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the inhibitory effects of liver X receptors
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Abstract

Background: The liver X receptors (LXRs, NR1H2 and NR1H3) and peroxisome proliferator-activated receptor gamma
(PPARG, NR1C3) nuclear receptor transcription factors (TFs) are master regulators of energy homeostasis. Intriguingly,
recent studies suggest that these metabolic regulators also impact tumor cell proliferation. However, a comprehensive
temporal molecular characterization of the LXR and PPARG gene regulatory responses in tumor cells is still lacking.

Methods: To better define the underlying molecular processes governing the genetic control of cellular growth in
response to extracellular metabolic signals, we performed a comprehensive, genome-wide characterization of the
temporal regulatory cascades mediated by LXR and PPARG signaling in HT29 colorectal cancer cells. For this analysis,
we applied a multi-tiered approach that incorporated cellular phenotypic assays, gene expression profiles, chromatin
state dynamics, and nuclear receptor binding patterns.

Results: Our results illustrate that the activation of both nuclear receptors inhibited cell proliferation and further
decreased glutathione levels, consistent with increased cellular oxidative stress. Despite a common metabolic
reprogramming, the gene regulatory network programs initiated by these nuclear receptors were widely distinct.
PPARG generated a rapid and short-term response while maintaining a gene activator role. By contrast, LXR
signaling was prolonged, with initial, predominantly activating functions that transitioned to repressive gene
regulatory activities at late time points.

Conclusions: Through the use of a multi-tiered strategy that integrated various genomic datasets, our data illustrate
that distinct gene regulatory programs elicit common phenotypic effects, highlighting the complexity of the genome.
These results further provide a detailed molecular map of metabolic reprogramming in cancer cells through LXR and
PPARG activation. As ligand-inducible TFs, these nuclear receptors can potentially serve as attractive therapeutic targets
for the treatment of various cancers.
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Background
Metazoan systems are exposed to a multitude of extra-
cellular stimuli, including both compounds that are en-
dogenously synthesized and those obtained through diet
[1–3]. In response to these environmental signals, cells
activate intricate transcriptional programs [1–3]. The
careful interplay between extracellular cues and intracel-
lular gene expression responses maintains normal cellu-
lar equilibrium and is key for cellular differentiation and
development [4–7]. Despite this importance, more work
is needed for a thorough, molecular characterization of
the temporal gene regulatory responses to diverse exter-
nal signals.
The liver X receptors (LXRs), also referred to as Nuclear

Receptor Subfamily 1, Group H, Member 2 (NR1H2) and
Nuclear Receptor Subfamily 1, Group H, Member 3
(NR1H3), and peroxisome proliferator-activated receptor
gamma (PPARG), also referred to as Nuclear Receptor
Subfamily 1 Group C Member 3 (NR1C3), are ligand-
activated nuclear receptor transcription factors (TFs) that
respond to oxysterols [8] and fatty acids [9], respectively.
LXRs are comprised of two isoforms (alpha and beta;
LXRA and LXRB) that have related functions and tissue
expression profiles, including a common affinity for oxy-
sterols [8], while PPARG is activated by distinct fatty acids
[9]. LXRs and PPARG maintain energy homeostasis by
regulating lipid [10, 11] and glucose [12, 13] metabolism.
Intriguingly, they are also key modulators of inflammatory
responses [14]. These metabolic TFs are also involved in
several diseases, including diabetes [12, 15–19], obesity
[20–24], atherosclerosis [25–29], and cancer [30–33].
Protective functions have consistently been reported

for LXRs in a variety of diverse cancers. For instance, di-
ets rich in plant-derived phytosterols, a putative LXR
agonist [34], were shown to decrease risk of breast [35],
gastric [36], and lung [37] cancers. Importantly, a protect-
ive effect for phytosterols in colorectal cancer has also
been demonstrated using cell lines and animal models
[38]. Administration of an LXR agonist also suppressed
the growth of LNCaP prostate cancer cell tumor xeno-
grafts in mice [39] while genetic ablation of LXRB results
in gallbladder carcinogenesis [40]. Moreover, specific LXR
activation leads to anti-proliferative effects in breast [41],
prostate [33], and colorectal [32] cancer cells. Several
mechanisms have been proposed for these LXR-mediated
effects. For instance, cell cycle inhibition [32, 33], induc-
tion of apoptosis [42], and ligand deprivation [43] have all
been described. The role of PPARG in tumorigenesis is
complex and its effects appear to be tissue-specific.
Several studies have suggested protective effects in breast
[44], hepatic [45], and lung [31] cancers. A recent study
characterized a PPARG anti-proliferative effect in lung
cancer that was proposed to be due to the regulation of
cellular reactive oxygen species via activation of pyruvate

dehydrogenase kinase 4 (PDK4) and beta-oxidation of fatty
acids [31]. However, in colorectal cancer, both tumor-
suppressive [46] and tumor-facilitating [30, 47] functions
have been proposed for PPARG.
To better understand the underlying gene regulatory

functions of LXRs and PPARG that lead to metabolic
reprogramming in cancer cells, we performed a compre-
hensive genome-wide analysis of LXR and PPARG activ-
ity in HT29 colorectal cancer cells. Despite common
physiological effects on energy homeostasis, paradoxic-
ally, the genome-wide molecular programs elicited by
LXRs and PPARG appear to be temporally distinct. Our
results highlight the advantages of integrating multiple
levels of transcriptional regulation rather than relying on a
single feature. From a broader perspective, this work sup-
ports the notion that common phenotypic effects can be
mediated through distinct gene regulatory mechanisms.

