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Abstract

Background: Personalized therapy provides the best outcome of cancer care and its implementation in the
clinic has been greatly facilitated by recent convergence of enormous progress in basic cancer research,
rapid advancement of new tumor profiling technologies, and an expanding compendium of targeted cancer
therapeutics.

Methods: We developed a personalized cancer therapy (PCT) program in a clinical setting, using an integrative
genomics approach to fully characterize the complexity of each tumor. We carried out whole exome sequencing
(WES) and single-nucleotide polymorphism (SNP) microarray genotyping on DNA from tumor and patient-matched
normal specimens, as well as RNA sequencing (RNA-Seq) on available frozen specimens, to identify somatic
(tumor-specific) mutations, copy number alterations (CNAs), gene expression changes, gene fusions, and also
germline variants. To provide high sensitivity in known cancer mutation hotspots, lon AmpliSeq Cancer Hotspot
Panel v2 (CHPv2) was also employed. We integrated the resulting data with cancer knowledge bases and
developed a specific workflow for each cancer type to improve interpretation of genomic data.

Results: We returned genomics findings to 46 patients and their physicians describing somatic alterations and
predicting drug response, toxicity, and prognosis. Mean 17.3 cancer-relevant somatic mutations per patient were
identified, 13.3-fold, 6.9-fold, and 4.7-fold more than could have been detected using CHPv2, Oncomine Cancer
Panel (OCP), and FoundationOne, respectively. Our approach delineated the underlying genetic drivers at the
pathway level and provided meaningful predictions of therapeutic efficacy and toxicity. Actionable alterations
were found in 91 % of patients (mean 4.9 per patient, including somatic mutations, copy number alterations,
gene expression alterations, and germline variants), a 7.5-fold, 2.0-fold, and 1.9-fold increase over what could have
been uncovered by CHPv2, OCP, and FoundationOne, respectively. The findings altered the course of treatment
in four cases.
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Conclusions: These results show that a comprehensive, integrative genomic approach as outlined above

significantly enhanced genomics-based PCT strategies.

Keywords: Cancer, Genomics, Personalized medicine, Clinical application

Background

Personalizing cancer therapy is a well-established con-
cept, given that every patient harbors a unique constella-
tion of variants that influence the risk, onset, and
progression of their disease. For every specific type and
stage of cancer, clinical manifestations differ between in-
dividuals, showing variations in tumor behavior and pro-
gression as well as variations in responses to a given
treatment regimen, largely driven by the unique genomic
(DNA, RNA, and epigenetic) makeup of the individual
tumors. Developing a personalized therapy strategy to
ensure an optimal outcome for individual cancer pa-
tients is possible given the dramatic progress in basic
cancer research at the molecular and cellular levels, the
rapid advancement of new technologies that enable fast
and cost-effective comprehensive characterizations of
tumors at the molecular level, and an expanding com-
pendium of targeted cancer therapeutics.

Many FDA-approved targeted cancer drugs have phar-
macogenomic labels that include biomarkers predictive
of drug response, in addition to germline variants that
are associated with drug metabolism or may impact
treatment response [1]. In cases where a patient tests
positive for a specific biomarker that indicates an FDA-
approved therapy for the given tumor type, developing a
personalized therapeutic strategy is straightforward. For
example, crizotinib is indicated as a treatment for non-
small cell lung cancer tumors harboring ALK gene
translocations and vemurafenib is indicated as a treat-
ment for metastatic melanoma tumors harboring the
BRAF p.V600E mutation. However, for the vast majority
of tumor types and available therapeutics, a biomarker-
therapeutic link is not straightforward.

The rapid development of next-generation sequencing
(NGS) technologies as a high-throughput, low-cost way
of generating whole genome (WGS) and whole exome
(WES) sequence data has enabled a new paradigm in
precision medicine for oncology. Large-scale NGS stud-
ies over the last several years have uncovered novel
oncogenic drivers and started to depict genetic land-
scapes across a number of cancer types [2—4]. This re-
search advanced the understanding of the underlying
genetics of cancer and enabled acceleration of personal-
ized cancer therapy (PCT) [5]. Retrospective analyses of
archived tumor samples using targeted gene panels or
WES have been reported [6-9]. Actionable mutations
were identified in 80-90 % of the tumor samples in

these studies. A number of prospective studies have also
demonstrated the clinical utility of NGS-based cancer
genetic testing. One pilot study generated low-depth
WGS, WES, and RNA sequencing (RNA-Seq) data on
four patients with advanced cancers, and these genomic
data for two patients were reviewed by a molecular
tumor board to deliver clinical recommendations [10].
WES of formalin-fixed, paraffin-embedded (FFPE) tumor
samples has been recently reported suggesting that
comprehensive exome sequencing provides a complete
spectrum of clinically relevant genetic alterations, as
demonstrated in one case where previously undetected
genetic alterations led to clinical trial enrollment and ob-
jective clinical response [11]. WES of tumor-normal
pairs from a 97-patient cohort of metastatic and
treatment-resistant cancers provided informative, action-
able results in 91 (94 %) cases, and treatment was guided
by WES results in five (5 %) of these cases [12]. A multi-
institutional integrative WES and RNA-Seq of 150 meta-
static, castration-resistant prostate cancer (mCRPC) has
identified actionable molecular alterations in 90 % of
cases with 8 % harboring germline findings [13]. Most
recently, the Peds-MiOncoSeq consortium reported clin-
ical WES and RNA-Seq of 91 pediatric refractory or re-
lapsed cancer patient samples [14]. Actionable findings
were obtained in 42 (46 %) cases, and resulted in indi-
vidualized actions involving either a change of treatment
or genetic counseling in 23 (25 %) cases.

Here we describe the development and clinical appli-
cation of an integrative genomic approach to facilitate
PCT. At the time of this writing, a total of 65 patients
with malignancies were enrolled in our study. For these
patients, we performed WES, targeted panel sequencing,
and single-nucleotide polymorphism (SNP) microarray
genotyping on tumor and patient-matched normal DNA
samples, as well as RNA-Seq on tumor and adjacent
normal tissue samples, when available. Genomic data
analysis was integrated with cancer knowledge bases and
a cancer-type-specific workflow was developed for data
interpretation. Our results support the concept that
WES provides a more complete spectrum of cancer gen-
omic alterations in comparison to targeted cancer
panels. WES of tumor-normal paired samples also allowed
us to assess germline variants conferring increased cancer
risk or having involvement in drug metabolism. Moreover,
we show that RNA-Seq data provide additional clinically
relevant information. As expected, the integrated genomic
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approach utilized in our study identified more cancer-
relevant somatic mutations and more actionable alter-
ations than several commercially available targeted cancer
panels in use today. In comparison to previous prospective
clinical sequencing studies using WES [11, 12], we applied
comprehensive genomic profiling utilizing multiple plat-
forms including WES, SNP microarrays, and RNA-Seq.
Although both WES and RNA-Seq were used in the
mCRPC study, it was not clear if written reports of gen-
omic findings with therapeutic recommendations were
returned to the patients and the physicians, and if the
findings had impacted therapeutic decisions [13]. While
the Peds-MiOncoSeq consortium published WES and
RNA-Seq of 91 pediatric cancers and the clinical actions
taken based on genomic findings [14], our report repre-
sents a large-scale prospective clinical study in adult solid-
tumor cancer patients applying comprehensive genomic
profiling to guide PCT and returning results to patients
and physicians. In addition, this is also the first study in a
prospective clinical setting where multiple platforms are
utilized to identify somatic mutations (WES and targeted
panel) and to detect copy number alterations (WES and
SNP array) for cross-platform comparison and validation.

Methods

Patient enrollment

Patients were either self-referred or physician-referred.
Enrollment criteria changed during the multi-year
course of the study, which spanned two annual renewals
of the institutional biorepository and genomic sequen-
cing protocols approved by the Mount Sinai Institutional
Review Board (IRB), but generally included: solid tumor
cancer (emphasis on colorectal, breast, or medullary thy-
roid carcinoma) and a prognosis of 6 months of survival
(amended to 12 months partway through the study). Pa-
tients were allowed regardless of geographic location
within the United States or whether they received any
care for their cancer at Mount Sinai. Self-reported med-
ical history and pedigrees to assess for evidence of famil-
ial cancer were collected by the genetic counselor during
the consent and enrollment process. For Mount Sinai
patients, their electronic medical records (EMR, by Epic
Systems) were retrospectively examined for this manu-
script, but not available during generation and delivery
of genomics findings. Patients were classified as “in-
ternal” (Table 1; Additional file 1: Table S1) if they had
entries in the Mount Sinai EMR pertaining to their can-
cer care; however, this does not necessarily mean that all
of their cancer care or procedures yielding sequenced
specimen were conducted at Mount Sinai. As part of the
IRB-approved genomics protocol, genomics findings
were returned to the patient and treating physician in
conjunction with a genetic counselor to provide inter-
pretative assistance.
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Sample processing

Frozen or FFPE tumor specimens were obtained. For
genomic DNA to serve as a patient-specific normal con-
trol, whole blood in EDTA or saliva was collected either
at the time of surgery or enrollment; in some cases, gen-
omic DNA from uninvolved adjacent tissue from tumor
resection was used as the normal control. All specimens
were inventoried and processed by an institutional can-
cer biorepository, which included pathologist assessment
of tumor content by H&E staining. Only those speci-
mens with >50 % tumor were included in the study.
DNA was isolated from tissue specimens using the
QIAamp DNA micro kit (Qiagen); RNA was isolated
from frozen tissue only (separate spatial regions from
those used for DNA) using the miRNeasy mini kit (Qia-
gen) for RNA. DNA extraction from blood and other
sources was performed using the Maxwell 16 LEV Blood
DNA kit (Promega). Both DNA and RNA quantification
were determined by NanoDrop 2000 Spectrophotometer
(Thermo Scientific).

