noise accumulation is a vital problem for high-
dimensional data. For example, due to noise accumulation
in estimating the population centroids in a high-
dimensional feature space, classification using all features
can be as bad as a random guess [22]. A severe limita-
tion of kernel- or distance-based methods is that they
do not conduct variable selection or variable weight-
ing, which can alleviate noise accumulation and is cru-
cial for high-dimensional microbiome data. In particular,
with the dimension much larger than the sample size,
some and even most microbial taxa may not be asso-
ciated with the outcome. Without variable selection or
weighting, using all the taxa for distance or kernel cal-
culations simply contributes noise, leading to power loss
as to be shown. Therefore, differential weighting of the
microbial taxa according to their importance can poten-
tially improve the power of a microbiome association
test. We, thus, propose a data-driven approach to achieve
adaptive weighting of the taxa based on the data. The
proposed method is based on a generalized taxon pro-
portion combining microbial abundance information with
phylogenetic tree information and an adaptive test called
the aSPU test, which is based on a family of a sum of
powered score (SPU) tests [23], incorporating variable
weighting. Each SPU test is indexed as SPU(y) by an
integer ¥y > 0 that controls the extent of weighting on
the variables. We call the corresponding tests MiSPU(y)
(microbiome-based sum of powered score) and aMiSPU
(adaptive MiSPU) when applied to microbiome data. We
will demonstrate through numerical simulations and anal-
ysis of real data that aMiSPU can be easily applied and is
much more powerful than existing tests in most scenarios
with well-controlled type I error rates. Although aMiSPU
was inspired by the aSPU test, the two differ in whether
and how to accommodate unique features of microbial
data. In particular, we propose the generalized taxon pro-
portion to combine microbial abundance information and
phylogenetic tree information simultaneously. As shown
in numerical simulations, directly applying the aSPU test
with OTU abundances generally failed to achieve high
power. Finally, an R package MiSPU that implements
MiSPU with a C++ version of UniFrac distance calculation
has been developed.

Methods

Data and notation

Suppose n samples have been collected, each with a
microbial community profile. For sample i, let ¥; denote
an outcome of interest, which can be binary (e.g., dis-
ease status) or continuous. Let X; = (X;1,...,Xj,) be the
p covariates, such as age, gender, and other clinical and
environmental variables that we want to adjust for. Let
Z;i = (Zi,...,Ziyy) be the abundances of m taxa derived
from the observed g OTUs for the ith sample. Note that
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an OTU represents a common species while a taxon is a
group of one or more species. Here, we assume that each
of Zj,...,Zi is the count of the OTU in sample i and
Zi,» g +1 < k < m, is the sum of the counts of the
OTUs belonging to taxon k in sample i. The evolution-
ary relationships among these OTUs and taxa are given
by a rooted phylogenetic tree, which contains all ¢ OTUs
(as leaf nodes) and m — g taxa (as internal nodes). Sup-
pose by is the distance from the root of the phylogenetic
tree to taxon k, and pj = Zjy/ Z]q:l Zjj is the proportion
of taxon k in sample i. The goal is to test for a possi-
ble association between the overall microbial community
composition and the outcome of interest after adjusting
for the covariates.

A new class of tests: MiSPU

The MiSPU and aMiSPU tests are introduced in this
section. Figure 1 illustrates the overall structure of the
tests, detailing the input (a rooted phylogenetic tree, a
sample of OTU counts, an outcome of interest, and pos-
sibly some covariates) and the three key steps: calculating
a generalized taxon proportion for each taxon, calculat-
ing the test statistics, and applying a residual permutation
scheme to obtain the p values.

One major characteristic of microbial composition data
is that taxa are related as described by a phylogenetic
tree. Phylogenetic distance measures that account for phy-
logenetic relationships among taxa can be much more
powerful than those ignoring evolutionary information
[20]. Among these, UniFrac distances are most pop-
ular. Consider two samples i and j. The unweighted
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UniFrac distance, which considers only species presence
or absence, is a qualitative measure and is defined as [18]:

Y i1 bl (pix > 0) — I(pjx > 0)[}
er:l=1 by ’
where I(-) is the indicator function. In contrast, weighted

UniFrac, which uses OTU abundance information, is a
quantitative measure [19]:

2k bilpac — il
> ket brlpix + pik|

Our basic observation is that phylogenetic distance met-
rics, which account for the relationship among taxa via a
phylogenetic tree, measure the distance among samples
using all the variables (i.e., taxa) without variable selection
or variable weighting. Since the dimension of microbial
data is usually high, much larger than the number of sam-
ples, many taxa may provide only weak or no signals.
Using a phylogenetic distance without variable weighting
or variable selection may or may not be powerful. Instead,
corresponding to the unweighted and weighted UniFrac
distances, for each sample i and taxon k, we define the
corresponding generalized taxon proportions as

i = bil(pix > 0),

respectively. Note that the raw weighted UniFrac distance
[19] between two samples is exactly the same as the L;
distance of the weighted generalized taxon proportion
between the two samples.