Methods
Cell culture
HT29 colorectal cancer cells were obtained from ATCC
and grown under recommended cell culture conditions
using McCoy’s 5A media containing 10 % fetal bovine
serum (FBS) and 1 % penicillin/streptomycin. GW3965
(Sigma), T0901317 (Santa Cruz), and rosiglitazone (Sigma)
powder were diluted in DMSO and added to media at a
final concentration of 10 μM. Prior to drug treatments,
HT29 cells were grown in phenol-red free McCoy’s 5A
media containing 10 % charcoal/dextran-treated FBS and
1 % penicillin/streptomycin.

Cell phenotype assays
Cell-based phenotypic assays were performed in 96-well
cell culture plates. Cell proliferation measurements were
determined using the CyQuant assay (Invitrogen) for
DNA content and CellTiter-Glo Luminescent Cell Via-
bility Assay (Promega) for ATP levels. Glutathione levels
for oxidative stress were determined using the GSH-Glo
Glutathione Assay (Promega).

Metabolomic experiments
For analyses of metabolites, cell cultures were washed with
phosphate-buffered saline, molecular biology-grade water
and then subsequently pelleted for mass spectrometry.
Cell pellets were resuspended in 50 % methanol, shaken at
4 °C for 30 minutes and centrifuged at 12,000 rpm for
10 minutes. Duplicate aliquots of supernatant were dried
at 55 °C for 60 minutes using a vacuum concentrator
system (Labconco). Derivatization by methoximation and
trimethylsilyation was performed as previously described
[48]. All derivatized samples were analyzed on a Leco
Pegasus 4D system (GCxGC-TOFMS), controlled by the
ChromaTof software (Leco, St. Joseph, MI, USA). Peaks
were identified by spectral match using the NIST, GOLM,
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and Fiehn libraries (Leco) and confirmed by running
derivatized standards (Sigma). Peaks present in less than
two-thirds of samples were excluded from further analysis.
Sample replicates were averaged and peak areas were sum
normalized prior to comparisons.

Transfection of LXRA transgene plasmid constructs
Flag-tagged (3-prime 3X-Flag tags separated by glycine
spacers) LXRA cDNA plasmid constructs were transfected
(Fugene) into HT29 cells. HT29 cells were subsequently
selected using G418 (Invitrogen) and expanded prior to
GW3965 drug treatment and ChIP-seq experimentation.

ChIP-seq assays and analysis
ChIP-seq was performed as previously outlined [49].
Antibodies for H3K27ac (Abcam, ab4729), H3K36me3
(Abcam, ab9050), RNA polymerase II (RNAP2; Abcam,
ab5408), LXRB (Active Motif, 61177), PPARG (Santa
Cruz, sc-7273), and Flag (Sigma, F1804) were used.

RNA-seq experimentation and analysis
RNA-seq was performed as previously outlined [50] using
Nextera transposases (Illumina). Briefly, cells were lysed
with Buffer RLT (Qiagen) containing 10 % beta-
mercaptoethanol. The Norgen Animal Tissue RNA Purifi-
cation Kit (Norgen Biotek) was used to isolate RNA from
cells. The Dynabead mRNA Purification Kit (Invitrogen)
beads were used to isolate mRNA transcripts and cDNA
synthesis was performed using Superscript reverse tran-
scriptase (Invitrogen). Nextera transposases (Illumina)
were used to fragment cDNA prior to next-generation se-
quencing. All experimental treatments at all time points
were performed in quadruplicate.

Data analysis
Two-sided Student’s t-tests were performed to assign
significance for cellular phenotypic assays and metabol-
ite levels. Only reproducible binding sites identified by
replicate ChIP-seq experiments were reported and used
for downstream analyses. ChIP-seq peaks were identified
using MACS peak caller [51], while motif analysis was per-
formed using MEME [52] on the top 500 most enriched
binding sites. For normalized ChIP-seq read-depth ana-
lyses, the number of reads were tabulated across binding
site coordinates and normalized to the total number of
aligned reads obtained for each ChIP-seq experiment. For
mapping reads, we utilized a 100-bp sequence centered on
the peak summit of each binding site. For ranking tem-
poral changes in read depth, we generated a linear model
comparing replicate ChIP-seq read enrichment values be-
tween two time points. Sites with altered enrichment were
subsequently divided by slope and p value ranked. The top
50 % of p value-ranked sites from each category were used
for cofactor motif analyses. For assigning TF motif fold

enrichments, we compared the total number of motifs
found across a set of binding sites with the number of
motifs identified after scrambling binding site se-
quences. For RNAP2 read depth promoter analyses, se-
quences within 500 bp of transcription start sites were
used as promoters. Connectivity maps were generated
using Cytoscape (http://www.cytoscape.org/) and En-
richment map [53]. Kyoto Encyclopedia of Genes and
Genomes (KEGG) gene pathway enrichments were gener-
ated using Gene Set Enrichment Analysis (GSEA; http://
software.broadinstitute.org/gsea/msigdb/annotate.jsp). Wil-
coxon rank sum tests were used to assign significance for
H3K36me3 enrichment analyses. Differential gene expres-
sion was determined using DESeq [54]. High-confidence
GW3965 +T0901317 responsive genes were assigned for
all targets that passed significance and fold change cutoffs
across both drug treatments. For comparison of gene ex-
pression with RNAP2 and H3K36me3 occupancy, if a gene
harbored multiple promoters and/or transcripts, the pro-
moter and/or gene body coordinate exhibiting the strongest
read enrichment was used.

