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of the gut microbiome to human metabolic
disease
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Abstract

The gut microbiota has been linked with metabolic diseases in humans, but demonstration of causality remains a
challenge. The gut microbiota, as a complex microbial ecosystem, consists of hundreds of individual bacterial
species, each of which contains many strains with high genetic diversity. Recent advances in genomic and
metabolomic technologies are facilitating strain-level dissection of the contribution of the gut microbiome to
metabolic diseases. Interventional studies and correlation analysis between variations in the microbiome and
metabolome, captured by longitudinal sampling, can lead to the identification of specific bacterial strains that may
contribute to human metabolic diseases via the production of bioactive metabolites. For example, high-quality draft
genomes of prevalent gut bacterial strains can be assembled directly from metagenomic datasets using a
canopy-based algorithm. Specific metabolites associated with a disease phenotype can be identified by nuclear
magnetic resonance-based metabolomics of urine and other samples. Such multi-omics approaches can be
employed to identify specific gut bacterial genomes that are not only correlated with detected metabolites but
also encode the genes required for producing the precursors of those metabolites in the gut. Here, we argue that if a
causative role can be demonstrated in follow-up mechanistic studies—for example, using gnotobiotic models—such
functional strains have the potential to become biomarkers for diagnostics and targets for therapeutics.
Gut microbiome—a new paradigm for
understanding metabolic diseases
Obesity and related metabolic diseases such as diabetes
and cardiovascular disease represent a major public
health threat to both developed countries, such as the
United States, and rapidly developing countries, such as
China and India [1–3]. China, for example, has more
than one hundred million diabetic patients and nearly
five hundred million people with pre-diabetes [4]. Meta-
bolic diseases alone could overwhelm the public health
and medical systems in these countries unless something
substantial happens in the prevention and treatment of
these diseases in the next decade.
Human beings are superorganisms consisting of not

only our own cells but also up to ten times more
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microbial cells, most of which are bacteria residing in
the gut. The gut microbiota consists of hundreds of indi-
vidual bacterial species, each of which contains many
functionally different strains with significant genetic
diversity. Studies of the contribution of the gut micro-
biome to the onset and progression of metabolic dis-
eases, particularly adiposity and insulin resistance, the
two hallmark characteristics of various metabolic dis-
eases in their early stages, have resulted in a paradigm
shift in understanding the root cause of human meta-
bolic diseases in the last decade or so, and may bring
new hope to countries devastated by such diseases [5].
However, most of the evidence so far is associative in na-
ture. Mechanistic studies, which are needed for demon-
stration of causality, are mostly attempted at a community
level or taxon level higher than species, such as genus,
family or even phylum [5]. Bacterial species or other
higher taxa are arbitrarily defined taxonomic units for
clustering and categorizing strains, each of which consists
of genetically identical cell populations. Since bacterial
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strains, equivalent to individual plants and animals, are
the genetically defined, basic functional units of the gut
ecosystem, dissecting the contribution of the gut micro-
biome to human metabolic diseases must be carried out at
the strain level. Identifying and understanding all relevant
strains in the gut microbiota that may have mechanistic-
ally contributed positively (detrimentally) or negatively
(beneficially) to the onset and progression of metabolic
diseases can lead to the discovery of new biomarkers of
predictive and diagnostic value, as well as new targets for
effective interventions in humans.
We argue that, unless we can identify specific func-

tional strains of the gut microbiome and understand
mechanistically how each individually or in combination
contributes to the onset and progression of metabolic
diseases, the translation of new microbiome findings to
clinical practice for diagnosis and therapeutics will be ra-
ther limited. We discuss how high-quality draft genomes
can be assembled directly from metagenomic datasets to
provide strain-level genetic data that can be correlated
with disease-relevant variations of metabolites in sam-
ples such as urine, as an example of systems-level dis-
covery approaches for identifying specific functional
bacterial strains that may play a causative role in human
metabolic diseases. These strains can then be isolated
into pure culture and confirmed mechanistically as hav-
ing a causative role in metabolic diseases using gnoto-
biotic animal models. This approach may help to move
the microbiome field from association at the community
or high-taxon level towards causality at the strain level.
Such genomic- and molecular-level studies can eventu-
ally lead to the discovery of biomarkers and drug targets
in the gut microbiome for clinical applications.