Inspired by a multivariate test for association analy-
sis of rare variants [23], we construct a class of versatile
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Fig. 1 Schematic description of the use and steps in aMiSPU. Input data consist of a rooted phylogenetic tree, a sample of OTU counts, an outcome
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score-based tests such that for a given scenario, at least
one of the tests is powerful. Then we combine these tests
to maintain high power across a wide range of scenar-
ios. Specifically, for a binary outcome, we use a logistic
regression model:

m
Logit[ Pr(Y; = 1)] = o+ B'Xi + Y _ Qi
k=1
where Qj is either Q7 or Qj.
For a continuous outcome, we use a linear model:

m
Yi=po+BXi+ Y Quox+ e
k=1

where ¢; is an error term with mean 0 and variance 2.

We are interested in testing the null hypothesis Hy: ¢ =
(@15 --.,9m) = 0. That is, there is no association between
any taxa and the outcome of interest under Hy. The score
vector U = (U, ...,U,) for ¢ is [17,23-25]:

n
U= (Y — f1i0)Qi,
i=1
where Q;. = (Qj1,Qs2,-- ., Qi) and f[i;p is the predicted
mean of the outcome of interest (Y;) under Hy. Note that
a general weighted score-based test can be written as

m
Tg=wU= Z wi Uy,
k=1

where w = (wy,...,wy) is a vector of weights for the
m generalized taxon proportions. Most existing associ-
ation tests use the score vector U to construct a test
statistic, because of the closed form of the score vec-
tor U and because most of the information in the data
is contained in U. Therefore, we use U to construct the
weights for the score vector U. Under Hy, we have U ~
N (0, Cov(U|Hp)) asymptotically, suggesting that a larger
|Uy| offers stronger evidence to reject Hox: ¢x = O.
Specifically, we choose w = (Uffl, e L[,};,fl)’ to weight
the score vector for the generalized taxon proportions,
leading to a MiSPU test:

m
TMiSPU(y) = W/U = Z UZ
k=1
Since y = 1 essentially treats all the variables as equally
important while association directions of the generalized
taxon proportions may vary, y = 1 often yields low power
and thus is excluded here. Importantly, as y increases,
the MiSPU(y) test puts more weight on the larger com-
ponents of U while gradually ignoring the remaining
components. As y goes to infinity, we have

m
TMisPU(o00) X |[U]]oo = Ilfl_alflakh
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We simply define Tiispu(eo) = max” , |Ux|. Note that
the two versions of Qy, i.e, Q} and Qj, yield weighted
MiSPU,, and unweighted MiSPU,, respectively.

We use a permutation scheme [23] to calculate the
p value as the following:

1. Fit the null linear or logistic regression model by
regressing Y on the covariates X under Hy to obtain
fio = E(Y;|Hop) and residuals r; = Y; — fi;0.

2. Permute the residuals » = {r;|i = 1,. .., n} to obtain
a permuted set r®.

3. Regress Q on the covariates X to obtain the residuals
Q.

4. Calculate the new score vector based on the
permuted residuals as U® = 7 | erl’(b) and the
corresponding null statistic TI(\,I;ESPU = Twmispu(U ®)).

5. Calculate the p value as

b
|25 (1ITseul = | Tviseul) +1] /B + 1) after
B permutations.

It would be desirable to data-adaptively choose the value
of y and the version of the generalized taxon proportion
since the optimal choice of them depends on the unknown
true association patterns. Like the adaptive SPU (aSPU)
test [23], we propose an adaptive MiSPU (aMiSPU) test,
which combines the p values of multiple MiSPU tests
with various values of y and two versions of Q. Sup-
pose that we have some candidate values of y in T, e.g.,
I' =1{2,3,...,8,00}, as used in our later simulations and
real-data analysis. Then, our combining procedure is to
take the minimum p value:

Tamispu, = min Ppiispu, (y)s
yell
TamisPU,, = Min Ppispuy, (y)»
yel
Tamispu = min {Pamispu,, Pamispuy, | -

Note that we take the minimum p value of aMiSPU,
and aMiSPU,, to form the final aMiSPU test. Tamispu,
Tamispu,,» and Tamispu are no longer a genuine p value, but
we can use the permutation to estimate its p value, using
the same set of null statistics used to calculate the p values
for the MiSPU tests [23].