Results
LXRs and PPARG generate common phenotypic effects
We evaluated the proliferative and metabolic effects of
LXRs and PPARG in HT29 colorectal cancer cells with
several cellular assays. First, we assayed cellular prolifera-
tion by measuring DNA and ATP content in cells after 24,
48, and 96 h of treatment with the LXR agonist GW3965
and the PPARG agonist rosiglitazone (Fig. 1a, b) and by
comparing the resulting cellular responses to control
culture conditions containing the carrier DMSO. The
evaluation of both DNA and ATP confirmed an inhibitory
effect on colorectal cancer cell proliferation, supporting
conclusions of previous reports [32, 46]. Notably, these
anti-proliferative effects became more pronounced over
time. In light of the functions of LXRs and PPARG as
regulators of energy homeostasis, we also measured gluta-
thione levels in drug-treated cells (Fig. 1c). LXR and
PPARG activation significantly decreased glutathione
levels, highlighting a potential inhibitory effect on prolifer-
ation through increased oxidative stress, a finding that has
been reported for PPARG in lung cancer cells [31].
To better characterize cellular metabolic alterations, we

next assessed metabolite levels through mass spectrom-
etry of HT29 cell lysate after drug treatment (Fig. 1d–f ).
We focused our analyses on carbohydrate metabolism and
evaluated key metabolites involved in oxidative phosphor-
ylation and aerobic glycolysis (Fig. 1d). We found that
LXR and PPARG activation led to significant decreases in
glucose and citrate levels, as well as to significant increases
in pyruvate and lactate levels after drug treatment
(Fig. 1e, f ), supporting an increase in cellular aerobic
glycolysis at the expense of oxidative phosphorylation.
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Although both drug treatments generated the same
cellular response, the temporal dynamics of these
metabolic effects were distinct; rosiglitazone produced
more substantial effects at 24 h, while several of the
GW3965-mediated changes were evident only after
48 h of drug treatment. Apart from glucose pathway

metabolites, we also identified a variety of compounds
that were significantly altered in response to drug
treatment (Additional file 1: Figure S1). In all these
cases, LXR and PPARG activation generated identical
alterations, highlighting a common mechanism of
metabolic reprogramming.
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Fig. 1 Effects of LXRs and PPARG on cellular phenotypes and metabolites. a Proliferation assays using DNA content after 24, 48, and 96 h of drug
treatment (24-h n = 10 for each treatment; 48/96-h n = 12 for each treatment). Luminescence values are presented for GW3965 (blue, LXR agonist),
rosiglitazone (gold, PPARG agonist), and DMSO (gray, vehicle control) treatment. *p< 0.01. b Proliferation assays using ATP levels after 24, 48, and 96 h of
drug treatment (24-h n = 15 DMSO, n = 8 rosiglitazone, n = 7 GW3965; 48/96-h n = 18 DMSO, n = 9 rosiglitazone, n = 9 GW3965). Luminescence values
are presented for GW3965 (blue, LXR agonist), rosiglitazone (gold, PPARG agonist), and DMSO (gray, vehicle control) treatment. *p< 0.01. c Oxidative stress
assays after 48 and 96 h of drug treatment (n = 18 DMSO, n = 9 rosiglitazone, n = 9 GW3965). Glutathione concentrations are presented for GW3965 (blue,
LXR agonist), rosiglitazone (gold, PPARG agonist), and DMSO (gray, vehicle control) treatment. *p < 0.01. d The carbohydrate metabolism pathway
illustrating key metabolites. e Relative metabolite abundance after 24 h of GW3965 (blue, LXR agonist), rosiglitazone (gold, PPARG agonist), and DMSO
(gray, vehicle control) treatment. *p< 0.05. f Relative metabolite abundance after 48 h of GW3965 (blue, LXR agonist), rosiglitazone (gold, PPARG agonist),
and DMSO (gray, vehicle control) treatment. *p < 0.05. Error bars represent standard deviation
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Distinct transcriptional profiles from LXR and PPARG
signaling
We next evaluated changes to the cellular transcrip-
tome after GW3965 and rosiglitazone drug treatments.
We performed RNA-seq under control culture condi-
tions (DMSO), as well as after 24 and 48 h of drug
treatment. For each time point, we calculated the num-
ber of differentially regulated genes (adjusted p < 0.01,
fold change cutoff ±2) in response to each drug (Table 1
and Fig. 2a). The PPARG response generated a near
linear curve in the number of responsive genes. By con-
trast, the GW3965 treatment was delayed at 24 h and
the vast majority (80.6 %) of these early genes were up-
regulated. To validate this slow response, we performed
RNA-seq by using a different LXR agonist, T0901317
(Fig. 2a); the resulting transcriptional response also
produced a stalled expression profile. Notably, both
GW3965 and T0901317 gene sets were highly corre-
lated (Additional file 1: Figure S2a). By further integrat-
ing these gene sets, we generated a list of high-confidence,
LXR target genes (GW3965 + T0901317). Supporting our
observations, GW3965 +T0901317 gene targets also pro-
duced a stalled response (Additional file 1: Figure S2b).
The use of a lower gene expression fold change cutoff
(±1.5) generated an identical transcriptional pattern for all
drug treatments (Additional file 1: Figure S3). Importantly,
these gene expression changes are also in agreement with
changes in cellular metabolites we described above.
We next compared the gene expression data between

rosiglitazone and both GW3965 and T0901317 drug re-
sponses. Despite common cellular phenotypes from LXR
and PPARG signaling, only a subset of genes was respon-
sive to both agonists (Table 1). Interestingly, many of these
common targets were regulated in an opposing manner,
underscoring distinct gene regulatory functions of both nu-
clear receptors at the molecular level. Although decreasing
the fold change cutoff (±1.5) led to stronger overlap, the
number of genes regulated in an opposing manner simi-
larly increased (Table 2).
We performed genetic pathway enrichment analyses

based on this list of differentially expressed genes.
Gene Ontology enrichment mapping [53] identified

wide alterations in pathways affected by GW3965
treatment between 24 and 48 h (Fig. 2b, c). For in-
stance, the 24-h network consisted predominantly of
up-regulated pathways involved in lipid metabolism,
signal transduction, small molecule biosynthesis, and
transmembrane transport. By contrast, at 48 h, we identi-
fied a large set of down-regulated pathways involved in
cell cycle regulation, transcription, and tissue morphogen-
esis. This LXR network topology was distinct from the
PPARG response (Additional file 1: Figure S4), where 24-
and 48-h rosiglitazone inductions produced concordant
pathway enrichments predominantly involved in cell me-
tabolism (up-regulated) and membrane transport (down-
regulated).
We also performed enrichment analyses using the