Role of the gut microbiota in metabolic diseases
Excessive visceral fat deposition is a primary pathological
condition underlying many forms of metabolic diseases.
A seminal paper in 2004 reported that the gut micro-
biota might act as an environmental factor for regulating
fat storage in the host [6]. Subsequently, the results of
several studies pointed to the involvement of the gut
microbiota in fat accumulation [5]. Germ-free mice are
resistant to high-fat-diet-induced obesity [7]. Lean germ-
free mice accumulated 60 % more fat after being colo-
nized with a normal gut microbiota despite a reduction
in their food intake after the conventionalization. Trans-
plantation of gut microbiota from obese mice or humans
induced significantly higher fat accumulation in recipient
mice than transplantation of gut microbiota from lean
donors [8, 9]. Removal of gut microbiota by using cock-
tails of broad-spectrum antibiotics prevented fat accu-
mulation even in genetically obese mice, such as ob/ob
mice or Toll-like receptor 5 knockout mice [10, 11]. It
was found that gut microbiota may promote fat
accumulation by reducing the expression level of genes
required for fatty acid oxidation, such as Fiaf (encoding
fasting-induced adipose factor) in the gut, and by in-
creasing the activity of genes needed for synthesizing
new fat, such as Acc1 (encoding acetyl-CoA carboxylase
1) and Fas (encoding fatty acid synthase) in the liver [6].
In 2015, a study showed that depletion of the gut micro-
biota by antibiotics or in germ-free mice increased
browning of white adipose tissue and reduced obesity in
the mice, possibly via eosinophil infiltration, enhanced
type 2 cytokine signaling and M2 macrophage polarization
[12]. Thus, dysregulation of genes involved in host lipid
metabolism may be an important mechanism by which
the gut microbiome promotes excessive fat accumulation
in obesity.
Insulin resistance, the other hallmark feature of meta-

bolic diseases [13, 14], has been mechanistically linked
to a low-grade, systemic, chronic inflammatory condi-
tion in mice and humans [15]. The gut microbiota has
also been associated with insulin resistance in mice and
humans. Germ-free mice are insulin sensitive but can
become insulin resistant after being conventionalized
with gut microbiota, particularly from obese mice [7]. In
obese human volunteers, systemic insulin sensitivity was
improved within 6 weeks after receiving gut microbiota
transplantation from healthy donors [16]. Thus, an
obesity-associated gut microbiota may work as a viru-
lence factor in driving insulin resistance.
Endotoxin, a proinflammatory form of lipopolysac-

charide (LPS), was shown to be able to induce inflamma-
tion followed by both adiposity and insulin resistance
when subcutaneously injected into mice fed on a low-
calorie diet for several weeks [17]. This was the first evi-
dence that LPS, a microbial product from the gut micro-
biota, may be driving inflammation and contributing to
fat accumulation and insulin resistance. These results in-
dicated that some endotoxin producers in the gut micro-
biota may contribute to the proinflammatory condition
and progression of insulin resistance in the host. Recent
studies suggest a possible role for LPS in fatty liver dis-
ease [18] and obstructive sleep apnea [19]—an indication
that inflammation sustained by microbial products such
as LPS may drive more forms of metabolic disorders.
Thus, compelling evidence from mouse and human
studies supports a pivotal role of the gut microbiota in
the onset and progression of metabolic diseases. How-
ever, it has been a great challenge for the field to identify
all relevant members of the gut microbiota that are asso-
ciated with the development of metabolic diseases, and
to demonstrate their causative contribution to patho-
physiological changes critical for disease initiation and
progression.
When dissecting and demonstrating the causative con-

tribution of relevant members of the gut microbiome to
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human metabolic diseases, we should follow the logic of
Koch’s postulates, which were established for identifying
a causative agent in an infectious disease, but adapt
them to the polymicrobial nature of the role of the gut
microbiome in human chronic diseases. Firstly, we
should do microbiome-wide association studies, in
which all members of the gut microbiome that are posi-
tively or negatively correlated with disease phenotype(s)
need to be identified. Secondly, the associated members
should be isolated into individual pure cultures or
strains. Individual strains or their combinations should
be inoculated into germ-free animals to reproduce at
least part of the disease phenotype(s). Thirdly, the mo-
lecular mechanisms underlying causation should be
established, from colonization of the gut to development
of the disease endpoints. After fulfilling these rigorous
protocols, these strains would be accepted as causatively
contributing to human metabolic diseases. They then
have the potential to be new biomarkers and drug tar-
gets for clinical applications [5].
High-quality association studies are critical for the