We comment on the choice of I" and the version of the
generalized taxon proportion. Depending on how many
taxa are truly associated with the outcome of interest, one
may use a smaller or larger y. For example, if more of the
taxa are not associated, a larger y would be desirable. In
our numerical simulations and real-data analysis, we have
found that ' = {2,3,...,8,00} often suffices. MiSPU(8)
often gives almost the same results as those of MiSPU(o0),
suggesting there is no need to use other larger y’s. In
practice, we suggest using the aMiSPU test, which com-
bines the strengths (and possibly weaknesses) of various



Wu et al. Genome Medicine (2016) 8:56

MiSPU tests. The aMiSPU test can be regarded as a rig-
orous means for multiple testing adjustment with the use
of several MiSPU tests, while the results of MiSPU tests
may shed light on the underlying association patterns.
For example, if a MiSPU with the unweighted generalized
taxon proportion gives the most significant p value, it may
indicate the outcome of interest is more likely to be associ-
ated with the abundance changes in rare taxa. If some odd
y’s yield more significant results than even y’s, then most
or all of the large associations are in the same direction.

Although we focus on rRNA sequencing data, the pro-
posed method can be applied to metagenomic whole-
genome shotgun sequencing data as well. Via MEGAN
[26], DNA reads (or contigs) can be summarized as OTUs
and their counts. Using a standard algorithm, species-
specific sequences are assigned to OTUs or taxa near the
leaves of a phylogenetic tree, whereas widely conserved
sequences are assigned to taxa closer to the root [26].
Once we have OTU abundance data and a phylogenetic
tree, aMiSPU can be applied as before.

Taxon selection

A limitation of most multivariate tests is their inability
to select variables: even if the null hypothesis is rejected,
they may not give any information on which taxa are
(or are not) likely to be associated with the outcome of
interest. We note that the aMiSPU test can be used to
rank the importance of the taxa. First, if Pamispu, <
Pamispu,,» we use the unweighted generalized taxon pro-
portion in the subsequent analysis; otherwise, we use the
weighted one. For ease of exposition, suppose we choose
the weighted one. Second, we estimate the optimal value
of p = argmin;,ErPMingW(y) chosen by the aMiSPU,,
test. If y = oo, we can easily find the most significant
taxon. Third, suppose 7 < oo, then we assess the rela-
tive contribution of each taxon r to the aMiSPU,, test as
C = U7/ Z/ril |U,|” . Fourth, we rank the taxa based
on their C, values, and we can select a few top k; taxa,
such as k1 = 1, or such that the sum of their relative con-
tributions erq:l Cr > aq with @3 = 0.7, say. The choice of
ki or a1 determines the trade-off between increasing true
positives and increasing false positives.

The MiSPU package and implementation

We implemented the MiSPU and aMiSPU tests in an
R statistical software package called MiSPU, in which
a C++ version of UniFrac distances faster than the
GUniFrac R package is also provided. The package
is available on GitHub (https://github.com/ChongWu-
Biostat/MiSPU) and CRAN. We applied MiRKAT from
the MIRKAT R package developed by Ni Zhao and Michael
Wu at website http://research.fhcrc.org/wu/en/software.
html. The SPU and aSPU tests are available in the R
package aSPU on CRAN.
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Simulation settings

We used a phylogenetic tree of OTUs from a real throat
microbiome data set [27], which consists of 856 OTUs
after discarding singleton OTUs. The simulation settings
were similar to that used in [16]. Specifically, we gener-
ated the OTU counts for each individual via the following
steps:

1. Based on a real throat microbiome data set [27], the
estimated OTU proportions (71, 72, . . . , Tgse) as well
as the estimated overdispersion parameter 6 were
obtained via maximum likelihood.

2. For sample i, the observed OTU proportions were
randomly generated from a Dirichlet distribution:
(P1i»P2i» - - - » P8s6i) ~ Dirichlet(71, o, . . ., 56, 0).

3. The total count of OTUs for sample i, say #;, was
randomly drawn from a negative binomial
distribution with mean 1000 and size 25. This step
mimicked varying total reads per sample.