Selection of genomic assays

For patients P0006 through P0046 (the latter 41 out of
the 46 patients enrolled in the study), a single consistent
study protocol/workflow (Fig. 1) was followed, with the
subset of assays to run selected using the following deci-
sion process. Genomic DNA (gDNA) samples were re-
assessed for quantity by Qubit fluorometry (Life Tech-
nologies, Grand Island, NY, USA) and for quality by the
2100 Bioanalyzer or 2200 TapeStation system (Agilent,
Santa Clara, CA, USA). As tumor-derived gDNA tends
to be limited in quantity, the double-stranded gDNA
concentration according to the Qubit assay was used to
determine which gDNA assays to run using the follow-
ing decision procedure (aiming to retain >500 ng of
gDNA after assays for validation). If gDNA mass was
<1.5 ug for either the normal or tumor specimen, only
the targeted panel assay was run, as it requires the smal-
lest amount of input DNA (10-100 ng), can tolerate
poorer-quality specimens, and provides the highest se-
quencing depth on key somatic mutation hotspots. If
gDNA mass was 1.5-2.5 ug for both normal and tumor
specimens, both targeted panel and WES were run (note
some patients had two tumors fitting this criteria, which
were both multiplexed with the same normal control
and run). For cases where 2.0-2.5 ug was available, WES
library preparation was attempted up to two times
(500 ng per attempt), as library prep failure sometimes
occurred on first try (see Additional file 1: Table S2). If
>2.5 ug was available, all assays (targeted panel, WES,
and SNP microarray) were run. Patients P0001 through
P0O005 (the earlier 5 out of 46 patients) followed an earl-
ier version of the study protocol which did not include
arrays and targeted panel sequencing, but did include
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Table 1 Demographics of patient sub-cohort for whom genomics
data were successfully generated

Number (%) of
patients (N = 46)

Characteristics

Age at diagnosis® 48
(median and range, years) (12-69)
Gender
Women 26 (56.5 %)
Men 20 (43.5 %)
Race®
White 18 (39.1 %)
Unknown 16 (34.8 %)
Other 5(10.9 %)
Asian 3(6.5 %)
Black or African American 3 (6.5 %)
American Indian or 1 (2.2 %)
Alaska Native
Native Hawaiian or Other 0 (0.0 %)

Pacific Islander

Cancer type

Colorectal® 18 (39.1 %)
Other (single-primary)® 7 (15.2 %)
Breast® 6 (13.0 %)
Multiple primaries® 6 (13.0 %)
Medullary thyroid 5(10.9 %)
carcinoma
Unknown primary 4 (8.7 %)
Had metastatic disease
at diagnosis®
Yes 21 (45.7 %)
No 23 (50.0 %)
Unknown 2 (4.3 %)
Had metastatic disease at time
of collection of sequenced tumor
specimen
Yes 28 (60.9 %)
No 16 (34.8 %)
Unknown 2 (43 %)

Sequenced tumor
specimen type

Primary 22 (47.8 %)
Metastatic 13 (28.2 %)
Unknown 4 (8.7 %)
Primary and metastatic 3 (6.5 %)
Lymph node 2 (4.3 %)
Primary and 1(2.2%)
lymph node

Local recurrence 122 %)
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Table 1 Demographics of patient sub-cohort for whom genomics
data were successfully generated (Continued)

Patient type

Internal (have cancer care in
Mount Sinai EMR)

22 (47.8 %)

External 24 (52.2 %)

°For patients with multiple primaries (N = 6), the indicated characteristic is
given for disease corresponding to the most recent primary

bEthnicity information (Hispanic/Latino or non-Hispanic/Latino) was

not collected

“The number represents patients with the indicated tumor type exclusively.
Patients with multiple primaries including the indicated tumor type are not
counted here, but counted in the “multiple primaries” category. One patient
had two breast cancer tumors during her lifetime that were classified as
independent primaries, therefore her count is given under “breast” as cancer
type, although she counts as “multiple primaries” in tabulating

other characteristics

90ther single-primary cancer types (N =1 for each) are: carcinoid tumor of
the midgut, glial neoplasia, malignant insulinoma, leiomyosarcoma, malignant
peripheral nerve sheath tumor, pancreatic cancer, and squamous cell
carcinoma of the tongue

€Patients with multiple primaries had these combinations: breast and non-
small-cell lung cancer; breast and colon cancer; breast and follicular papillary
thyroid cancer; leukemia and squamous cell carcinoma of the skin; ovarian,
lung, and thyroid cancer; sarcoma and non-small-cell lung cancer

WGS for some patients (see Additional file 1: Table S2).
For all patients, RNA-Seq on tumor RNA was only car-
ried out if frozen tumor tissue was available; if frozen
adjacent, uninvolved normal tissue was available, it was
included in the RNA-Seq assay, but lack of adjacent nor-
mal did not exclude carrying out tumor RNA-Seq.

Genomic assays (WES, WGS, RNA-Seq, targeted panel,
SNP microarray genotyping, targeted amplicon sequencing
for variant validation)

These methods are given in Supplementary Methods
(Additional file 2). All Illumina microarray and next-
generation sequencing procedures were carried out in
the CLIA-certified Genomics Core Facility at the Icahn
School of Medicine at Mount Sinai.

Identification of genomic alterations
These methods are given in Supplementary Methods
(Additional file 2).

Tumor purity estimation
These methods are given in Supplementary Methods
(Additional file 2).

Kolmogorov-Smirnov (KS) test

The D test statistic and exact p values are computed by
the function “ks.test()” from the base package “stats” of
the R programming language (v3.2.1).

Mutation nomenclature

When describing DNA single-nucleotide variants (SN'Vs),
we use the same convention as [15, 16] where we show
only the change of the pyrimidine base in a DNA base
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pair, e.g. the notation C > T refers to a C:G > T:A base pair
transition and the notation C> G refers to a C:G > G:C
base pair transversion.

Cancer sub-classification

Breast tumors were grouped into five intrinsic subtypes
based on their gene expression profiles: luminal A, lu-
minal B, HER2 enriched, basal-like, and normal-like ac-
cording to St. Gallen International Expert Consensus
2011 classification system [17]. The centroid-based Pre-
diction Analysis of Microarray (PAM) method using
PAMS50 50 genes was used for the intrinsic subtype pre-
diction [18, 19]. In addition, we also downloaded TCGA
breast cancer (BRCA) RNA-Seq and metadata and
normalized our breast tumor samples to BRCA data
with quartile normalization method. We then performed
an unsupervised hierarchical clustering analysis on the
combined data using the 1000 most variably expressed
genes. Each hierarchical cluster was annotated by BRCA
subtype description and used to predict intrinsic sub-
types in our breast cancer cases. We observed high
concordance between PAM-based and unsupervised
clustering based methods.

Breast cancer germline mutation analysis

A list of 167 genes with any known association with
breast cancer was compiled from public databases:
VarDi [20, 21], HGMD [22], and the GWAS Catalog
(http://www.ebi.ac.uk/gwas) (Additional file 1: Table S3).
Any germline variants in these breast cancer associated

genes for the patients in our study underwent careful
manual inspection and literature review.

Cancer signaling pathway analysis

Identification of cancer cell mutations, at the genomic
level, provides a basis for reconstruction of patient spe-
cific regulatory networks underlying oncogenesis. In this
study, we utilized a systems level approach for recon-
struction of the receptors, signaling pathways, and ef-
fector systems within each cancer cell (Additional file 1:
Table S4). This was constructed through a manual cur-
ation process involving several sources including KEGG
[23, 24]. During the process, genes that are distantly re-
lated to the pathway were often not included. Genes that
were altered in specific patients were crossed against this
gene set (453 genes). In this manner, the complement of
genomic alterations was projected onto a functional cell
biology network in order to highlight underlying driver
mechanisms. This was then used to identify loci that are
suited for therapeutic targeting.

Generation of summary genomic findings documents

A summary document was generated for each patient.
The document was designed to maximize clinical utility
in an easy-to-digest format and was developed by a team
with expertise in clinical oncology, pathology, clinical
genetics, cancer biology, and bioinformatics. The format
and content of each document is slightly different de-
pending on cancer types and data availability, but most
of these documents included the following sections.
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Somatic mutations

There were over 100 somatic mutations in most tumor
samples in our study. A tier system was developed to as-
sociate somatic mutations with their potential clinical
relevance for easier interpretation. Genes with somatic
mutations were grouped into five different tiers and the
mutations were reported accordingly. Somatic mutations
in genes known to be involved in the patient’s specific
cancer type based on internal manual curation were
classified as tier 1. Somatic mutations in pan-cancer
genes (i.e. genes known to be involved in multiple can-
cer types) but not in tier 1 were labeled as tier 2. Tier 3
are somatic mutations in genes known to play a role in
other cancers based on internal manual curation, but ex-
cluding tiers 1 and 2. Tier 4 variants are somatic muta-
tions that were previously observed in the COSMIC
database [25] but where the genes were not known to be
associated with any cancers. All other somatic mutations
were cataloged as tier 5. Tier 1-4 somatic mutations for
the 45 patients who received findings are listed in
Additional file 1: Table S5. Gene function and pathway
information for each tier 1-4 somatic mutation were
given in the findings.