successful identification of potential key players of the
gut microbiome in metabolic diseases, which can then
be followed by rigorous molecular-level mechanistic
studies as the ultimate evidence for causality. We argue
that association studies at the strain level are pivotal for
reducing spurious correlations and identifying “real tar-
gets” for mechanistic studies.

Bacterial species and strains in metabolic disease
Bacterial functions are strain-specific
The gut microbial ecosystem consists of bacterial popu-
lations as individual members, each of which has genet-
ically identical cells derived from the same parent cell
[20]. Any two populations can be distinguished by at
least one single nucleotide polymorphism, and they may
have different adaptive functions in the ecosystem—for
example, a point mutation in a drug resistance gene can
make a mutant population survive a new round of anti-
biotic medication, while the wild-type may have been
wiped out [21]. Bacterial populations, which have been
isolated in pure culture or detected by partial or
complete sequencing of their genomes, are defined as
strains [22]. One strain is thus (at least partially) a
known population in the gut ecosystem. In bacterial tax-
onomy, a “species” would contain individual strains, with
up to 30 % difference in their genomic homology; that
is, two strains in the same named bacterial species can
be genetically more different than humans and mice,
which have only about 10 % genomic difference [23].
Genomic sequencing of many strains in the same named
bacterial species has already revealed this huge genetic
microdiversity. In all 17 sequenced strains of Escherichia
coli, 2200 genes were conserved. However, pan-genome
prediction indicates that E. coli species may contain a
reservoir of more than 13,000 genes [24]. Complete se-
quencing of 34 strains of Lactobacillus paracasei identi-
fied about 1800 orthologous genes (OGs) in its core
genome, but 4300–4500 OGs in its pan-genome [25].
Ecological functions in the gut microbiome would thus
be population-dependent. Any attempts to dissect the
contribution of the gut microbiome to human metabolic
diseases starting with microbiome-wide association stud-
ies must recognize that the disease-relevant functions of
the gut microbiota may well be strain-specific.

Potential bias in taxon-based analysis
Different structural patterns of the gut microbiota have
been associated with metabolic diseases, such as the ra-
tio between Firmicutes/Bacteroidetes, high gene count
versus low gene count, or profiles of specific operational
taxonomic units (OTUs) that are associated with pro-
gression of a particular disease phenotype [26–32]. Pat-
terns of the gut microbiota associated with obesity and
metabolic disorders have been sought at the individual
OTU level (roughly at species level) up to phylum level
in16S rRNA gene-sequencing-based analysis. However,
species in the same taxon from genus up to phylum can
show widely diverse relationships with a particular dis-
ease phenotype—some may be positively associated,
some negatively, and others may not be associated at all
[33, 34]. If a function is encoded in the “core genome” of
a taxon, all members of that taxon should have that
function. If the function is encoded in the pan-genome
only, one or a limited number of members would have
that function [35, 36]. It is thus a serious concern if we
consider all species (OTUs) in a taxon as one group and
seek associations at each taxonomic level, before we can
be sure that all OTUs in the same taxon encode the
same functions. However, we know that even within the
same species, there is often high micro-diversity.
Recent developments in metagenomics have started to

provide researchers with tools that can dissect the gut
microbiome at the strain level [37–40]. For example, a
recently developed canopy-based algorithm can be used
to assemble high-quality draft genomes of predominant
gut bacteria, based on the principle that if two genes are
encoded in the same DNA molecule, their abundances
across all the samples in which they can both be detected
would be highly correlated to each other [41]. Individual
non-redundant genes obtained from metagenomic data-
sets of many fecal samples can be binned into co-
abundance gene groups (CAGs) if their abundances are
highly correlated with each other. Genes in each CAG are
potentially originally encoded by the same DNA molecule.
Assembly of high-quality reads mapped to all the genes in
the same CAG can generate high-quality draft genomes.
This algorithm allowed researchers to get direct access to
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the genome variations of predominant bacteria in the gut
microbiome. Because each genome represents one single
population, this means that strain-level, genome-centric
analysis is possible with metagenomic datasets. However,
as mentioned earlier, any such genome/strain-level studies
need to be confirmed by downstream mechanistic studies,
ideally with the strain containing the genome in pure cul-
ture, to establish a gnotobiotic model of metabolic disease.