KEGG pathway dataset from GSEA [55]. At 24 h, the
GW3965 and T0901317 drug treatment produced sig-
nificantly up-regulated pathways involved in lipid and
energy metabolism (PPAR signaling, fatty acid metabol-
ism, pyruvate metabolism, etc.), including ABC trans-
porters. Although these patterns were maintained at 48 h,
several key pathways and processes, including MAPK,
TGF-beta, cell cycle, and Wnt, were significantly down-
regulated by both drugs. For rosiglitazone treatment, the
up-regulated and down-regulated KEGG pathways were
more consistent between 24 and 48 h. A detailed list of all
KEGG pathway enrichments can be found in Additional
file 2: Table S1. Pathway enrichments for genes commonly
induced by both LXR and PPARG activation are also tabu-
lated in Additional file 3: Table S2.

Chromatin state dynamics support cellular transcriptional
effects
We further determined whether the more gradual GW3965
gene expression coincides with slower chromatin state dy-
namics. We performed replicate ChIP-seq experiments for
the histone-3 lysine-27 acetylation (H3K27ac) chromatin
modification under control (i.e., DMSO carrier only) cul-
ture conditions and after 24- and 48-h drug treatments.
Because H3K27ac is a modification that appears at active
regulatory elements [56], this temporal characterization
provides a genome-wide picture illustrating changes to the

Table 1 Total number of differentially regulated genes

24-h treatment 48-h treatment

Fold change
≥1.5

Fold change
≤ −1.5

Fold change
≥2

Fold change
≤ −2

Fold change
≥1.5

Fold change
≤ −1.5

Fold change
≥2

Fold change
≤ −2

Rosiglitazone 421 646 273 177 1019 1396 416 701

GW3965 223 83 100 24 1846 1646 698 535

T0901317 161 10 57 1 1538 1578 589 560

GW3965 + T0901317 119 5 47 0 1040 1141 357 395

The total number of differentially regulated genes (up- and down-regulated) using two distinct fold change cutoffs (p < 0.01) from all drug treatments at 24- and
48-h time points is shown. For GW3965 + T0901317 high confidence LXR target gene analyses, all genes exceeded fold change and p value cutoffs across both
drug treatments
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Fig. 2 Chromatin dynamics and gene expression profiles from nuclear receptor activation. a The number of differentially regulated genes (up- and
down-regulated) after 24 and 48 h of drug treatment (adjusted p< 0.01 and fold change cutoff ±2). b Gene Ontology connectivity map for GW3965 at
24 h for up-regulated (red) and down-regulated (red) pathways. c Gene Ontology connectivity map for GW3965 at 48 h for up-regulated (red) and down-
regulated (red) pathways. d The number of H3K27ac sites gained (red) and lost (blue) after 24 and 48 h of GW3965 and rosiglitazone drug treatment

Table 2 Analysis of overlapping LXR- and PPARG-responsive genes

Overlap
24 h (%)

Concordant
24 h

Discordant
24 h

Percentage
concordant 24 h

Overlap
48 h (%)

Concordant
24 h

Discordant
24 h

Percentage
concordant 48 h

GW3965 (fc ±2) 32 (25.8 %) 29 3 90.6 % 203 (18.2 %) 119 84 58.6 %

T0901317 (fc ±2) 9 (15.5 %) 8 1 88.9 % 189 (16.9 %) 70 119 37.0 %

GW3965 (fc ±1.5) 119 (38.9 %) 100 19 84.0 % 790 (35.1 %) 381 409 48.2 %

T0901317 (fc ±1.5) 60 (35.1 %) 41 19 68.3 % 775 (32.1 %) 222 553 28.6 %

The overlap between LXR-responsive genes (from GW3965 and T0901317 treatments) with PPARG-responsive genes (from rosiglitazone treatment) is shown at
both 24 and 48 h. The number and percentage of total responsive genes is shown. The number of genes and percentages that show concordant and opposing
changes in differential expression across all drug comparisons is also given. Hypergeometric tests of gene overlaps for both drug comparisons and time points
were highly significant (p < 1e-16)
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cis-regulatory architecture upon LXR and PPARG activa-
tion. Using data from control culture conditions as a refer-
ence, we identified H3K27ac sites that were gained or lost
after drug treatment at both time points (Fig. 2d; Additional
file 1: Figure S5). We next compared the chromatin re-
sponses between drug treatments and identified a substan-
tially larger number of H3K27ac sites that were gained at
24 h in response to rosiglitazone (6500 versus 3162 loci;
51 % more), mirroring transcriptional effects. By 48 h, the
difference between both drugs substantially diminished
(7179 versus 6273 loci; 13 % more). Interestingly, the degree
of H3K27ac site loss was similar between drug treatments
(Fig. 2d; Additional file 1: Figure S5). We further identified
a substantial amount of overlap in H3K27ac binding
events that were gained between drug treatments and
their associated genetic pathway enrichments (Additional
file 1: Figure S6).
We next compiled all time points for each drug treat-