4. For sample i, the observed OTU counts were randomly
generated from a multinomial distribution: (Z;1, Zp, . . .,
Zigse) ~ Multinomial(n;; p1i, pais - - - » P856i)-

The procedure for generating simulated data is available
as a function in R package MiSPU. We considered sev-
eral simulation scenarios that differed in how some OTUs
were related to the outcome of interest.

Under simulation scenario 1, we partitioned the 856
OTUs into 20 clusters (lineages) by partitioning around
medoids based on the cophenetic distance matrix. The
abundance of these 20 OTU clusters varied tremendously,
such that each OTU cluster corresponded to some pos-
sible bacterial taxa. We assumed that the outcome of
interest depended on the abundance cluster that consti-
tuted 6.7 % of the total OTU reads. Then we simulated
dichotomous outcomes as follows:

Logit (E(Y;|X;, Z;)) = 0.5 scale(X1; + X2;) + B scale (Z Z,y) ,
JEA

where B was the effect size and scale(Z;;) standardized the
sample mean of Z;.’s to 0 and the standard deviation to 1.
For continuous outcomes, we simulated under the model

Y; = 0.5scale(Xy; + Xy;) + B scale ZZL'J' + €,
jeA

where ¢; ~ N(0,1). Xy; and Xy; were the covariates to
be adjusted for, and A was the index set of the selected
OTU cluster. X;; was generated from a Bernoulli distri-
bution Bin(1,0.5), while X5; was from a standard normal
distribution N(0,1). To consider the effect of potential
confounders, we studied the case where X5; and Z; were

correlated, specifically, Xo; = scale (Z Zij) + N(0,1).

jeA
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We varied the effect size B to mimic different magnitudes
of association.

Under simulation scenario 2, we partitioned all the
OTUs into 40 clusters and assumed the outcome was asso-
ciated with the abundance cluster with only three OTUs.
Under simulation scenarios 3, 4, and 5, we assumed that
the outcome of interest was associated with the abun-
dance cluster with 24.8 %, 16.6 %, and 1.5 % of the total
OTU reads, respectively. Under simulation scenario 6, we
assumed the outcome was associated with 50 randomly
selected OTUs.

For all the simulation scenarios, we considered using
MiSPU, and MiSPU,, with y = 2,3,...,8. We com-
bined the MiSPU tests to get aMiSPU,, aMiSPU,, and
aMiSPU. We compared aMiSPU with MiRKAT with the
weighted and unweighted UniFrac kernels (K, and Ky,
respectively), the Bray—Curtis kernel (Kpc), and a gener-
alized UniFrac kernel with @ = 0.5 (K5). Additionally, we
also applied the optimal MiRKAT, which combines the
above four kernels.

Throughout the simulations, the sample size and test
significance level were fixed at 100 and o = 0.05, respec-
tively. The results were based on 1000 independent repli-
cates for 8 # 0 and 10,000 independent simulations for

B =0.

Results

In this section, we present the simulation results from
MiSPU and MiRKAT, as well as the results for three real-
data sets. We used several published and de-identified
human datasets without any confidential information,
thus, accordingly there was no human subject involve-
ment and no need for an IRB approval.

Numerical simulation results for type | error and power
To save space, we focus on a few simulation set-ups with
a binary outcome. The extensive simulation results with
different association patterns and outcomes were similar
to those presented below and, thus, are relegated to the
supporting information in Additional file 1.

First, the type I error rates of MiSPU and aMiSPU across
different simulation set-ups were satisfactorily controlled
when the confounders were suitably adjusted (Table 1).
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When the covariates were independent of the microbiome
composition, MiSPU and aMiSPU controlled type I error
rate well no matter whether we adjusted for X or not. In
comparison, when X and Z were correlated, adjusting for
X was necessary: failing to adjust for X led to an inflated
type I error. To save space, we only show some results.
The type I errors at the nominal @ = 0.01 level were also
investigated with the same conclusion (Additional file 1:
Table S1).

Figure 2 shows statistical power with a binary outcome
in simulation scenario 1, in which a phylogenetic clus-
ter with 6.7 % OTUs was associated with the outcome.
For all the tests considered, the power increased when the
effect size increased. Due to the upweighting of the micro-
bial taxa more likely to be informative, a MiSPU,, test
was much more powerful than a MiRKAT test, regard-
less of whether X and Z were correlated or not. Because
only a few taxa were related to the outcome of interest,
a MiSPU(y) test with a larger y performed slightly bet-
ter than that with a smaller y. Nevertheless, MiSPUy,(2)
still performed much better than any MiRKAT. Compared
to MiSPUy,(c0), aMiSPU,, combining different weights
with various y values lost some power but still main-
tained power considerably higher than that of many other
tests. As expected, by ignoring the phylogenetic infor-
mation of the microbiome data, the SPU and the aSPU
tests [23] failed to achieve high power (not shown). Since
there were some abundant OTUs in the informative clus-
ter A, unweighted UniFrac suffered from a loss of power
and led to the failure of aMiSPU, to improve power.
However, aMiSPU combining aMiSPU, and aMiSPU
lost only little power compared to aMiSPU,,. Note that
when X and Z were independent, adjusting for the covari-
ates X or not had a minimum effect on the power
(Additional file 1: Figure S1). The simulation results
for continuous outcomes were similar (Additional file 1:
Figures S2 and S3).