Functional species and strains of the gut microbiota in
metabolic diseases
In recent years, a number of functional species and
strains have been identified in human metabolic diseases.
Some of these may induce or aggravate the disease, while
others may be protective.
We found one example of an obesity-inducing strain

in a human gut opportunistic species, Enterobacter clo-
acae, which is known to cause bacteremia when translo-
cated into the bloodstream of immune-compromised
individuals [42]. In a volunteer with 174.9 kg initial
bodyweight, this species was found to comprise nearly
30 % of the total gut bacterial populations. After taking a
dietary intervention aimed at modulating the gut micro-
biota, this species was almost non-detectable in the gut
and the volunteer lost more than 50 kg of baseline body-
weight over 23 weeks, along with recovery of all parame-
ters of metabolic syndrome. A strain named B29 was
isolated from the volunteer’s baseline fecal sample and
was confirmed to be a member of the overgrowing spe-
cies of E. cloacae. When inoculated into the gut of
germ-free C57/B6 mice fed on a high-fat diet, B29
induced fully developed obesity phenotypes, including
inflammation, adiposity and insulin resistance. B29
colonization was also shown to be able to reduce the ex-
pression level of Fiaf in the ileum and promote the ex-
pression of Acc1 and Fas in the liver. B29-colonized
mice fed on normal chow or germ-free control mice fed
on a high-fat diet did not become obese. Only the com-
bination of a high-fat diet and mono-association of B29
led to elevated endotoxin levels in the serum and sys-
temic inflammation, and local inflammation in the liver
and fat pads. This is the first reported example in which
a single strain can induce fully developed obesity pheno-
types in gnotobiotic mice. This strain was thus identified
as an obesity-inducing “pathogen” by following the logic
of Koch’s postulates.
Although a member of a bacterial species that can

cause infectious diseases [43], E. cloacae B29 did not in-
duce any notable septic symptoms even when directly
injected into the bloodstream of specific-pathogen-free
mice [42]. Genomic sequencing of B29 did not lead to
the discovery of known virulence genes apart from genes
involved in the LPS biosynthetic pathway. B29 is thus a
non-infectious strain of this pathogenic species. B29
reached a stunningly high population level in the gut of
its morbidly obese human host—more than 30 % of the
total gut bacterial populations. This indicates that this
strain has the genetic capacity to outcompete other
members of the gut microbiota and become the predom-
inant population. Reaching such a high population level
would differentiate it from other LPS endotoxin pro-
ducers in the gut in that it could make a substantial con-
tribution to inflammation and obesity phenotypes.
It is still not clear why this population can reach such

a high level without evoking an acute host immune sys-
tem response. The patient was reported to have had a
serious infection at 4 months old and had received heavy
antibiotic medication, and started to gain weight after
that incidence. One possibility might be that this strain
had colonized the host’s gut so early in life that the
host’s immune system developed tolerance to its
colonization in the gut. Thus, at least three genetically
encoded functions might be needed for a gut bacterium
to be a causal agent in obesity development: (1) a viru-
lence factor that can induce inflammation—in this case,
the best candidate is LPS endotoxin; (2) the capacity to
grow to a high population level in the complex gut eco-
system; and (3) the capacity to evade host immune sur-
veillance so that a high population level can not only be
reached but also be maintained in the gut ecosystem.
However, all these need to be mechanistically tested.
The gnotobiotic model, in which B29 alone or in com-
bination with other members of the gut microbiota can
colonize the intestine, represents an ideal system for fu-
ture elucidation of the molecular mechanism of causation,
from colonization by particular members of the gut
microbiome to the development of a non-communicable
disease such as obesity.
Hopefully, the identification of B29 as a potential