ment separately to identify loci showing dynamic changes
in H3K27ac enrichment across the entire duration of treat-
ment (Additional file 1: Figure S7). We identified all
GW3965- and rosiglitazone-induced regulatory sites show-
ing differences in normalized read depth from 0 to 24 h
and from 24 to 48 h of drug treatment. The vast majority
of dynamic H3K27ac sites exhibited a gradual increase or
decrease in H3K27ac occupancy over time, suggesting these
analyses are identifying nuclear receptor-mediated regula-
tory events. Further validating our approach and conclu-
sions above, regulatory sites gaining H3K27ac occupancy
throughout the time course were enriched near the pro-
moters of genes up-regulated at 48 h after GW3965 and
rosiglitazone drug treatments (Additional file 1: Figure S8).
This enrichment was also observed using GW3965 +
T0901317 target genes (Additional file 1: Figure S9).
We further performed Genomic Regions Enrichment
of Annotations Tool (GREAT) pathway analyses [57],
which confirmed that sites with temporally increasing
H3K27ac occupancy were enriched near relevant genes
involved in cell metabolism and/or implicated in colo-
rectal cancer (Additional file 1: Figures S10 and S11).
Taken together, these additional data further support
the notion that LXR and PPARG direct temporally dis-
tinct gene regulatory responses through alterations in
chromatin state.

LXRB and PPARG have temporally opposing binding
patterns
To interrogate LXR and PPARG TF occupancy during our
drug treatment regime, we performed replicate ChIP-seq
experiments for LXRA (NR1H3), LXRB (NR1H2), and
PPARG (NR1C3). We used an early (2-h) and a late (48-h)
time point for these experiments to further preserve tem-
poral information. These two datasets spanned the entire
temporal molecular characterization and allowed for an

examination of the immediate effects of drugs on their
direct protein targets. We obtained high-quality antibodies
for LXRB and PPARG; however, because we could not
identify a suitable commercial ChIP-seq grade antibody
for LXRA, we engineered HT29 cells to express a C-
terminal Flag-tagged LXRA transgene protein and used a
Flag antibody for ChIP-seq experiments. Importantly, nor-
malized sequencing read depth at identified LXRA/B or
PPARG binding sites was highly concordant across repli-
cate ChIP-seq experiments for both time points (Fig. 3a).
Additionally, for all datasets, the canonical LXR and
PPARG motifs were significantly enriched, supporting the
notion that our cistromes are identifying true nuclear re-
ceptor binding events (Fig. 3b). Collectively, we identified
18,653, 3,900 and 14,360 binding sites at 2 h and 17,576,
9,335 and 8463 binding sites at 48 h for LXRA, LXRB,
and PPARG, respectively. Moreover, ~80 % of the en-
dogenous LXRB binding sites were identified by the Flag-
tagged LXRA protein at both time points, suggesting
substantial redundancy between both LXR proteins.
We next integrated the 2-h and 48-h binding informa-

tion for LXRB and PPARG proteins, as these datasets
illustrate temporal occupancies of TFs under endogen-
ous promoter control. Intriguingly, LXRB and PPARG
generated opposing profiles (Fig. 3c, d); the number of
LXRB binding events increased significantly with time
(514 and 5928 binding sites specific to 2 and 48 h, respect-
ively), while PPARG binding exhibited strongest occu-
pancy at 2 h (6454 and 575 binding sites specific to 2 and
48 h, respectively). As these results relied on qualitative
metrics, we next applied quantitative approaches to valid-
ate these observations. We pooled all LXRB and PPARG
binding events for both time points and calculated the
normalized sequencing read depth for all ChIP-seq experi-
ments at this complete set of sites. In agreement with our
data above, the resulting histograms for all LXRB and
PPARG binding sites identified global shifts in distribution
of binding enrichment (Fig. 3e, f ); LXRB exhibited stron-
ger occupancy at 48 h for the majority of all binding
events, while PPARG binding showed the opposing pat-
tern. Taken together, these data highlight temporally
distinct, genome-wide occupancy for LXRB and PPARG
proteins and further support the more immediate cellular
response from rosiglitazone compared with GW3965
treatment.

AP1 TFs are key cofactors of LXRs and PPARG
We analyzed the sequence content of LXRB and PPARG
binding sites to identify cooperating TFs that may be
necessary for LXR and PPARG function. To elucidate
potential temporal changes in cofactor preference, we
used the top 50 % of sites ranked by significance that
displayed stronger occupancy at 2 or 48 h for this assess-
ment. The analysis of several canonical TF sequence
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motifs at these sites identified a strong enrichment for
the AP1 motif (Fig. 4a). Indeed, temporal changes in
AP1 motif enrichment differed substantially and in an
opposing manner for both nuclear receptors, with more
pronounced enrichment at LXRB and PPARG sites har-
boring strong 48- and 2-h occupancy, respectively.

We next performed ChIP-seq to analyze the binding
of JunD, a known heterodimer of the AP1 TF complex
[58], to validate these computational observations. We
performed replicate JunD ChIP-seq experiments under
control culture conditions (DMSO carrier only). As AP1
complexes act as pioneer factors that sit at regulatory
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Fig. 3 Genome-wide binding profiles of LXRs and PPARG. a Normalized sequencing read depth rank correlation (top left) at all ChIP-seq binding
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top panel shows 2-h drug treatment replicate ChIP-seq comparisons while the bottom panel displays 48-h comparisons. b Enriched canonical LXR
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elements to open up chromatin [59], their binding is
believed to be precede and be independent of subse-
quent nuclear receptor binding. Replicate experiments
were highly concordant (Fig. 4b). As expected, the ca-
nonical AP1 motif was highly enriched in these datasets
(Fig. 4c). We next compared JunD binding events to
LXRB and PPARG cistromes (Fig. 4d, e). Supporting
our motif enrichment analysis, 54 % of LXRB sites over-
lapped with JunD at 48 h, compared with 41 % at 2 h
(Fig. 4d). PPARG generated more pronounced changes,

with 37 % of PPARG sites co-occurring with JunD at
2 h and with only 12 % of sites at 48 h (Fig. 4d). We
also performed the inverse comparison by assessing the
percentage of all JunD binding events that co-occurred
with LXRB and PPARG sites and this analysis generated
the same results (Fig. 4e); a 1.9-fold stronger concord-
ance was identified at 48 h for LXRB, while a 1.4-fold
higher overlap was identified at 2 h for PPARG. Using
the LXRA ChIP-seq data, we identified similar enrich-
ments patterns for AP1 motif enrichment and JunD co-
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occupancy as the endogenous LXRB binding profile
(Additional file 1: Figure S12).