Figure 3 shows the statistical power with a binary out-
come in simulation scenario 2, where a small phylogenetic
cluster that contains only three OTUs was associated with
the outcome. We again show the empirical power curves
when X and Z were independent (Fig. 3a) and when X and
Z were correlated (Fig. 3b). The results are similar to those

Table 1 Empirical type | error rates for MiSPU and aMiSPU for scenario 1 with a binary outcome

MiSPUw (2) MiSPUyy (o0) aMiSPU,y aMiSPUy aMiSPU
X L Z adjust X 0.052 0.050 0.052 0.049 0.048
X L Z noadjust X 0.051 0.051 0.052 0.049 0.049
X ~ Z, adjust X 0.043 0.038 0.043 0.049 0.040
X ~ Z, no adjust X 0.091° 0.119° 0.1124 0.053 0.088?

The type | error rate was evaluated for situations in which the covariates were independent of the OTUs (X L 2) or correlated with the OTUs (X ~ Z) based on 10,000

simulated data sets at & = 0.05
“Inflated type | error rates
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of simulation scenario 1, except that aMiSPU,, performed
better than aMiSPU,,. aMiSPU, which combines aMiSPU,
and aMiSPUy, lost only little power compared to the best
choice MiSPU, but remained much more powerful than
any of MiRKAT. As expected, the weighted UniFrac kernel
was the least powerful.

Other simulations showed consistently that aMiSPU
generally outperformed MiRKAT and aSPU when a
phylogenetic cluster was associated with the outcome
(Additional file 1: Figures S4, S5, and S6). However, when
some randomly selected OTUs were associated with the
outcome (scenario 6), the aSPU test was the winner
(Additional file 1: Figure S7); however, we comment that
this scenario may not be realistic.

In practice, the true state of nature can vary from case
to case. The simulation results show that the power of
MiRKAT essentially depends on the chosen kernel; a poor
choice of the kernel leads to a tremendous loss of power.
In contrast, MiSPU uses the generalized taxon proportion
Qjx and puts higher weight on taxa more likely to be infor-
mative, achieving much higher power than MiRKAT in
most situations. The performance of MiSPU is also depen-
dent on the choice of y and the version of the generalized
taxon proportion: a better choice leads to higher power.

However, aMiSPU alleviates this problem by combining
MiSPUs with different y’s and the two versions of the
generalized taxon proportion, and it is the overall winner
over a wide range of different scenarios.

Univariate testing on each OTU or taxon one by one
incurs a heavy burden for a correction for multiple test-
ing. Often the easy-to-use but conservative Bonferroni
method is applied, leading to reduced power. Com-
pared to multivariate testing methods, such as MiSPU
and MiRKAT, the power of the nonparametric Kruskal—
Wallis test [28, 29] was very low (Fig. 2a). Even worse,
many parametric univariate tests, due to their strong
parametric assumptions on the distributions or paramet-
ric specifications on the mean-variance forms for the
OTU counts, may have inflated false positive rates, as
pointed out by others [12, 30]. For example, in our simu-
lations under scenario 1, the empirical type I error rates
for DESeq2 [31] and metagenomeSeq-fitZig [32] were
inflated. Accordingly, we did not further investigate their
power properties. Relevantly and importantly, univariate
tests encounter the so-called curse of the composition-
ality problem: since the increased (or decreased) relative
abundance of some OTUs necessarily leads to other (null
or unmodified) OTUs having opposite changes in their
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Results were presented at n = 100

relative abundance, there are false positives for some null
OTUs. In contrast, multivariate joint testing methods,
such as PERMANOVA, MiRKAT, and aMiSPU, do not
suffer from this curse of the compositionality problem.