pathogenic strain for obesity-related disease from the
E. cloacae species, which usually induces infectious
diseases, will serve as a good example to encourage
researchers in the microbiome field to focus on
strain-level diversity when their primary interest is to
understand not only the association but also the
causative functions of gut bacteria in human chronic
diseases [5, 42].
Potentially beneficial strains in obesity have also been

identified, isolated and validated in animal models. A
strain of Akkermansia muciniphila has been shown to
have a protective effect against obesity in both humans
and mice [44, 45]. A. muciniphila was found to be nega-
tively associated with obesity and type 2 diabetes in ro-
dents and humans. Administration of viable cells of the
strain A. muciniphila MucT (ATCCBAA-835) protected
high-fat-diet-fed mice from developing metabolic syn-
drome, possibly via increasing intestinal levels of endo-
cannabinoids that control inflammation, gut barrier



Zhang and Zhao Genome Medicine  (2016) 8:41 Page 5 of 10
integrity and secretion of gut peptides, including the
antimicrobial peptide RegIIIγ.
In an association study involving 416 twin pairs, the

Christensenellaceae family showed increased abundance
in individuals with low body mass index (BMI). After be-
ing transplanted to germ-free mice, Christensenella min-
uta (DSM22607), a strain of the only cultured member
of the family Christensenellaceae, reduced weight gain
and altered the microbiome of recipient mice. The strain
has been reported to produce short-chain fatty acids, but
it is not clear whether this function contributes to its
protective effect [46]. It is also not clear whether all the
members of this family would have this protective func-
tion. For that, the genes encoding this beneficial func-
tion would need to be present in the core genome of all
members of this family [47].
The discovery of E. cloacae B29 as a potential patho-

genic strain for human obesity is not accidental. It built
on prior evidence accumulated over many years in the
field on LPS, inflammation and obesity in both animal
studies and human epidemiological studies [5]. However,
such a path to discovery is of limited efficiency. The hu-
man microbiome field requires many new forms of tech-
nologies for the systematic discovery of most, if not all,
the potential key players of the microbiome that might
contribute to human chronic diseases.
Gut bacteria contribute to human metabolic pheno-

types by producing and delivering bioactive metabolites
into the host systemic circulation [48]. Metagenomics
can identify specific strains or populations that may have
the genetic potential to produce such bioactive sub-
stances and to be involved in a disease phenotype.
Whether a particular strain actually contributes to the
disease needs to be confirmed with functional studies;
that is, whether the bioactive metabolites were actually
produced by these bacteria and transported into their
hosts, and whether these metabolites were indeed re-
sponsible for the disease phenotype. Thus, one import-
ant strategy is to link a strain or genome with a
particular metabolite involved in a disease process. An
integrated metagenomics–metabolomics approach may
well serve such needs for the field.

Approaches for dissecting the functional
contribution of the gut microbiome to metabolic
disease
Gut bacteria can produce various bioactive metabolites,
which can enter the bloodstream of the host via the en-
terohepatic circulation or via a partially impaired gut
barrier [48, 49]. One third of the small molecules in the
bloodstream can be of gut bacterial origin [50]. Some of
the bioactive metabolites can be detrimental to host
health, such as those with cytotoxicity, genotoxicity or
immunotoxicity [51–55]. When these toxic metabolites
enter the bloodstream, they can contribute to the onset
and progression of many forms of chronic diseases such
as autism, cancer and diabetes [17, 56–59]. Notably, as a
detoxification mechanism, these toxic metabolites can
be further transformed by host liver enzymes into water-
soluble derivatives that are excreted in the urine [57, 60].
Thus, one important strategy for identifying the species
or strains of the gut microbiota that may be involved in
the production of specific toxic metabolites could be to
correlate species- or strain-level variations of gut bac-
teria with variations of metabolites in the urine and in
other types of samples (Fig. 1).