Prediction of drug response

Based on literature mining, biomarker database integra-
tion, manual curation, and expert opinions, a knowledge
base was developed to associate genetic variants with
tumor sensitivity or resistance to all FDA-approved ther-
apies for each tumor type. In each summary document,
we first separate all possible therapeutics into two
categories: FDA-approved therapies for the tumor type
(tier 1) and all other therapies including experimental
drugs (tier 2). Based on the knowledge base, we used a
decision-tree based approach to evaluate the impact of
the detected genetic alteration on tier 1 drug response.
Each alteration-derived clinical indication was assigned a
level of evidence as: Definitive (FDA approved); Strong
(NCCN guideline or major prospective clinical trial con-
firmed); Moderate (>2 studies supported, including at
least one clinical study); Weak (few clinical studies sup-
ported or from in vitro/animal studies or conflicting re-
sults). The decision tree was built following the order of
these confidence levels. We first use genetic alterations,
if any, associated with “Definitive” clinical indication to
determine the potential benefit of drug response. If there
are no such alterations present, we proceed to alter-
ations associated with “Strong” level evidence, followed
by “Moderate” and “Weak” levels. We follow this process
to include genetic alterations linked to drug responses
with evidences of all confidence levels in a hierarchical
manner in the decision tree. An exemplar decision tree
for anti-EGFR drugs (cetuximab, panitumumab) in colo-
rectal cancer is illustrated in Additional file 3: Figure S1.

Page 6 of 20

We also curated a drug target database connecting
FDA-approved or investigational therapeutics to mo-
lecular targets and then to cancer signaling pathways.
Based on the drug target database and pathway analysis,
we identified clinically relevant alterations and their cor-
responding tier 2 therapies. The combination of therap-
ies was also recommended based on multiple alterations
or feedback loops in signaling pathways. Any alterations
that led to either tier 1 or tier 2 therapeutic recommen-
dations are defined as actionable alterations.

Prediction of toxicity

There are many casual relationships between genetic vari-
ants and drug toxicity, some of which led to the inclusion
of pharmacogenomic information for chemotherapeutics in
FDA drug labels. Based on FDA labeling (http://www.fda.
gov/Drugs/ScienceResearch/ResearchAreas/Pharmaco
genetics/ucm083378.htm), literature mining, and expert
review, we curated a pharmacogenomics knowledge base
on human genetic variants associated with drug toxicity,
with an objective to facilitate clinical decision-making with
respect to the selection of optimal drug, dosing, and treat-
ment duration. All tier 1 drugs were analyzed based on pa-
tient’s germline variants and genomic alterations using the
knowledge base and the predicted outcomes were classified
as “Severe Toxicity,” “Elevated Toxicity,” “Normal,” and
“Less Toxicity”.

Prognosis

In addition to the prognostic value of the TNM (tumor
size, nodes, metastasis) staging system, more and more
molecular-based biomarkers have been reported for
prognostic purposes. These prognostic biomarkers have
an association with clinical outcomes such as overall
survival or recurrence-free survival and are of high rele-
vance in therapeutic decision procedures in order to
individualize treatment. Similar to the predictive know-
ledge base development, based on literature mining and
expert opinion we also curated a list of prognostic bio-
markers for colorectal cancer, breast cancer, and medul-
lary thyroid carcinoma (MTC) — three major cohorts in
our study. Each sample within these cohorts would
match its genomic profile to the prognostic biomarkers
and the prognostic implication would be reported.

Clinical trial connection

A growing number of therapies that target tumors with
specific genomic alterations have been developed and
tested in clinical trials. By identifying clinically action-
able genomic alterations in tumor for each patient and
matching them with experimental drugs in clinical de-
velopment, we can complement the standard of care
with expanded treatment options. The inclusion/exclu-
sion criteria and trial location and open/close date
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information were also downloaded from Clinical-
Trials.gov and used to direct patients to most appro-
priate clinical trials.

Functional validation of EGFR p.D587H mutation
These methods are given in Supplementary Methods
(Additional file 2).

Results

Overview of the approach and workflow

We developed and implemented a workflow and sup-
porting computational infrastructure for multi-lab,
multi-assay molecular profiling of tumor specimens,
generation of genomic findings and interpretations rele-
vant to clinical decisions, and their delivery to cancer
patients and their treating physicians (Fig. 1; Additional
file 4: Figure S2). Briefly, normal DNA isolated from per-
ipheral blood or uninvolved normal tissue, tumor DNA
isolated from FFPE or fresh frozen tumor samples, and
total RNA isolated from fresh frozen tumor and adjacent
normal tissue when available, were interrogated with
several genomic assays depending on the nucleic acid
sample availability, quantity, and quality, choosing from:
WES, targeted panel sequencing, SNP microarray geno-
typing, polyA-enriched or rRNA-depleted RNA-Seq.
WES and targeted panel data were used for germline
and somatic variant calling; a rigorous manual review
process (Additional file 2: Supplementary Methods) was
employed to minimize the variant calling false discovery
rate from all DNA sources (frozen, FFPE, or blood),
ameliorating the impact of sequencing artifacts. Somatic
copy-number alteration (CNA) analysis was independ-
ently carried out using WES and array data, followed by
concordance analysis. When available, RNA-Seq data
were used for gene fusion detection, differential expres-
sion analysis, and to establish whether somatic SNV or
indel mutations identified from WES and targeted panels
were present in the transcripts. Resulting genomic data,
as well as self-reported medical history and available
pathology reports, were manually reviewed by a team of
bioinformaticians, a cancer molecular biologist, a med-
ical oncologist, and a genetic counselor, to produce an
electronic PDF document summarizing clinically rele-
vant findings (Additional file 5). These results included a
list of relevant somatic mutations/alterations, drugs
whose benefit may be altered given the patient’s somatic
or germline variant makeup, a prognostic biomarker
summary, clinical trial recommendations (with an em-
phasis on those where enrollment criteria include vari-
ants detected in the patient), and a cancer pathway
perturbation summary. This document was delivered to
the patient and his/her treating physician by a genetic
counselor, who was also available to answer follow-up
questions from the patient.
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Out of the 65 patients enrolled in our study, genomic
data were generated and fully analyzed on 46 patients
(Table 1; Additional file 1: Table S1), with genomic find-
ings returned to 45 of these 46 patients (one patient had
several assays successfully run that produced genomic
data but was notified that no clinically relevant results
were found to return). The status of the remaining 19
patients is as follows: we did not initiate any genomic as-
says for ten patients due to insufficient tumor volume or
lack of tumor specimen; four patients died before data
analysis (processing was suspended for these); one pa-
tient had a tumor specimen that yielded poor quality
DNA such that no attempted assay was successful; four
patients are still in progress at the time of this writing.

Demographics and clinical characteristics of the sub-
cohort of 46 analyzed patients are summarized in
Table 1, with per-patient details described in Additional
file 1: Table S1. This sub-cohort is highly heterogeneous
with regards to cancer type, with a comparatively large
number of patients with rare cancers and/or multiple
primaries. Of the analyzed tumor samples, 44 % were
from a metastasis, local recurrence, or positive lymph
node; 61 % of the patients had developed metastatic dis-
ease by the time tumor samples were collected for gen-
omic assays.