Numerical simulation results for taxon selection

Beyond an overall assessment of association, several
methods [28, 29, 31-33] have been developed for iden-
tifying specific OTUs driving a detected association. For
example, since the compositions of potentially pathogenic
bacteria across healthy and disease populations might be
different, identifying such bacteria is of interest. One by-
product of the aMiSPU test is a ranking of the importance
of the taxa. We evaluated taxon selection using simulated
data under scenario 1 with an effect size equal to 2, and
compared the results to those of the other metagenomic
tools, metagenomeSeq-fitZig [32], a Kruskal-Wallis test
as used in LEFSe (linear discriminant analysis effect size)
[28] and STAMP [29], and DESeq2 [31], a representative
for RNA-seq analysis.

The simulation results under scenario 1 are summa-
rized in Table 2. The informative OTU set contained 57
OTUs. On average, the taxon set selected by aMiSPU con-
tained 58.5 OTUs, 27.2 of which were truly informative.

In contrast, fitZig [32] selected 157 OTUs and only 12.3
OTUs were truly informative. Perhaps due to the failure
to consider the fact that most OTUs in a microbiome
association study are rare, DESeq2 and the KW test per-
formed poorly with a too small mean number of true
positives. Under scenario 1, we chose a relatively abundant
OTU cluster that contained 57 OTUs to be related to the
outcome. As expected, incorporating phylogenetic tree
information helped us select truly informative abundant

Table 2 Sample means (standard deviations in parentheses) of
the total number of selected OTUs (Total), and of the numbers of
true positives and false positives

Method Total TP FP

X1z fitZig 157.0 (49.4) 12.3(4.7) 144.6 (45.7)
DESeq?2 204 (4.8) 3415 17.0 (4.4)
KW 25.8(6.1) 35(1.6) 22.3(5.7)
aMiSPU with a1 = .7  234.1 (2415) 426(185) 191.6(234.8)
aMiSPUwith ks =1 585(76.9) 27.2(206) 31.3(78.1)

Based on 1000 simulation replications under scenario 1, by fitZig [32], DESeq2 [31],
KW test, aMiSPU with a1 = .7, or aMiSPU with ky = 1. For fitZig, DESeq2 and KW
test, cutoff 5 x 1072, 0.05, 0.05 were chosen, respectively

FP number of false positives, KW Kruskal-Wallis test, OTU operational taxonomic
unit, TP number of true positives
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OTUs, thus aMiSPU performed better. In contrast, with
only a moderate effect size for each informative OTU,
a univariate association test was much less powerful in
identifying informative OTUs.

Analysis of a gut microbiome data set for gender and diet
effects

Diet strongly affects human health, partly by modulating
gut microbiome composition. Wu et al. [34] investigated
the association of dietary and environmental variables
with the gut microbiota, where the diet information was
converted into a vector of micro-nutrient intakes. In this
cross-sectional study, 98 healthy volunteers were enrolled
and habitual long-term diet information was collected
using a food frequency questionnaire. The questionnaires
were converted to intake amounts of 214 micro-nutrients,
which was further normalized via a residual method to
standardize for caloric intake. Stool samples were col-
lected, from which DNA samples were analyzed and
denoised prior to taxonomic assignment. The denoised
sequences were then analyzed by the QIIME pipeline [15]
with the default parameter settings, yielding 3071 OTUs
after discarding the singleton OTUs.

Increasing evidence suggests that there is a sex dif-
ference in the human gut microbiome, which in turn
modulates many pathological and physiological processes
[35, 36]. However, no significant sex effect was detected
using PERMANOVA based on this data set [34]. We thus
re-analyzed the data set for the gender effect by apply-
ing MiRKAT and MiSPU with 100,000 permutations.
Using MiRKAT, we found the p values from weighted
UniFrac, unweighted UniFrac, and the Bray—Curtis ker-
nel to be 0.035, 0.039, and 0.087, respectively. The opti-
mal MiRKAT generated a p value of 0.080, failing to
reject the null hypothesis even at the « = 0.05 sig-
nificance level. In comparison, MiSPUy(2), MiSPU,(3),
MiSPU, (8), and MiSPU,,(c0) provided p values of 0.011,
0.0018, 0.0022, and 0.0022, respectively. MiSPUy,(3) pro-
vided the most significant p value, suggesting that there
is a sparse association pattern between gut microbiome
composition and gender status, and the large associ-
ations between gender and and one or few microbial
taxa were in the same direction. aMiSPU, combining the
weighted and unweighted generalized taxon proportions
and y = {2,3,...,8,00}, yielded a p value of 0.0058,
rejecting the null hypothesis at the « = 0.01 signif-
icance level, suggesting an association between gender
status and microbiome composition. Note that perhaps
due to the relatively high signal sparsity, previous studies
[34, 37] using distance-based methods [13] failed to find
any association. Unlike MiRKAT and distance-based anal-
yses, the aMiSPU test can be used for taxon selection.
Since MiSPU,,(3) provided the most significant p value,
we used the weighted generalized taxon proportion and
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7 = 3. We found that a taxon in Bacteroides explained
more than 90 % of the relative contributions. The top four
taxa all came from Bacteroides, suggesting that gender
was likely associated with Bacteroides, but independent of
other enterotypes (Fig. 4).