Integrating metagenomic and metabolomic approaches
In a proof-of-principle study, we collected urine and
fecal samples from a four-generation, seven-member
Chinese family over monthly intervals [61]. This time-
series approach for the collection of both fecal and urine
samples can help to capture intra-individual and inter-
individual variations in both gut bacterial populations
and urine metabolites to allow their correlation, to de-
termine the functions of specific strains of the gut
microbiota. Population changes of predominant bacteria
were assessed by DNA fingerprinting and sequencing.
Urine metabolites were profiled using 1H nuclear mag-
netic resonance (NMR) spectroscopy-based metabo-
nomics. Although we could only identify a limited
number of predominant bacteria with the fingerprinting
technology, we achieved sub-species-level resolution of
the predominant populations because this approach
allowed two DNA fragments with a single nucleotide dif-
ference in their sequences to be resolved into two bands.
A multivariate statistical method was used to correlate
changes in the urine and fecal samples. This analysis led
to the identification of ten bacterial populations, each of
which showed a correlation with at least one urine
metabolite. Two bacterial populations were identified as
different strains of the species Faecalibacterium praus-
nitzii. One strain had associations with two urine metab-
olites, while the other strain had eight associations with
urine metabolites—six positive associations and two
negative ones. As a non-targeted discovery approach,
this method opened new avenues for determining the
functions of individual members of the microbiota [61].
Since the publication of this integrated metagenomics

and metabolomics methodology, next-generation, high-
throughput sequencing has revolutionized microbiome
research. Metagenomic sequencing of total fecal DNA
samples now enables researchers to access genomic in-
formation from gut bacteria that would otherwise be in-
accessible using traditional culture-based technologies
[62, 63]. At first, this genomic information can be used
to profile variations at the individual gene level. Many
studies have focused on functionally relevant genes that



Fig. 1 Integrated metagenomics–metabolomics approach for dissecting the strain-level contribution of the gut microbiome to human metabolic
disease. Longitudinal, interventional experiments are accompanied by time-series and multisite sampling for capturing strain-level changes in the gut
microbiota, and variations of host disease phenotypes and metabotypes. From blood samples, bioclinical parameters are obtained as measurements of
changes in disease phenotypes. From the fecal samples, total DNA is extracted and shotgun sequenced. Genes assembled and identified in individual
samples are then integrated to form a cross-sample, non-redundant gene catalog. The abundance profile of each gene in the catalog is assessed by
counting the matching sequence reads in each sample. A canopy-based algorithm is used to cluster the large number of genes in the catalog into
co-abundance gene groups (CAGs). Sequence reads from individual samples that map to the CAGs and their contigs are then extracted and used to
assemble high-quality draft genomes, each of which is a strain or a group of highly similar strains. For the urine, plasma, or fecal water samples,
metabolomic approaches such as nuclear magnetic resonance (NMR)-based metabolite profiling is used to capture variations in metabolites or host–
bacteria co-metabolites. Variations in specific metabolites during the interventions or correlated with disease phenotypes are identified via multivariate
statistics. Correlation analysis between these specific metabolites and prevalent genomes may lead to the identification of specific strains that harbor
the genes needed to produce precursors of the disease-relevant metabolites or host–bacteria co-metabolites. These strains can be isolated based on
their genomic information. Gnotobiotic animal models can be established by colonization with individual or combinations of these strains for
mechanistic studies to validate and understand their causative roles in the development of metabolic disease phenotypes. Eventually, we may
answer questions such as “Who?” does “What?” and “How?” regarding the role of the gut microbiome in human metabolic diseases. FBI fasting
blood insulin, FBS fasting blood sugar, GC–MS gas chromatography–mass spectrometry, HDL high-density lipoprotein, IL interleukin, ITT insulin
tolerance test, LC liquid chromatography, LC–MS liquid chromatography–mass spectrometry, LDL low-density lipoprotein, OGTT oral glucose
tolerance test, TC total cholesterol, TE triglycerides, TNF tumor necrosis factor
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might be associated with host health or disease pheno-
types [64–67]. Such a gene-centric approach for metage-
nomic data-mining has generated many new insights
into the role of the gut microbiome in human metabolic
diseases; for example, volunteers with a high gene count
in their microbiomes seem to be better at responding to
the same dietary intervention for controlling obesity
than those with a low gene count [28, 68]. However, if
millions of genes are identified from a metagenomic
dataset, it is not technically feasible to correlate their
changes with urine metabolome changes. Eventually, we
still need to identify the genomic sequences of the
strains in the gut microbiome that correlate with specific
metabolites or disease phenotypes in order to understand
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the ecological interactions among them and between them
and their hosts.
With this aim, we conducted a clinical trial of a gut