LXRs and PPARG maintain temporally distinct gene
regulatory activities
We integrated our drug treatment gene expression data-
sets with our nuclear receptor ChIP-seq results to inves-
tigate whether there was direct activation and repression
through PPARG, LXRA, and LXRB. To identify putative
direct target genes of the assayed TFs, we determined
the distance of the nearest binding site to promoters of
genes and subsequently generated cumulative distribu-
tion functions comparing the fraction of genes with
binding events at different distance cutoffs (Fig. 5a). For
assessing distance enrichments, we used all the genes in
the genome to obtain a background distribution. We fur-
ther split drug-responsive genes (adjusted p < 0.01, fold
change cutoff ±2) into activated and repressed targets to
assign putative regulatory functions. To infer early regula-
tory functions, we compared 24-h RNA-seq data with 2-h
ChIP-seq data and used the 48-h datasets to assess late
activities (Fig. 5a). Notably, both LXRA and LXRB gener-
ated concordant profiles that were distinct from those of
PPARG. During the early drug response, LXRA and LXRB
binding events are situated near up-regulated GW3965 +
T0901317 target genes. However, during the late response,
LXR occupancy occurs near repressed genes. This pattern
is in contrast to the PPARG profile, where strong enrich-
ments are observed only for up-regulated target genes.
Again, the same LXR enrichment transition was observed
when we used a lower fold change cutoff (±1.5), and we
further ruled out the possibility that this enrichment was
driven by a negative feedback loop on genes significantly
activated at 24 h by removing these genes from the ana-
lysis (Additional file 1: Figures S13 and S14). We also
obtained concordant enrichment transitions for LXRs
using only GW3965 gene expression data (Additional
file 1: Figures S15–S17).
Diverse genomic and functional studies support the role

of RNAP2 as a marker of active, promoter-distal enhancer
elements [60, 61]. To determine if these gene promoter
enrichments were driven by nearby, functional nuclear
receptor binding events, we performed replicate RNA
polymerase II (RNAP2) ChIP-seq experiments under
control culture conditions (DMSO) and after 24 and
48 h of GW3965 and rosiglitazone treatment. We first
compared RNAP2 binding events to the LXR ChIP-seq
datasets and divided LXR sites into those that were co-
occupied by RNAP2 and sites that were devoid of RNAP2
occupancy. By integrating these distinct loci with GW3965
+ T0901317 target genes that were repressed at 48 h, we
identified RNAP2 co-occupied LXR sites as the principle
drivers of the enrichment with down-regulated gene
promoters, pointing to the functionality of these binding

events (Additional file 1: Figure S18). We obtained com-
parable results when we used only GW3965-responsive
genes (Fig. 5b, c) and lower fold change cutoffs (Additional
file 1: Figure S19). Moreover, the majority of LXRA (56 %)
and LXRB (79 %) binding events at 48 h were coincident
with RNAP2. Identical analyses using 2-h rosiglitazone
PPARG binding results and 24-h rosiglitazone RNAP2
occupancy identified a similar enrichment with RNAP2 co-
occupancy at genes up-regulated by rosiglitazone at 24 h
(Additional file 1: Figure S20).
To validate the functional likelihood of these binding

events further, we compared our nuclear receptor ChIP-
seq data with H3K27ac binding data. For all analyses,
and using GW3965 +T0901317 repressed genes at 48 h, as
well as 24-h rosiglitazone-activated genes, we confirmed
that PPARG, LXRA, and LXRB binding sites overlapping
with H3K27ac exhibited more pronounced enrichment
near these drug responsive genes compared with sites de-
void of H3K27ac occupancy (Additional file 1: Figures
S21–S23). This observation held true using both GW3965
and high-confidence GW3965 + T0901317 gene sets for
LXR comparisons and by controlling for confounding ef-
fects from negative feedback loops. Similar enrichments
were observed for 24-h up-regulated genes for both LXR
nuclear receptors and 48-h up-regulated genes for PPARG
(Additional file 1: Figure S24). Notably, LXRA and LXRB
binding events coincident with the JunD binding were also
preferentially enriched near repressed genes (Additional
file 1: Figure S25).
Finally, we performed quantitative analyses at LXRA

and LXRB sites that co-occurred with RNAP2 at 48 h to
ascertain temporal changes in RNAP2 occupancy, which
may further provide mechanistic insight (Fig. 5d, e). In-
triguingly, an analysis of normalized RNAP2 read depth
at both LXRA and LXRB sites revealed a bimodal distri-
bution, with a subset of sites exhibiting stronger RNAP2
enrichment prior to drug treatment and a fraction of
binding events displaying greater occupancy after 48 h
of GW3965 treatment. Related assessments of H3K27ac
temporal patterns generated more stable distributions
(Additional file 1: Figure S26), limiting this bimodal pat-
tern to RNAP2 occupancy. Collectively, these data point
to gene-activating roles for PPARG, while LXR proteins
seem to harbor more dynamic regulatory activities char-
acterized by early activating effects and late repressing
functions.