One goal of the study is to identify nutrients that are
associated with the gut microbiome composition. We re-
analyzed the data from the gut samples by using MiRKAT
[16] and aMiSPU. Specifically, we applied the optimal
MiKRAT test to analyze the association between each
nutrient and microbial community composition by com-
bining the weighted and unweighted UniFrac distances,
generalized UniFrace distance with « = 0.5, and the
Bray—Curtis distance (after being transformed to the
corresponding similarity matrices). We further applied
aMiSPU, and aMiSPU,, with y = 2,3,...,8,00. Then we
combined aMiSPU, and aMiSPU;, for aMiSPU. Figure 5
shows that there was no uniformly most powerful test.
Depending on the unknown truth, including specific asso-
ciation directions and effect sizes, a given test may or
may not be the most powerful. Perhaps due to the sparse
association between some of the nutrients and microbial
community composition, aMiSPU,, detected some signals
undiscovered by others.

Analysis of a gut microbiome data set for association with
inflammatory bowel disease

The disruption of the gut microbiota is thought to have an
important effect on the etiology of IBDs such as Crohn’s
disease (CD) and ulcerative colitis (UC). Willing et al. [6]
explored the composition of the IBD gut microbiome and

Fig. 4 Phylogenetic tree of Bacteroides enterotypes for a gut
microbiome data set. Black edges stand for non-associated signals,
while red edges stand for the associated signals. The width of the
edges stands for the magnitude of the association
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aMiSPU,
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Fig. 5 Venn diagram of detected associations for the gut microbiome data set. In the testing, 214 nutrients are included. Results are shown for a
p value cutoff of 0.05 (a) and 0.01 (b). MiRKAT represents the results for optimal MiRKAT considering the Bray—Curtis kernel, unweighted UniFrac
kernel, weighted UniFrac kernel, and generalized UniFrac kernel. aMiSPU,, represents a test combining MiSPU,, with y = 2, co. aMiSPU,, and
aMiSPU represent the test summarizing y = 2,3,...,8,00 and combining aMiSPU, and aMiSPU,,, respectively

aMiSPU,, aMiSPU

MiRKAT aMiSPU,

B p value cutoff = 0.01

identified some IBD-associated bacterial signatures. In
this cohort study, 40 twin pairs who were concordant or
discordant for CD or UC were collected and the compo-
sitions of microbial communities in feces samples were
determined via 454 pyrotag sequencing. Sequences were
checked for quality and those that were less than 200 base
pairs in length, contained incorrect primer sequences,
or contained more than one ambiguous base were
discarded [6].

We tested the association between disease status and the
overall microbiome composition via MiRKAT and MiSPU
using 10,000 permutations. MiRKAT yielded p values
from weighted UniFrac, unweighted UniFrac, and Bray—
Curtis kernels of 0.223, 0.059, and 0.475, respectively. The
optimal MiRKAT generated a p value of 0.144, failing to
reject the null hypothesis even at the « = 0.10 signifi-
cance level. In comparison, MiSPU,(2), MiSPU,(3), and
MiSPU, (oc0) provided p values of 0.036, 0.053, and 0.084,
respectively. The aMiSPU test, combining the weighted
and unweighted generalized taxon proportions and y €
{2,3,...,8,00}, vielded a p value of 0.097, slightly smaller
than 0.10, rejecting the null hypothesis at the 0.10 sig-
nificance level. None of these tests could reject the null
hypothesis at the « = 0.05 significance level, perhaps
due to the small sample size. Note that, perhaps because
disease status was more likely to be associated with abun-
dance changes in rare taxa, MiSPU, provided a more
significant p value than MiSPU,.