Primary genomic analysis

For each patient, all attempted genomic assays are shown
in Additional file 1: Table S2. Summary quality control
(QC) statistics for WES, targeted panel sequencing, and
RNA-Seq are described in the Supplementary Results
(Additional file 2) and Tables S6, S7, and S8 (Additional
file 1), respectively. Concordance of somatic mutations
identified by WES versus those identified by targeted
panel sequencing was assessed (Additional file 2: Supple-
mentary Results; Additional file 1: Table S9). Eighty-five
percent of patients had somatic SNV and indel calls in
exact concordance between the two assays. All of the dis-
cordant somatic mutations were clinically relevant, had
low allelic fractions (less than 0.22), and were exclu-
sively called by the targeted panel pipeline but not
by the WES pipeline, suggesting that the targeted
panel is more sensitive than WES in the targeted
regions, likely due to the increased sequencing
depth (median 2276X normal and 1994X tumor se-
quencing depth for panel versus median 66X normal
and 112X tumor sequencing depth for WES). We
also performed comparative analyses of CNA de-
rived from WES and SNP arrays and demonstrated
overall concordance between the two platforms for
CNA detection (Additional file 2: Supplementary
Results; Additional file 6: Figure S3A, Figure S3B;
Additional file 7: Figure S4; Additional file 8: Figure S5;
Additional file 9: Figure S6).
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We analyzed the spectrum of mutation frequencies
and types in our cohort (Fig. 2). Even with a relatively
small cohort size, heterogeneity between tumor types
and within tumor types were observed. The heterogen-
eity is reflected by both widely varying mutation fre-
quencies (Fig. 2, top panel) and, to a lesser extent,
different mutation signatures (Fig. 2, bottom panel). Me-
dian frequencies of 1.4 mutations/Mb for breast cancer
and 2.7 mutations/Mb for colorectal cancer are consist-
ent with previously published NGS studies [15, 16], and
no hypermutated colorectal cancers were observed. Me-
dullary thyroid carcinoma is among the least mutated
cancers in the cohort (median 0.7 mutation/Mb), con-
sistent with previously found low mutation frequencies
in thyroid cancers in general [15, 16, 26]. Similarly, we
detected a high proportion of C>T mutations (see
“Methods” for mutation nomenclature), consistent with
what has been published on the same tumor types as we
analyzed in our study [15, 16]. Two specimens stand out
with respect to their mutation profile: a cancer of

Page 8 of 20

unknown primary origin (patient P0017, favoring germ
cell tumor) having a low overall mutation frequency, but
an unusually high fraction of C > A transversions, and a
squamous cell carcinoma (SCC) of the skin (patient
PO011) having an unusually high overall mutation fre-
quency dominated by C> T transitions (Fig. 2). The lat-
ter is a patient whose SCC followed an alemtuzumab
treatment to combat graft-versus-host disease (GVHD);
the somatic mutation spectrum may indicate the muta-
genic process that led to the development of SCC (see
Additional file 2: Supplementary Results; Additional file
10: Figure S7; Additional file 1: Table S10). Somatic mu-
tations were also categorized based on their cancer
relevance (see “Methods”). Mean 17.3 cancer-relevant
somatic mutations per patient were identified and
returned in the genomic findings document (Additional
file 1: Table S5).

Somatic CNAs affect a greater portion of cancer ge-
nomes than SNVs and play a critical role in activating
oncogenes or inactivating tumor suppressors [27]. A

IS
1

Somatic mutations per megabase

o
]

colorectal ‘ ‘

breast

MTC

other

distribution of somatic mutations (Additional file 2: Supplementary Results)

Fig. 2 Somatic mutation frequencies in 40 patients having WES data, grouped by cancer type: breast, colorectal, medullary thyroid carcinoma
(MTCQ), and other. Each dot represents a tumor-normal sample pair from a patient; patients with multiple tumors are shown as multiple points,
one per tumor. The bottom panel shows the distribution of six possible base pair substitutions in each tumor (see “Methods” for mutation nomenclature),
ordered to correspond with frequency data points. Only non-synonymous SNVs and SNVs altering the canonical splice sites are counted and only if this
functional impact is in a canonical protein isoform of the gene. Frequencies were obtained by dividing these mutation counts by the genomic area in
coding exons in WES-targeted regions. Patient PO003 was omitted because the purity of WES-sequenced tumor was <5 % based on the allelic fraction

Mutation type
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major challenge in CNA analysis is to differentiate driver
CNAs that contribute to oncogenesis and cancer pro-
gression from those passenger CNAs that are acquired
during cancer development but do not have functional
consequences. Common criteria for driver CNA predic-
tion include amplicon size and association of gene ex-
pression with copy number alterations. In order to
determine potential oncogenic driver CNA events with
high confidence, we examined the relationship between
CNAs and gene expression based on RNA-Seq data. For
example, we reported amplification of CCNDI1 in two
breast cancers and the CNA calls were supported by
CCND1 gene expression analysis (Additional file 11:
Figure S8).

Gene fusions represent a key oncogenic event in many
cancer types [28]. We implemented a comprehensive
computational pipeline incorporating four fusion callers
(see “Methods”) to detect gene fusions from RNA-Seq
data. Putative gene fusion events have been identified in
14 tumors and one fusion has been validated by PCR via
breakpoint mapping (Additional file 2: Supplementary
Results; Additional file 12: Figure S9A, Figure S9B).
However, for the cohort in this study, none of the pre-
dicted fusions were considered actionable and thus not
included in the findings returned to the patients and
physicians.

Identification of clinically actionable alterations through
integrative genomic analysis

The primary goal of our integrative approach was to
utilize multi-platform genomic profiling data to gener-
ate, at the cellular level, molecular portraits of the onco-
genic signaling networks underlying these cancers.
Recommendation of appropriate targeted therapeutics
would follow through execution of a manual review
process performed in a case-by-case manner. Any alter-
ations that had clinical implications in either tier 1 or
tier 2 therapeutics (see “Methods”) were defined as ac-
tionable alterations. For clinical trial connection, inclu-
sion/exclusion criteria, trial location and open/close date
information were downloaded from ClinicalTrials.gov
and used to direct patients to the most appropriate clin-
ical trials. We also contacted PIs for specific trials for
clarification of inclusion and exclusion criteria when the
information from ClinicalTrials.gov lacked sufficient
details.

Five patients with MTC were analyzed in this study. It
has been well recognized that the RET oncogene is mu-
tated in most MTC cases either in the germline or by
somatic mutation [29, 30]. All five of the cancers assayed
in this study had activating mutations in RET (Table 2).
RET kinase inhibitors vandetanib and cabozantinib were
recommended for these patients [31]. In one case (pa-
tient P0010), additional alterations such as CDKN2 and
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Table 2 Summary of genetic alterations in five cases of
medullary thyroid carcinoma (MTC)

Patient ID RET mutation Other alteration

P0O010 p.C634R (germline) Somatic CNA (deletion
of CDKN2, RASA1/3, RB1)

P0029 p.C634Y (germline)

P0036 p.M918T (somatic)

P0041 p.M918T (somatic)

P0044 pP.M918T (somatic)

RASA1/3 deletion were identified and this evidence sug-
gested recommendation of clinical trials utilizing CDK
inhibitors. The RET mutations identified in all of the
MTC samples enhanced confidence in our approach to
detect expected mutations within a given cancer type.

Colon cancer was the most highly represented cancer
type within the cohort (19/46 patients). The frequencies
of KRAS, NRAS, BRAF, and PIK3CA mutations within
these tumors (Table 3) were similar to previous studies
[32]. Quadruple negative colon cancers were also ob-
served in this cohort. Mutation of the WNT-pathway
component APC was observed in 17 of the 19 colon
cancer patients. One tumor (patient P0027) had a com-
plement of mutations in non-APC components (DKK1/
2, CSKN1A1, and AXIN1) of the WNT pathway (Fig. 3a).
Although there are no FDA-approved drugs targeting
downstream components of the APC pathway, this may
enable therapeutic recommendations in the future. An-
other interesting finding was a higher frequency of TP53
mutations (16/19 patients, 84 %) than has been observed
previously [32]. This could be explained by the high per-
centage of patients in our cohort who developed meta-
static disease, given the role of TP53 in promoting
metastasis in multiple cancer types [33].

The most straightforward utility of the colon cancer
data was for predicting insensitivity to anti-EGFR anti-
bodies [34, 35]. Additionally, selective targeting of the
ERK pathway through inhibition of either BRAF or MEK
was better informed by the data. In the case of patient
P0027, the PI3K pathway was hypothesized to be acti-
vated in the absence of ERK pathway activation. PI3K
pathway activation was predicted because of the ob-
served loss of PTEN. Therefore, our approach allowed
for consideration of an additional targeted strategy util-
izing AKT/mTOR inhibition (Fig. 3a). PI3K/AKT/mTOR
inhibitors could also benefit patients P0004 and P0016
due the presence of PIK3CA activating mutation
p-E545K in these two tumors. In patient P0046, a poten-
tial ALK activating mutation p.A1200V [36] was de-
tected, suggesting consideration of ALK inhibitors such
as crizotinib. In addition, FLT3 was also amplified in this
case, supported by RNA-Seq-derived gene expression
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Table 3 Summary of genetic alterations in 19 cases of colorectal cancer. Somatic mutations or CNA for the listed genes are shown.

Blank indicates wild-type

Patient ID  APC KRAS NRAS  BRAF PIK3CA PTEN EGFR  TP53
P0004 p.E763* p.G12V p.E545K, p.M1043|
P0005 P.R554* p.G125 p.R273H
P0008 p.V600E
P0009 p.E1309fs*4 Gain  pP151S
P0016 p.G12V p.E545K p.R248Q
P0018 p.E1309%, p.V1377fs p.G13D p.G245S
PO0T9 p.R232% pR1114* p.R333fs*12
P0020 pT683P, p.R876*, pE1577*  p.G13D p.F270l
P0022 pT1493fs*14 p.R248Q
P0024 p.E955* pN116H,p.Q61P p.S183*
P0025 pJ606fs, p.R1450% p.Q61R pR273C
P0027 Possible loss Mutation in donor
splice site
P0028 Splice site donor, p.Q1067* p.R282W
P0O031 p.E1097%, p.E1397* p.G12D p.G245S
P0033 p.E1306* p.G13D p.R273C
P0034 p.E1322* p.G12C p.Y220C
P0037 p.R232* p.V600E Splice site acceptor
P0043 p.F1354fs, p.51400* p.G13D p.C176F
P0046 pR876* p.G12D p.S127F
Frequency 0.89 0.53 0.11 0.11 0.11 0.11 005 084

data. Therefore, the patient may also benefit from potent
FLT3 inhibitors including ponatinib, cabozantinib, and
quizartinib. In a quadruple negative colon cancer case
(patient P0009), expression of the EGFR ligands epiregu-
lin and amphiregulin were elevated by a remarkable 113-
fold and 29-fold, respectively, in tumor samples in com-
parison to the adjacent normal tissue control, therefore
predicting favorable outcome in response to cetuximab
treatment [34, 35].