microbiota-targeted dietary intervention during which
urine and fecal samples were collected so that an inte-
grated metagenomics–metabolomics strategy could be
used to dissect the contribution of the gut microbiome
to human metabolic disease [69]. Time-series sample
collection in such a study design would increase the stat-
istical power needed to correlate strain-level variations
in the gut ecosystem with metabolites produced by gut
bacteria and delivered into the host systemic circulation.
In this clinical trial, 17 morbidly obese children with a

genetic defect called Prader–Willi syndrome were hospi-
talized for 3 months, and 21 children with simple obesity
were hospitalized for 1 month, and both groups were
placed on a diet based on whole grains, traditional Chin-
ese medicinal foods and prebiotics. At baseline and at
the end of each month, urine and fecal samples were
collected. Both cohorts lost substantial amounts of their
initial bodyweight and exhibited significantly improved
glucose homeostasis, lipid profiles and liver function.
Transplantation of the pre- and post-intervention gut
microbiota from the same individual into germ-free mice
showed that the pre-intervention microbiota induced in-
flammation in the gut and liver, and fat accumulation in
adipocytes of the germ-free mice, whereas transplant-
ation of the post-intervention microbiota did not induce
these effects. 16S rRNA gene sequencing-based analysis
also confirmed that the dietary intervention significantly
modulated the gut microbiota structure of the volunteers,
with concomitant improvement of metabolic phenotypes.
To assess the contribution of the gut microbiome to child-
hood obesity in the two cohorts studied, we then used an
integrated metagenomics–metabolomics approach to de-
termine whether strain-level dissection could be achieved.
Metagenomic sequencing of 110 fecal DNA samples at

8 Gb each led to the identification of two million non-
redundant genes. Using co-abundance analysis, 376
CAGs were obtained with more than 700 genes, indicat-
ing that they were bacterial genomes. Of these, 161
CAGs were selected for further analysis as they were
shared by more than 20 % of the samples, and thus rep-
resented the predominant bacterial populations in these
cohorts. From these 161 CAGs, 118 high-quality draft
genomes were assembled, each of which could meet at
least five of the six criteria for assessing the quality of
Human Microbiome Project reference genomes obtained
from sequencing of pure cultures.
After the dietary intervention, NMR-based metabolo-

mic analysis of urine samples showed that the levels of
four metabolites were significantly increased and the
levels of nine metabolites were decreased. Interestingly,
among the nine metabolites with decreased levels was
trimethylamine-N-oxide (TMAO), a co-metabolite be-
tween host and gut bacteria, which can promote plaque
formation and increase the risk for atherosclerosis.
TMAO is transformed in the liver from a precursor
called trimethylamine (TMA), which in turn is produced
by some gut bacteria by fermenting dietary choline from
animal fat such as phosphatidylcholine [70]. To deter-
mine which gut bacteria can convert choline into TMA,
we used Spearman correlation to test the association be-
tween the 118 high-quality draft genomes and the urine
concentration of TMAO. Among the 31 genomes that
were correlated with TMAO concentration in the urine,
13 were found to contain the genes encoding choline
TMA-lyase and choline TMA-lyase-activating enzyme,
the two genes required to convert choline to TMA.
These genomes are members of Ruminococcus spp.,
Parabacteroides spp. and Bacteroides spp. The next step
would be to isolate these bacteria and validate their
functions for converting choline to TMA and their asso-
ciation with increased risk of atherosclerosis in gnoto-
biotic models.