Analysis of a throat microbiome data set for smoking
effects

Cigarette smokers have an increased risk of infection
involving the respiratory tract. Recently, a microbiome-
profiling study was conducted to investigate the effect of

smoking on the oropharyngeal and nasopharyngeal bac-
terial communities [27]. In brief, they analyzed bacterial
colonization in the upper airway in 29 healthy cigarette
smokers compared with 33 non-smokers. For each DNA
sample, 102 of the bacterial rRNA genes were PCR-
amplified using individually barcoded primer sets. Then
pyrosequences were denoised prior to taxonomic assign-
ment [38]. Using the QIIME pipeline [15], sequences
were clustered at 97 % similarity level into OTUs. They
excluded the samples with fewer than 500 reads and OTUs
with only one read, leading to 60 samples remaining and
856 OTUs. Gender (p < 0.05) and antibiotic use within
the last 3 months were collected.

In a previous analysis [16], MiKRAT was applied to test
the association between smoking and microbial commu-
nity composition while adjusting for the effect of gen-
der and antibiotic status. Using MiRKAT, we found the
p values from weighted UniFrac, unweighted UniFrac,
and Bray—Curtis kernels to be 0.0048, 0.014, and 0.002,
respectively. The optimal MiRKAT generated a p value
of 0.0031 [16]. In comparison, MiSPU,,(2), MiSPU,,(7),
MiSPUy(8), and MiSPUy(0c0) yielded p values of 0.0147,
0.0011, 0.0013, and 0.0012, respectively. MiSPU(8) and
MiSPU(co) provided almost the same p values, further
confirming that there was no need to use other larger y’s.
MiSPUy(7) provided the most significant p value, sug-
gesting that there was a sparse association pattern and
the large associations between smoking status and one or
few microbial taxa were in the same direction. aMiSPUy,,
combining all the MiSPU,, tests with y = 2,3,...,8,00,
yielded a p value of 0.0029. aMiSPU,,, combining all the
MiSPU, tests with y = 2,3,..., 8,00, yielded a p value of
0.0431, less significant than that from aMiSPU,, and sug-
gesting that some abundant taxa may be correlated with
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smoking status. The aMiSPU test, combining aMiSPU,,
and aMiSPUy,, yielded a p value of 0.0050, confirming
the results of the previous analysis, though it was slightly
larger than that of the optimal MiRKAT.

Discussion

We have proposed and studied a class of MiSPU tests and
an adaptive version (aMiSPU) for an overall association
between a microbial community and an outcome of inter-
est. The aMiSPU test is based on the score vector for a
new variable called generalized taxon proportion, which
combines taxon abundance information with phyloge-
netic tree information, rendering it both computationally
efficient and general to cover a wide range of applications
with binary or quantitative outcomes and possible covari-
ates. Our major contribution is that, by recognizing the
limitation of the existing methods without variable selec-
tion or variable weighting, we propose the use of the two
versions of the generalized taxon proportion to account
simultaneously for the effects of relative abundances of
microbial taxa and that of branch lengths in a phyloge-
netic tree, and apply many possible weights indexed by a
single parameter y > 2 to weight the taxa differentially.
This approach can maintain high power in a wide range of
scenarios.

Besides assessing the overall association with a micro-
bial community, one may be interested in finding possible
taxa driving a detected association. Unlike MiRKAT [16]
and other distance-based methods [13, 20, 39], which are
unable for taxon selection, the proposed aMiSPU test can
be used to rank the importance of taxa and thus, provide
some insights on which taxa are likely to be associated
with the outcome of interest.

A few modifications or extensions are possible. First, in
our current implementation of MiSPU, we propose the
use of a generalized taxon proportion and weight it based
on its corresponding score component; we may explic-
itly consider some interactions among the taxa. Second,
we take the minimum p value to combine the results
of multiple MiSPU tests. Instead, we may apply other
methods that may perform better in some scenarios [40].
Finally, though we focused on a binary and continuous
outcome of interest, it might be of interest and possible
to extend MiSPU to cases with a multivariate, longi-
tudinal or survival outcome in a general framework of
regression.

Conclusions

We have evaluated the MiSPU and aMiSPU tests exten-
sively using both simulated and real data, revealing
their excellent performance across many situations. As
noted, aMiSPU maintains high power across a wide range
of scenarios, though the identity of the most power-
ful MiSPU test is expected to change with the varying
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scenarios. In comparison with other multivariate joint
tests, we found that aMiSPU was often much more
powerful, and thus we recommend its use in practice.
An R package MiSPU implementing the aMiSPU test
and a C++ version of the UniFrac distance calculation
are available on GitHub (https://github.com/ChongWu-
Biostat/MiSPU) and CRAN.

Additional file

Additional file 1: Seven supporting figures and one supporting table. A
description of each is given within the file. (PDF 3778 kb)
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