Seven breast cancer patients were analyzed in this study
(Table 4). There were three estrogen receptor positive (ER+)
breast cancers with mutations in oncogenes that are associ-
ated with ER+ luminal breast cancers. One case (patient
P0006) harbored an activating mutation in PIK3CA
(p.E542K), a well-established activator of the AKT signaling
pathway. In a second case (patient P0040), CCND1 amplifi-
cation was identified through the CNA analysis (Fig. 3b). In
another case (patient P0002), PIK3CA activating mutation
(p.E545K) as well as amplifications of CCND1 and FGFR1
were detected (Additional file 1: Table S5; Additional file 11:
Figure S8). In each of these cases, alteration-specific clinical
trials were suggested for targeting the underlying oncogenic
drivers (PI3K/AKT pathway, CDK4/6, or FGFR1).

Three triple-negative breast cancers were represented
in our cohort; this breast cancer subtype presents signifi-
cant challenges with respect to aggressiveness and

insensitivity to chemotherapy [37]. Currently, there are
no approved targeted drugs for triple-negative breast
cancer. As expected, TP53 was mutated in a high per-
centage of these breast cancers (Table 4) [37]. Several
notable oncogenic mechanisms were observed. In one
case (patient P0007), loss of RASA1, a RAS GTPase, and
amplification of CDK1, a component of the CyclinB-
CDK1 complex for mitotic entry, was observed, and led
to the recommendation of clinical trials of CDK1 inhibi-
tors. In another case (patient P0030), an activating muta-
tion in NRAS was identified; activating mutations in
NRAS are uncommon in triple negative breast cancer
[38]. This allowed for suggestion of a MEK inhibitor. In
the third case (patient P0042), a truncating mutation in
NF1, a RAS GTPase, was found, therefore directing the
recommendation of MEK inhibitors such as trametinib.
Previous studies have indicated that NF1 mutations were
observed in triple negative breast cancers [39].

Breast cancer sub-classification based on gene expres-
sion profiles has been well established and five subclasses
have been defined: luminal A, luminal B, HER2 enriched,
basal-like, and normal-like. Three of the seven breast
tumors were ER+/PR+/HER2- based on an immunohisto-
chemical (IHC) test in the pathology reports. Using RNA-
Seq-derived gene expression data, we classified two of
these three cases as luminal A and one as luminal B,
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Fig. 3 Multiple somatic alterations in components within the same
pathways. a Multiple somatic alterations within the APC pathway
observed in a colorectal cancer. A schematic of the signaling
pathways converging on growth control of colorectal cancer patient
P0027 is displayed where mutation and predicted loss of function of
tumor suppressors is depicted in red. Several components excluding
APC are mutated in the canonical WNT signaling pathway. b
Identification of an oncogenic driver in a breast cancer. A schematic
of the signaling pathways converging on growth control of breast
cancer patient PO040 is displayed where mutation and predicted
loss of function of tumor suppressors is depicted in red and activation
of oncogenes is depicted in green. Amplification and overexpression of
CCND1 is identified through the integrative approach utilized in this
study. ¢ An integrative approach identifies the PI3K pathway as
potential drug target in a squamous cell carcinoma. A schematic of the
signaling pathways converging on growth control of skin squamous
cell carcinoma patient PO011 is displayed where mutation and
predicted loss of function of tumor suppressors is depicted in red

and activation of oncogenes is depicted in green. Multiple tumor
suppressors in the PI3K-AKT pathway have mutations that predict

loss of function (INPP5D and INPPL1). Additionally, PI3K is mutated,

suggesting PI3K-AKT pathway as a possible drug target

indicating gene expression based classification could be
used to confirm the pathology report. In addition to
prognostic differences between luminal A and luminal
B [40, 41], patients with luminal A type are generally more
responsive to hormonal therapy and less responsive to
chemotherapy than patients with luminal B type [42].
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Therefore, gene expression-based classification may im-
prove prognostic assessment and provide additional infor-
mation to guide treatment selection compared to routine
pathologic classification. Interestingly, we classified one
case (patient P0013) as basal-like but the pathology report
labeled the case as ER+/PR-/HER2- based on IHC,
though only 10 % of the tumor nuclei stained positive for
ER and ER staining was weak (1+). The tumor was classi-
fied as ER+ in the pathology report based on current
ASCO/CAP guidelines [43]. However, the majority of the
tumor cells are triple-negative, most likely explaining the
classification results derived from gene expression data.

Germline variants in genes associated with breast can-
cer risk were identified in breast cancer patients in this
study. A panel of established and putative breast cancer
risk genes was compiled and this was cross-referenced
against the list of germline variants (see “Methods”).
Approximately ten germline variants per patient were
identified within these genes. Notably, a DCLRE1C
p-S635_L636fs mutation was identified in a patient
(P0040) diagnosed with breast cancer at the age of
23 years. DCLRE1C encodes a nuclear endonuclease that
is required for functional repair of DNA double-stranded
breaks [44]. This mutation would not have been identified
with existing targeted panels. In patient P0013, a germline
mutation in BRCA1 (p.W1712fs) was identified that con-
fer increased breast cancer susceptibility. Cisplatin was
recommended for this patient, as breast cancers harboring
germline BRCA1 mutations are highly sensitive to cis-
platin chemotherapy [45, 46].

Several cancer types represented by a single patient
were also analyzed; 14 patients received findings. Ana-
lysis of a patient (P0045) with three independent primary
tumors (non-small cell lung cancer, ovarian cancer, pap-
illary thyroid cancer) arising over the span of 14 years
revealed distinct driver oncogenes in different tumors.
The NSCLC tumor harbored an activating mutation of
PIK3CA (p.E545K) and the papillary thyroid tumor har-
bored an activating mutation in BRAF (p.V600E); neither
mutation was detected in the ovarian cancer tumor des-
pite high-depth, sensitive targeted panel sequencing. A
patient (P0011) with squamous cell carcinoma of the
skin was also analyzed. Several alterations of genes
(PIK3R1 p.E443K, INPP5D p.S19C, INPPL1 p.R346W,
CDKN2A p.V82E) encoding proteins involved in the
AKT pathway were found (Fig. 3c). Although no muta-
tions in well-characterized recurrently mutated onco-
genes or tumor suppressors of the AKT pathway were
found, collectively these alterations allowed for the pre-
diction of AKT pathway inhibitor sensitivity (Fig. 3c).
Additionally, this patient had an extraordinarily high
mutational load (Fig. 2), predicting clinical response to
immunotherapy [47]. A 12-year-old girl (patient P0038)
was diagnosed with glial neoplasia with high grade of
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Table 4 Summary of genetic alterations in seven cases of breast cancer

Patient ID  RNA-Seq ER mRNA HER2 mRNA PIK3CA CCND1 TP53 MAP3KT  MAP2K4 PTEN AKT1 AKT3 Other

P0002 Available High Low p.E545K  Amplified p.F1462V

P0O006 Available High Low p.E542K

P0O007 Not performed NA NA p.R213fs CDK1 amplification,
RASAT1 loss

P0013 Available Low Low p.R110P

P0030 Not performed NA NA p.Y220C NRAS ampilification

P0040 Available High Low Amplified p.W95*

P0042 Not performed NA NA p.L194R NF1 mutation

Somatic mutations or CNA for the listed genes are shown. Blank indicates wild-type. ER and HER2 mRNA level derived from RNA-Seq data are summarized as high

or low using the TCGA breast cancer RNA-Seq data as references

malignancy and aspects of melanocytic differentiation.
The BRAF p.V600OE mutation was detected in the tumor
specimen and we recommended a BRAF inhibitor based
on limited but encouraging clinical evidence [48]. Pa-
tient PO032 had a malignant peripheral nerve sheath
tumor (MPNST). Analysis of germline variants revealed
a loss of function mutation in NF1 (p.R2637fs). NF1 in-
activation is a hallmark in MPNST accounting for ap-
proximately half of the cases. Several pre-clinical studies
have indicated that MEK inhibitors or mTOR inhibitors
exhibited efficacy in MPNSTs harboring NF1 loss of
function mutations, demonstrated in in vitro, in vivo,
and in human MPNST ex vivo experiments [49-51].
Presence of NF1 germline mutation suggests the patient
may benefit from anti-MEK or anti-mTOR agents that
are commercially available for other cancer indications.