The need for new integrative approaches
Since the publication of proof-of-principle studies to
show the feasibility of using integrated metagenomics–
metabolomics approaches for “functional metagenomics”,
researchers have called for “a marriage between metage-
nomics and metabolomics”, not only in the human micro-
biome field but also in almost all other microbiome fields
[71–76]. Such approaches are facilitating the identification
of bacterial populations that are associated with functional
effects in health and disease.
Integrated microbiome and metabolome analysis identi-

fied the genera Ruminococcus and Butyricicoccus as being
associated with butyrate production, and distinguished
elderly subjects in the community from those in long-
term residential care [77]. Two-week food exchanges in
subjects from two populations, in which African–Ameri-
cans were fed a high-fiber, low-fat African-style diet and
rural Africans were fed a high-fat, low-fiber Western-style
diet, resulted in changes at the specific genus level of the
microbiota and associated changes in metabolites in urine
and fecal matter known to affect cancer risk [78].
Chromatographic–mass spectrometric methods, such as

ultra-performance liquid chromatography–mass spectrom-
etry (UPLC–MS)-, LC–MS-, and gas chromatography–
mass spectrometry (GC–MS)-based profiling techniques,
have also been widely used to detect metabolites in urine,
plasma, or other samples [79, 80].
New approaches for the integration of microbiome

and metabolomic profiles are also being developed. For
example, Noecker and colleagues introduced a compre-
hensive analytical framework to systematically link varia-
tions in metabolomic data with microbial community
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composition [81]. Bouslimani and colleagues described
the implementation of an approach to study the chem-
ical make-up of the surface of human skin and to correl-
ate this with specific skin microbes, using three-
dimensional mapping of MS data and microbial 16S
rRNA gene sequences [82]. However, strain-level dissec-
tion is still a bottleneck for many association studies
based on these various approaches. The integrated meta-
genomics–metabolomics strategy described earlier can
identify high-quality draft genomes, which are not only
associated with disease-relevant metabolites, but are also
shown to encode the genes required for producing the
precursors of those metabolites. These identified genomes
represent good candidates for downstream isolation and
mechanistic studies in gnotobiotic models. Yet this ap-
proach has its limitations. For example, the canopy-based
algorithm can only reconstruct high-quality draft genomes
of prevalent gut bacteria. Furthermore, the NMR-based
metabolomics method is also rather limited in identifying
disease-relevant urine metabolites. Therefore, more uni-
versally applicable approaches are needed to link spe-
cific strains or populations in the microbiome with
specific metabolites to facilitate strain-level dissection
of the contribution of the gut microbiome to human
metabolic diseases.

Conclusions and future directions
Strain-level dissection of metagenomic datasets is crucial
for conducting high-quality association studies as the
first step for demonstrating a causative role for the gut
microbiome in human metabolic diseases. However,
many confounding factors may impair the quality of as-
sociative findings.
The genetic capacity of a functional microbial gene or

pathway to contribute to a disease phenotype in the host
does not necessarily lead to a causative interaction in the
gut ecosystem. For example, the genomes of many bac-
terial strains in soil environments encode the pathway
for converting choline to TMA [83]. We can envision
that colonization of germ-free animals with such strains
may lead to the associated disease phenotype, but such
results may be spurious because these strains are not
normal members of the gut ecosystem. Only TMA-
producing strains resident in the human gut may have
the potential to contribute to atherosclerosis.
Our Prader–Willi syndrome study [69] showed that

among the 31 bacterial genomes that were positively
associated with urine TMAO concentration, only 13
encoded the functional genes required to convert cho-
line to the precursor TMA. This means that more than
half of the associations may not be relevant for this func-
tion. Isolating the strains corresponding to the 13 ge-
nomes, that were not only correlated with urine TMAO
concentration but also harbored the functional genes,
would be the next logical step to move to mechanistic
studies to investigate a causative role for these strains in
the development of the disease phenotype.
Thus, direct assembly of high-quality draft genomes

from metagenomic datasets, covering samples with suffi-
cient inter-individual and intra-individual variations in
bacterial populations, may transform human micro-
biome studies from mainly cataloging and inventory, to
functionally demonstrating causative links between spe-
cific species or strains of the gut microbiota and defined
pathophysiological processes in the host. Correlating
fluctuations of these bacterial genomes in the gut with
disease-relevant metabolites in samples such as urine,
serum or fecal water can facilitate not only the identifi-
cation of potentially important bacteria, but also the for-
mulation of hypotheses on how they may impact host
metabolism and participate in the pathology of chronic
diseases. Findings from such studies have the potential
to identify key functional bacterial strains in the gut
microbiota as new diagnostic biomarkers and interven-
tional targets for metabolic diseases.
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