LXR repression is consistent with RNAP2 promoter-
proximal pausing
To infer a potential mechanism for the late, LXR-mediated
gene repression described above, we compared RNAP2
binding profiles to RNA-seq results (adjusted p < 0.01,
fold change cutoff ±2). We first used our RNAP2 ChIP-
seq data to determine the predictive value of RNAP2
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normalized read depth at promoters as a measurement
for global gene expression (Additional file 1: Figure S27).
For all drug treatments, we obtained sufficient correlations
(rho > 0.72). Having shown the utility of promoter RNAP2
occupancy, we next assessed RNAP2 read depth at
promoters of differentially regulated genes (Fig. 6a, b;
Additional file 1: Figures S28–S31). During the early

response (Additional file 1: Figure S28), both datasets were
well correlated; the vast majority of up-regulated genes ex-
hibited stronger RNAP2 promoter enrichment compared
with control culture conditions, while down-regulated
genes had reduced RNAP2 read depth at their promoters.
However, pronounced differences were observed between
GW3965 and rosiglitazone treatments at late time points
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Fig. 6 LXR repression is consistent with RNAP2 promoter-proximal pausing. a Smooth scatter plot comparing RNA-derived gene expression levels
after 48-h GW3965 treatment (y-axis, reads per kilobase of transcript per million mapped reads (RPKM)) with sequencing read depth ratios of
ChIP-derived RNAP2 promoter occupancy (x-axis). Read depth at promoters assesses the enrichment after 48 h of GW3965 (48 h) normalized to
control culture conditions (0 h). Data are presented for all GW3965 responsive genes (adjusted p < 0.01, fold change cutoff of ±2). b Smooth scatter
plot comparing RNA-derived gene expression levels after 48 h of rosiglitazone stimulation (y-axis, RPKM) with sequencing read depth ratios of ChIP-
derived RNAP2 promoter occupancy (x-axis). Read depth at promoters assesses the enrichment after 48 h of rosiglitazone (48 h) normalized to control
culture conditions (0 h). Data are presented for all rosiglitazone-responsive genes (adjusted p < 0.01, fold change cutoff of ±2). c Histogram tabulating
the read depth ratios (x-axis) of RNAP2 enrichment sites co-occupied by LXRA and RNAP2 (top panel) and sites co-occupied by LXRB and RNAP2
(bottom panel). Co-occupied sites are divided based on promoter location (Non-Promoter and Promoter). Negative values highlight stronger enrichment
under control culture conditions (0 h) while positive values denote stronger enrichment after 48 hours of GW3965 treatment. d Histogram tabulating
the read depth ratios (x-axis) of H3K36me3 enrichment in gene bodies for genes down-regulated after 48 h of GW3965 treatment. Negative values
highlight stronger enrichment at baseline (0 h) while positive values denote stronger enrichment after 48 h of GW3965 treatment. e Violin plot of
changes in H3K36me3 read depth ratio in gene bodies of repressed genes after 48 h of GW3965 treatment. Plots are displayed for genes that harbor
LXRA binding events within 10 kb (<10 kb) from promoters, as well as plots for genes with no evidence of nearby LXRA occupancy (>100 kb). f Violin
plot of changes in H3K36me3 read depth ratio in gene bodies of repressed genes after 48 h of GW3965 treatment. Plots are displayed for genes that
harbor LXRB binding events within 10 kb (<10 kb) of promoters, as well as plots for genes with no evidence of nearby LXRB occupancy (>100 kb)
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(Fig. 6a, b). Although 81 % of activated GW3965 genes
displayed stronger RNAP2 promoter enrichment, para-
doxically, only 34 % of repressed genes showed a decrease
in RNAP2 promoter occupancy. This effect was not
observed for rosiglitazone, where 81 % of up-regulated
and 85 % of down-regulated genes maintained correlated
changes with RNAP2 promoter occupancy. We further
validated this deviation when we used lower fold change
cutoffs (Additional file 1: Figures S29 and S30), while
swapping binding sites and gene expression datasets
between GW3965 and rosiglitazone treatments generated
random, overlapping distributions between up- and down-
regulated genes (Additional file 1: Figure S31).
We next divided the LXR sites overlapping with

RNAP2 sites (LXR + RNAP2) into promoter binding
events and LXR + RNAP2 binding events distal to pro-
moters (±500 bp) to determine if promoter association
can explain the observed bimodal distribution of RNAP2
read enrichment (Fig. 5d, e). Notably, by separating LXR
+ RNAP2 co-occupied sites based on overlap with pro-
moter regions (Fig. 6c), we were able to explain the tem-
poral RNAP2 occupancy distribution; overlapping sites at
promoters exhibited stronger RNAP2 enrichment at 48 h,
while LXR binding events outside of promoters displayed
diminished RNAP2 occupancy at 48 h. The University of
California Santa Cruz (UCSC) Genome browser images
(https://genome.ucsc.edu/) of raw ChIP-seq signal at
several loci spanning 48-h, GW3965-repressed genes are
provided in Additional file 1: Figures S32–S35.
The observation of a late, stronger RNAP2 promoter