Three patients had tumors of unknown origin. Not-
ably, two of these cases had NF2 loss of function muta-
tions. In both of these cases, renal cell carcinoma, a
cancer with a relatively high frequency of NF2 mutation
[52], was high-ranked on the list of considered diagnoses
based on standard pathologic assessment. This suggests
that cancer genomic sequencing may be useful for assist-
ance with diagnostics. In one of these three possible
renal cell carcinomas (case P0039), copy loss of TSC1
and a likely loss-of-function deletion in NF2 were de-
tected, strongly suggesting AKT/mTOR pathway was ac-
tivated. This led to the recommendation of mTOR
inhibitors for the patient, as loss of TSC1/2 through
mutations or deletions have been associated with
everolimus response in multiple cancer types including
bladder cancer [53], hepatocellular carcinoma [54], sube-
pendymal giant cell astrocytoma (SEGA), and renal
angiomyolipoma [55].

In summary, we made therapeutic recommendations
for 42 of the 46 patients (91 %) based on their profiles of
genetic and genomic alterations (Fig. 4). Full somatic
mutation call results for 25 patients who consented to
public data release are provided as VCF files (Additional
file 13). Our results are consistent with previously

published retrospective studies of adult cancer patients
with solid tumors where actionable mutations were
identified in approximately 80—-90 % of the patient popu-
lations [6, 9, 11]. Not surprisingly, the four patients in
our cohort without actionable alterations had a mean of
only 2.5 cancer-related somatic mutations (sequencing
depth was not the explanatory variable). Two of these
four patients did not have RNA-Seq data due to the lack
of frozen tissue samples.

A case study

Of the 46 cases analyzed in our study, one case was of
particular interest given the potential for significant clin-
ical impact. Patient P0015 was diagnosed with cancer of
unknown primary at the age of 55 years. We carried out
genomic analysis of a metastatic liver tumor, which was
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Fig. 4 Actionability across multiple cancer types in this study. A
summary of the distribution of recommendations across cancer
types, where tier 1 and tier 2 drugs (see "Methods” for definitions) is
displayed. "CRC" is colorectal cancer
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classified as poorly differentiated adenocarcinoma with
signet ring features. The patient had undergone radi-
ation and chemotherapy regimens and had been re-
cently treated with vinorelbine. Our genomic data did
not show any previously known somatic mutations
with available targeted therapeutic agents. However,
we found a somatic mutation in EGFR (p.D587H,
hgl9 chr7:55233009G > C) that had never been ob-
served in any public cancer genome sequencing data-
bases (at the time of this report). Analysis of TCGA
data shows that this mutation is close to hotspots lo-
cated at P596 and G598 (Fig. 5a).

We subsequently validated this mutation by Sanger se-
quencing (Additional file 14: Figure S10). As a receptor
tyrosine kinase, EGFR is activated through binding to li-
gands via its extracellular domain I and III. EGFR auto-
inhibition takes place when non-covalent interactions
between extracellular domain II and IV pull apart do-
mains I and III, thus interfering with ligand binding [56].
D587 is located in extracellular domain IV and plays a
critical role in auto-inhibition. It has been shown that
D587 forms an interaction with K609 and that this stabi-
lizes interactions between tyrosines 270 and 275 of do-
main II in the inactive structure with EGF bound at low
affinity [56] (Fig. 5b). The P596 and G598 hotspot region
is located within the loop stabilizing the interaction be-
tween D587 and K609, thus identifying a possible ex-
planation for their contribution to the inactive state.
Based on these findings, we predicted that p.D587H
would disrupt the auto-inhibitory structure, thereby pro-
moting ligand binding and pathway activation.

To test the functional consequences of the p.D587H
mutation, wild-type EGFR, EGFR p.D587H, and EGFR
p.L858R expression vectors were transfected into
HEK293 cells. As shown in Fig. 5c, similar to the known
activating p.L858R mutant, EGFR auto-phosphorylation
is augmented by p.D587H in comparison to the wild-
type protein, strongly suggesting that p.D587H activates
EGEFR and the activated signaling could be inhibited by
EGEFR inhibitors. Given this strong supporting functional
genomics data, we suggested benefit from targeted anti-
EGER therapies.

Comparative analysis of integrative genomics and cancer
panels

Currently, panel-based targeted sequencing of cancer-
related genes and mutational hotspots is commonly used
in NGS-based clinical testing. To evaluate if the integra-
tive genomic profiling approach employed in this study
provides additional clinically relevant information, we
performed a comparative analysis of cancer-related som-
atic mutations as well as clinically actionable alterations
identified in our study versus those that would have
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been identified by several commercially available cancer
panels (Table 5).

We first examined the number of somatic mutations
in each patient. Since many of the genes with somatic
mutations identified by WES have unknown functional
relevance in cancer development, we only focused on
cancer-relevant mutations (tier 1-4 mutations, see
“Methods”). Mean 17.3 cancer-relevant somatic muta-
tions per patient were identified in the 46 patients re-
ported in this study, and only 1.3, 2.5, and 3.7 of these
mutations would have been found by the Ion AmpliSeq
Cancer Hotspot Panel v2, the Oncomine Comprehensive
Panel, and FoundationOne, respectively. This represents
a 13.3-fold, 6.9-fold, and 4.7-fold increase by our ap-
proach over the three panels, respectively. Next, we in-
vestigated how many of the actionable alterations we
identified could have been discovered by other ap-
proaches. As shown in Table 5, in 40 of the 46 patients
(87 %), alterations associated with tier 1 level drug re-
sponse (defined in “Methods”) were identified by our ap-
proach, and in 24 (52 %), 39 (85 %), and 39 (85 %)
patients by the other three respective targeted panels. If
we took alterations associated with tier 2 drug response
(defined in “Methods”) into consideration, the total
number of patients with actionable alterations increases
to 42 (91 %) by our study, and 24 (52 %), 41 (89 %), and
41 (89 %) by the three other respective panels.

We note that in many cases, although both panel-based
approaches and our integrative genomic approach would
have found a well-recognized actionable mutation, e.g. ac-
tivating mutations in KRAS in colorectal cancers that are
associated with lack of benefit to cetuximab or panitumu-
mab, the comprehensive genomic profiling we applied led
to the identification of additional actionable alterations in
these cases that may inform alternative therapeutic op-
tions. Therefore, we further asked how many genes with
genetic and genomic alterations are considered actionable
(see “Methods”) in each patient. Our analysis revealed that
mean 4.9 actionable alterations due to somatic mutations,
CNA, germline variants, or gene expression alterations
were discovered by our integrative genomic profiling, in
comparison to mean 0.65, 2.4, 2.6 actionable alterations
that could have been identified by the three other respect-
ive panels, representing a 7.5-fold, 2.0-fold, and 1.9-fold
increase, respectively. Of the mean 4.9 alterations, 1.5
were somatic mutations, 0.6 were CNAs, 2.2 were germ-
line variants, and 0.7 were gene expression alterations, in-
dicating that a significant part of the actionable alterations
was derived from germline data.

Follow-up patient survey

An IRB-approved follow-up patient survey was conducted
after the completion of our main study. A total of 40 pa-
tients who were not known to be deceased were contacted,
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Fig. 5 Presentation of a case study with a novel actionable mutation p.D587H (hg19 chr7:55233009G > C) in EGFR. a EGFR mutation frequencies
in several cancer types were obtained from TCGA data (http://cancergenome.nih.gov) and plotted across the EGFR protein sequence. D587
(dashed red line) is located near a hotspot at G598 within domain IV. Kinase domain and domain Il hotspots are also depicted. Domain structure is
from Pfam [63]. b Structure of the extracellular region of EGFR depicting individual domains; | (vellow), Il (orange), Ill (teal), and IV (silver). A view of
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cells were transfected with EGFR, p.D587H, or p.L858R, and activity of EGFR was assayed by western blot using an anti-phosphotyrosine antibody to

of which nine were found to be deceased via the follow-up
study. Ten of the 31 remaining patients (32 %) consented
and completed the survey. Survey questions covered a var-
iety of topics including overall satisfactions with the study,
understanding of the research findings, and if any of the
findings influenced clinical management. Seven of nine pa-
tients (78 %; one chose not to respond) stated the genomic
study findings met their expectations. However, nine pa-
tients expressed some level of difficulty in understanding
the research findings. Nine patients (not overlapping)

discussed the results with their treating physicians. Six out
of nine patients (67 %; one chose not to respond) stated
that the findings were somewhat useful or very useful. Be-
tween responders of this survey (N=3) and non-survey
follow-up with a physician (V= 1), the course of treatment
was altered for four patients in our study based on our
genomic findings.

Although details on treatment alterations were not avail-
able from the survey, two of the four cases are colorectal
cancers harboring well-known activating mutations in
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Table 5 Comparative analysis of integrative genomic approach and cancer panels. The numbers corresponding to the three cancer
panels are hypothetical (based on the panel design) and not based on experimental results

Genomic approach Mean number of cancer-

Number of patients Number of patients Number of patients Mean number
relevant somatic mutations with tier 1 drug

with tier 2 drug with actionable of actionable

(range) recommendations  recommendations  alterations alterations (range)
lon AmpliSeq Cancer Hotspot Panel v2 1.3 (0-4) 24 (52 %) 16 (35 %) 24 (52 %) 0.65 (0-3)
Oncomine Comprehensive Panel 25 (0-11) 39 (85 %, 24 (52 %) 41 (89 %) 24 (0-6)
FoundationOne 37 (0-22) 39 (85 %, 24 (52 %) 41 (89 %) 26 (0-7)
This study 173 (1-79) 40 (87 %, 26 (57 %) 42 (91 %) 49 (0-14)

KRAS (p.G13D) and BRAF (p.V600E) and we suspect that
the patients decided not to pursue cetuximab/panitumu-
mab treatment and may have enrolled in clinical trials on
MEK inhibitors. The third case (P0025) is also a metastatic
colorectal cancer with an activating mutation in NRAS
(p-Q61R), predicting insensitivity to cetuximab/panitumu-
mab. In addition, this patient harbors germline mutations
in KDR and CXCR2 associated with increased benefit to
bevacizumab and germline variants in ERCC1, ERCC2,
ERCCS5, and XRCC1 associated with decreased benefit to
oxaliplatin. Through personal communication, the patient
revealed to us that indeed treatment with bevacizumab
and 5-fluorouracil resulted in a brisk response that allowed
for cryoablation of remaining oligometastatic lung disease,
while the initial platinum-based regimen (oxaliplatin-con-
taining) had limited efficacy. This patient remains in
complete remission for 16 months at the time of this writ-
ing. The germline mutations in this patient associated with
increased benefit to bevacizumab or decreased benefit to
oxaliplatin would not have been identified with cancer
panel sequencing on tumor samples only. The fourth case
(P0015) is cancer of unknown origin with a rare activating
EGFR mutation p.D587H, as described above. Communi-
cation with the treating oncologist through a genetic
counselor indicated that EGFR inhibitors were considered
due to the identification of the EGFR mutation. This novel
somatic EGFR mutation would not have been called som-
atic with high confidence if tumor-only sequencing were
performed using cancer panels.

Discussion

Here we report clinical application of an integrative gen-
omic approach for PCT. Overall, the integrative genomic
approach applied in our study identified significantly
more cancer-related somatic mutations as well as more
actionable genetic and genomic alterations than would
have been identified using any one of several commonly
used commercial cancer panels (Table 5). In several pa-
tients where panel sequencing of mutational hotspots
would not have identified any clinically actionable muta-
tions, rare somatic mutations uncovered through our
comprehensive genomic sequencing have the potential
to impact treatment options and ultimately change

clinical outcome for individual patients. Indeed, treat-
ment decisions were influenced by our genomic studies
in four cases. Other cases have been reported in which
whole genome sequencing uncovered rare mutations
that were missed by targeted sequencing and that had
the potential to guide treatment but was discovered too
late. For example, a rare activating BRAF mutation
(p.L597R) was identified in an aggressive metastatic mel-
anoma using whole genome sequencing that had previ-
ously been designated as “wild-type” for BRAF p.V600E/
K mutations and several common KIT mutations using
targeted sequencing [57]. The BRAF p.L597R mutation
was demonstrated to be responsive to MEK inhibitors in
metastatic melanomas [57], suggesting that with more
comprehensive testing the patient in question may have
benefitted from this treatment option [58]. While we
identified actionable alterations in 91 % of the cases
tested, we did not identify actionable results in four
cases. More comprehensive approaches for profiling tu-
mors that employ additional platforms such as prote-
omic and metabolic profiling may potentially provide
clinically actionable information in these cases.

In comparison to commonly used targeted cancer panel
sequencing, more comprehensive genomic profiling pro-
vides a number of advantages. First, cancer panels are
generally designed to include well-characterized cancer-
associated genes, whereas WES and RNA-Seq enable elu-
cidation of the underlying cancer genetic drivers at the
pathway level, given alterations in several components of
the same pathway allow us to predict pathway dysregula-
tion with higher confidence. For example, several genes
such as DKK1/2, CSNK1A1, INPP5D, and INPPL1 in the
cases we discussed in detail (Fig. 3) are not present on the
cancer panels we examined, yet their functional roles in
respective signaling pathways are well-documented [59,
60]. Many somatic mutations identified from WES are of
unknown significance; however, as more WES data accu-
mulate, retrospective analysis of these genomic data and
association with clinical outcome and treatment response
could inform novel actionable mutations. Second, whereas
most clinically available cancer panel sequencing tests are
designed to screen only tumor DNA, the more integrative
profiling makes it possible to differentiate germline from
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somatic variants, especially in cases of novel or rare vari-
ants. Without knowledge of germline variants, accurately
identifying somatic mutations becomes problematic as
panel sizes increase [8]. For example, rare or private germ-
line variants located in protein domains with hotspot
oncogenic mutations, such as kinase domains, may be
interpreted as somatic mutations by workflows using only
tumor samples. However, knowledge that a variant is
germline would be important because genetic counseling
or increased surveillance may be indicated for a patient
who is a carrier of a pathogenic allele, thus the cancer risk
of the patient or their family may be substantially in-
creased. For these reasons, despite the logistical challenges
relating to sample collection and tissue banking, we favor
sequencing of matched tumor-normal pairs. Sequencing
of germline DNA provides the added benefit of identifying
variants that may inform on drug metabolism or DNA re-
pair pathways that are associated with response to chemo-
therapy, providing for the possibility of informing on the
efficacy and toxicity of a given drug for a given individual.
Such variants may be missed or inaccurately called from
the tumor DNA. As illustrated in our follow-up patient
survey, germline mutations associated with drug re-
sponses in patient P0025 would not have been identified
with cancer panel sequencing of tumor samples only, and
the rare EGFR somatic mutation in patient P0015 would
not have been called somatic with high confidence with-
out sequencing of both tumor and the matched normal
control samples. In addition, germline variants that pre-
dispose to cancer may provide prognostic value and in-
form on treatment options, as we demonstrated in one of
our cases (P0013) with the identification of a BRCA1
germline mutation that led to our recommendation for
cisplatin chemotherapy.

We have further shown that RNA-Seq can significantly
augment the utility of genetic testing for PCT. Across a
number of cancer types, clinically relevant subclasses
can be defined based on gene expression patterns. In
breast cancers, both luminal A and luminal B subclasses
are ER+. However, luminal A subtype is more responsive to
hormonal therapy while luminal B subtype is more respon-
sive to chemotherapy [42]. Therefore, sub-classification of
breast cancers using RNA-Seq-derived signatures may have
clear therapeutic implications. For example, in one of our
cases (P0013), we identified a discrepancy in classification
of the breast cancer in this patient between the pathology
report (which classified the patient’s tumor as ER+ under
the current ASCO/CAP guidelines [43]) and the RNA-Seq
analysis results we carried out on this patient (resulting in a
classification of basal like). A re-review of the pathology in-
dicated that only 10 % of the tumor nuclei stained positive
for ER, whereas the majority of the tumor cells are triple
negative ER—/PR—/HER2-, suggesting in some cases the
molecular profiling data may lead to a more accurate

Page 16 of 20

molecular characterization of the tumor. It is not uncom-
mon that cancer driver pathways are activated by abnormal
expression of key pathway components in the absence of
genetic alterations. For example, high levels of expression
of epiregulin and amphiregulin not only imply EGFR path-
way activation, they have also demonstrated clinical utility
as predictive biomarkers for response to anti-EGFR treat-
ment [34, 35]. In patient PO009, a quadruple negative colon
cancer case, both epiregulin and amphiregulin exhibited
extraordinary over-expression based on RNA-Seq data
analysis, making a case for cetuximab treatment. Identi-
fication of these types of gene expression biomarkers in
the absence of genetic alterations would not be possible
with DNA sequencing data alone. In addition, RNA-Seq
data can be used to confirm somatic mutations identi-
fied in DNA or to infer driver CNAs when gene expres-
sion correlates with copy number changes. In genomics
findings documents we generated, somatic mutations
detected by both WES and RNA-Seq were denoted as
“validated” to emphasize their significance. Finally,
oncogenic fusion events cannot be reliably detected
from WES, so that RNA-Seq offers a better tool for gene
fusion analysis.

Although this study used a 50 % tumor purity cutoff
(as determined by a pathologist review of H&E sections
adjacent to the tissue being sequenced), it is notable that
many clinical specimens will fall below that threshold.
Despite the 50 % cutoff, the estimate of tumor purity
from WES and array data shows that 14 of the 46 tumor
specimens may be falling below this threshold (Additional
file 1: Table S11), highlighting known challenges in mak-
ing tumor purity estimates. Importantly, analysis of WES
and RNA-Seq identified actionable somatic alterations in
samples containing as little as 25 % tumor cells (e.g.
P0001, P0040) based on post-NGS purity estimation. As
the price of sequencing continues to decline, it will be
feasible to achieve higher sequencing depth in WES assays
and resolve lower-purity tumors.

While our study demonstrates a clear benefit of WES
and RNA-Seq over common targeted sequencing panels,
the cost of WES and RNA-Seq remains an issue given
their substantially higher price and the fact that today
there is not a clear reimbursement mechanism for
generating such data. Further, the data analyses and
interpretations for the combined WES and RNA-Seq
data take significantly more time to complete than data
generated from targeted panel sequencing. Sample avail-
ability and quality also pose a barrier to performing
genome-wide profiling. In addition, sequencing of gene
panels, given they cover a small fraction of DNA com-
pared to WES, is often performed at significantly higher
sequencing depth, which allows for both increased sensi-
tivity and specificity, given the heterogeneous mix of
cells that comprise most tumor samples. However, the
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extent to which targeting of sub-clonal alterations can
achieve clinical benefit is still under investigation.