occupancy at LXR responsive genes is difficult to rec-
oncile with the decrease in RNA expression during the
late drug response. These effects may be mediated by
post-transcriptional regulation, for example, by enhan-
cing transcript degradation or, alternatively, by RNAP2
promoter-proximal pausing, with increased enrichment
stemming from longer RNAP2 promoter residency times.
To potentially distinguish between these two possibilities,
we performed ChIP-seq experiments using an antibody
targeting histone-3 lysine-36 trimethylation (H3K36me3), a
histone modification found in gene bodies that is corre-
lated with expression [62, 63]. We ran H3K36me3 ChIP-
seq experiments under control culture conditions (DMSO)
and after 48 h of GW3965 treatment. We confirmed the
predictive value of H3K36me3 gene body occupancy for
measuring global gene expression (rho > 0.77; Additional
file 1: Figure S36) and subsequently compared H3K36me3
gene body read depth with expression of GW3965-
responsive genes (Fig. 6d; Additional file 1: Figures S37–
S39). For 78 % of repressed genes at 48 h, H3K36me3
displayed a concordant decrease in gene body occupancy
(Fig. 6d; Additional file 1: Figure S37). This pattern was
further maintained using lower fold change cutoffs
(Additional file 1: Figures S38 and S39). To investigate

whether H3K36me3 changes were directly related to
LXRs, we evaluated dynamic H3K36me3 occupancy at
all 48-h repressed genes that were enriched for nearby
LXR binding events (<10 kb from promoter) and for
genes that were devoid of nearby LXR binding (>100 kb
from promoters). Intriguingly, genes with nearby LXRA
and LXRB binding exhibited a significantly stronger de-
crease (Wilcoxon; LXRA p = 1.265e-8, LXRB p = 1.394e-9)
in H3K36me3 gene body occupancy (Fig. 6e, f). Incorpor-
ating GW3965-responsive genes with lower fold change
cutoffs led to similarly significant patterns (Wilcoxon;
LXRA and LXRB p < 2.2e-16) for both proteins (Additional
file 1: Figure S40). Taken together, these data are consistent
with a RNAP2 promoter-pausing mechanism mediated by
LXRA and LXRB nuclear receptors.

Discussion
Although gene regulatory networks govern genome func-
tion and underlie diverse physiological and developmental
processes, our overall understanding of how these tran-
scriptional programs are spatiotemporally regulated re-
mains rudimentary. Here we sought to understand the
gene regulatory networks that control tumor cell metabol-
ism and proliferation in a temporal manner by generating
a thorough characterization of the gene regulatory effects
of LXR and PPARG signaling. Collectively, our work illus-
trates how two distinct gene regulatory cascades lead to a
common phenotypic outcome and further provides a
better molecular understanding of how extracellular meta-
bolic cues impact tumor cell physiology.
Multiple studies have suggested a role for LXR and

PPARG metabolic nuclear receptors in tumor cell biol-
ogy [64–67]. Our identification of a pronounced inhibi-
tory effect on tumor cell proliferation and decreased
glutathione levels that is consistent with increased
oxidative stress agrees with previous reports [31, 32]. A
recent study suggested increased reactive oxygen spe-
cies via PDK4 expression and beta-oxidation of fatty
acids as the likely anti-proliferative mechanism in lung
cancer cells [31]. Indeed, rosiglitazone treatment in our
study also led to a significant up-regulation of PDK4
expression (fold change = 6, adjusted p value 2.09e-
151). Our metabolomic interrogation further identified
an increase in aerobic glycolysis, demonstrating a role
for this regulatory network in the Warburg effect.
Although this observation is contrary to the observed
increase in oxidative stress, the assessment of metabol-
ite concentrations cannot distinguish cause from effect
and, therefore, the increase in aerobic glycolysis may
reflect an indirect cellular response to oxidative stress
rather than a direct effect stemming from LXR and
PPARG signaling.
Through an investigation that interrogated multiple tiers

of transcriptional regulation and genome organization, we
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demonstrated that these overlapping cell phenotypes
are mediated though widely distinct signaling cascades
at the molecular level. The genome-wide cellular re-
sponse to rosiglitazone was rapid and supported by
quick changes to metabolite levels, linear transcrip-
tional profiles, abrupt chromatin alterations, and a
short-lived burst of PPARG binding. By contrast, the
more gradual changes to cellular metabolites, a stalled
transcriptional response, gradual increases in the chro-
matin landscape, and dramatic increase in genome-
wide LXRB occupancy with time highlight a more
sustained GW3965 response.
Despite these differing molecular networks, both sets

of nuclear receptors were strongly associated with AP1
transcriptional regulators, with PPARG displaying an
early preference for AP1 motifs and co-occupancy,
while LXRs exhibited a more pronounced late associ-
ation with AP1 motifs and proteins. In light of the con-
sistent association with upregulated genes, PPARG
appears to behave as a transcriptional activator. This is
consistent with the canonical model of type II nuclear
receptor function, wherein ligand binding leads to the
displacement of co-repressor complexes from nuclear
receptors and subsequent recruitment of co-activator
proteins [68]. The regulatory functions of LXRA and
LXRB were more complex; our genomic data points to
both activating and repressive activities at early and late
time points, respectively. Taken together, our results
further point to LXR-mediated genetic repression
through RNAP2 promoter-proximal pausing. Unlike
the canonical model for PPARG activity, our results
suggest the intriguing possibility that these transcrip-
tional profiles reflect a LXR transrepression of the AP1
signaling program through protein–protein interactions
at AP1 binding sites that lead to RNAP2 promoter-
proximal pausing. Similar mechanisms have been re-
ported for LXRs in macrophages on inflammatory Toll-
like receptor genes [69, 70], including transrepression
of the AP1 machinery [71]. Further experimentation
will be required to fully define the molecular mechan-
ism of this putative LXR-mediated repression.

Conclusions
By relying on a unique, multi-tiered approach, our detailed
results provide a molecular understanding of how extra-
cellular nutrients impact cancer cell physiology at the gen-
ome level. This comprehensive analysis illustrates the
complexity of genome function and structure by elucidat-
ing how common phenotypic outcomes are genetically
encoded through diverse transcriptional programs. Our
results finally allude to the tantalizing possibility that
tumor cell growth can be altered, or even fully inhibited,
through metabolic reprogramming.
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