Given the advantages and disadvantages to comprehen-
sive sequencing, one could envision a staggered approach
in which samples first undergo targeted sequencing and
then progress to a deeper characterization if actionable
alterations are not identified. Out of all DNA assays
employed in our study, targeted panel sequencing had the
highest data generation success rate (98/99 samples,
99.0 %; all samples were attempted regardless of available
DNA mass), required the least input DNA (usually 30 ng,
but lower input was accommodated), provided the fastest
turnaround time, and produced the highest sequencing
depth (mean 2587X), allowing detection of variants with
allelic fractions as low as 5 % based on cell line dilution
experiments (data not shown). Thus, a clinical pipeline
should begin with a targeted panel (either a pan-cancer
mutation hotspot panel as we employed, or a cancer-
specific panel selected based on the patient’s diagnosis). A
progression of increasingly comprehensive targeted panels
is also possible. If no actionable alterations are identified,
data generated from initial targeted panel sequencing may
be informative to selecting parameters of follow-up assays,
e.g. selecting the WES depth based on an initial tumor
purity estimate from the panel (which would be based on
non-actionable somatic variants). In our study, sufficient
DNA mass was available for 41 out of 45 patients (91.1 %)
to carry out WES. Although WES was successful for gen-
erating usable data for all 41 patients, eight of 41 patients
(19.5 %) required multiple attempts, sometimes needing
re-extractions of additional DNA from the tumor speci-
men, leading to delays (Additional file 2: Supplementary
Results). Commercial kits for low-input, poor-DNA-
quality WES library preparation are becoming increasingly
available to ameliorate these issues and it is reasonable that
more patients would be amenable to WES in the clinic in
the future. Lastly, our concordance analysis of CNA from
WES versus arrays data processed using the same CNA al-
gorithm [61] (Additional file 2: Supplementary Results)
highlights that the variability in CNA findings between plat-
forms requires additional work to address. Thus, balancing
the costs and benefits for different personalized genomics
strategies is a rapidly evolving process.

Although cancer panel or exome sequencing based
genetic testing is being broadly implemented, only a
small portion of patients with actionable alterations
followed the treatment recommendations through off-
label use of drugs or enrollment into genotype-matched
trials [11, 12, 14, 62]. In our study, according to the
follow-up patient survey, only four out of the ten re-
sponders stated genomic findings altered treatment. The
majority (21/31) of the patients we contacted did not
even respond to the survey request. Previous studies de-
scribed several major challenges in linking genomic
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findings to genotype-matched treatment [12, 14, 62],
and these obstacles are present in our study as well
First, most of the patients were referred to Mount Sinai
hospitals, and some of them did not return after gen-
omic testing. Second, many patients in our study had
gone through several lines of treatment at the time of
genomic testing, and they were unlikely to be eligible for
trials due to health deterioration and poor performance
status. Third, genotype-matched trials may not be avail-
able, particularly for less common tumor types or less
commonly mutated genes. Finally, long turnaround time
of comprehensive genomic profiling in our study poses a
significant barrier, similar to what has been reported by
the Peds-MiOncoSeq consortium [14]. While many of
the challenges are inherent to the overall design and the
observational nature of current genomic-based PCT, we
are taking measures for improvement such as reducing
turnaround time in order to better realize the potential
of genomics-driven individualized cancer treatment.

Conclusions

We have developed and applied in a clinical setting an
integrative genomic approach to facilitate PCT. Genomic
profiling was performed to identify somatic mutations,
copy number alterations, gene fusions, gene expression
alterations, and germline variants to guide individualized
cancer treatment. We demonstrate that the integrated
genomic approach utilized in our study identified more
cancer-relevant somatic mutations and more actionable
alterations than several commercially available targeted
cancer panels, and enabled us to elucidate the under-
lying cancer genetic drivers at the pathway level. Action-
able alterations were found in 91 % of 46 cases, and the
findings altered the course of treatment in four cases.
More cancer-relevant somatic mutations and more ac-
tionable molecular alterations from multi-platform, gen-
ome level profiling are not surprising and provide a
compelling argument that a comprehensive, integrative
genomic approach significantly enhanced genomics-
based PCT strategies.
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patient privacy, different sections were taken from different patient
documents and information identifying the patient and specimens was
removed. (PDF 367 kb)

Additional file 6: Figure S3A and B. Comparison of somatic CNA
segment properties (number and length) between joint segmentation
calls by saasCNV (https://zhangz05.u.hpc.mssm.edu/saasCNV) from WES
data versus array data. Only samples where both assays were run on
same DNA extraction are shown. All segments are shown, including
those classified as “normal” (no CNA) and “undecided” (unclear CNA
change). Patient P0040 is shown twice, once for each of the two tumors
assayed, though in both cases the same normal control data is used.
"FFPE" and “frozen” in all plots refers to tissue source of tumor DNA. a
Correlation of total segment number per tumor between WES and array
assays. b Violin plot comparing the distribution of segment lengths
between WES and array assays for each tumor. Boxplot within each violin
plot shows median, 25th, and 75th quantiles. (ZIP 229 kb)

Additional file 7: Figure S4. Correlation of somatic CNA fold-change
(median “log2ratio” segment statistic from saasCNV of tumor with respect
to normal) between WES and array data. The genome was split into non-
overlapping partitions such that each partition begins and ends on a
CNA segment break from either assay, but no CNA segment breaks occur
inside any partition ("partition” feature of “bedops” software tool v2.4.14,
https://github.com/bedops/bedops). Thus, each partition overlaps exactly
one segment from WES data and exactly one segment from array data.
Each point is a partition, with plotted values taken from the pair of seg-
ments that overlap it. Lower right corner shows the weighed (by partition
length) Pearson correlation between WES- and array-derived log2ratio
values for partitions, computed using the “corr” function from R (v3.2.1)
package "boot” (v1.3-17). “FFPE” and “frozen” in all plots refers to tissue
source of tumor DNA. (PPTX 1114 kb)

Additional file 8: Figure S5. Correlation of somatic CNA heterozygosity
change (median “log2mBAF" segment statistic from saasCNV of tumor
with respect to normal) between WES and array data. The same
partitions are used as in Additional file 7: Figure S4, and weighed
correlation in the lower right corner is also computed in the same way.
(PPTX 981 kb)

Additional file 9: Figure S6. Comparison of weighed correlations of
log2ratio (a, data from Additional file 7: Figure S4) and log2mBAF (b, data
from Additional file 8: Figure S5) for assays on FFPE- versus frozen-
derived tumor DNA material. D statistic and p-value from 2-sided KS test
are shown for FFPE- versus frozen-derived correlation distributions (see
"Methods" for details on KS test). (PPTX 76 kb)

Additional file 10: Figure S7. Distribution of somatic mutation allelic
fractions in patient P0011, by mutation type. (PPTX 191 kb)

Additional file 11: Figure S8. A scatter plot of CCND1 gene expression
versus log2 copy number ratio (tumor/normal). Each dot represents a
patient tumor sample. Tumor types are color-coded. The two breast can-
cer patients where we reported CCND1 amplification are PO002 and
P0040. (PPTX 112 kb)

Additional file 12: Figure S9A and B. CLPB-NADSYNT1 gene fusion in
patient P0002. a Long-range PCR confirms CLPB-NADSYNT gene fusion. b
Genomic breakpoint of CLPB-NADSYN1 gene fusion. (ZIP 150 kb)

Additional file 13: A gzipped tarball (tgz file) of VCF files containing
somatic mutations (i.e. present exclusively in tumor) for the 25 patients
(one VCF file per patient) on whom paired normal/tumor WES was
carried out and whose consents permitted public release of the full
variant call data. For patients where multiple assays were carried out
(WGS, WES, targeted panel, PacBio validation for troubleshooting), the
VICF file contains the final variant call set where any discordance amongst
the assays was resolved. Only mutations altering amino acid sequence
(missense, nonsense, canonical splice site, indel) in a canonical isoform of
a gene are given. Mutations are included that are not explicitly reported
in returned findings due to lack of known relevance to cancer. Mutations
rejected during our manual review protocol are not included. Thus, VCFs
may contain mutations that were not manually reviewed. Three patients
(P0009, P0025, and P0040) have two tumor specimens available, therefore
those VCFs are multi-sample and report which mutations are recurrent
among tumors and which are not; the rest are single-sample. (ZIP 37 kb)

Additional file 14: Figure S10. Sanger sequencing validation results of
novel somatic EGFR mutation p.D587H (chr7:55233009G>C) in patient
P0O015. Sanger sequencing was carried out on normal and tumor DNA
from this patient using forward and reverse primers (Beckman Coulter
Genomics, Danvers, Massachusetts). Traces shown are as displayed by
4Peaks visualization software for Mac OS X (http://nucleobytes.com/
4peaks). Two replicate sequencing reactions were carried out for each
primer and sample combination, yielding the same result (second
replicate not shown). Base numbering shown is relative to priming site.
The allelic fraction of p.D587H in tumor was 19.4 % (387/1998 reads have
variant) in targeted panel sequencing, explaining the relatively small size
of the Sanger peak for the alternate allele. (PPTX 240 kb)
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