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Abstract

Background: Reproducibility is receiving increased attention across many domains of science and genomics is no
exception. Efforts to identify copy number variations (CNVs) from exome sequence (ES) data have been increasing.
Many algorithms have been published to discover CNVs from exomes and a major challenge is the reproducibility
in other datasets. Here we test exome CNV calling reproducibility under three conditions: data generated by
different sequencing centers; varying sample sizes; and varying capture methodology.

Methods: Four CNV tools were tested: eXome Hidden Markov Model (XHMM), Copy Number Inference From
Exome Reads (CoNIFER), EXCAVATOR, and Copy Number Analysis for Targeted Resequencing (CONTRA). To
examine the reproducibility, we ran the callers on four datasets, varying sample sizes of N= 10, 30, 75, 100, 300,
and data with different capture methodology. We examined the false negative (FN) calls and false positive (FP)
calls for potential limitations of the CNV callers. The positive predictive value (PPV) was measured by checking the
CNV call concordance against single nucleotide polymorphism array.

Results: Using independently generated datasets, we examined the PPV for each dataset and observed wide
range of PPVs. The PPV values were highly data dependent (p <0.001). For the sample sizes and capture method
analyses, we tested the callers in triplicates. Both analyses resulted in wide ranges of PPVs, even for the same test.
Interestingly, negative correlations between the PPV and the sample sizes were observed for CoNIFER (p =-0.80).
Further examination of FN calls showed that 44 % of these were missed by all callers and were attributed to the
CNV size (46 % spanned <3 exons). Overlap of the FP calls showed that FPs were unique to each caller, indicative
of algorithm dependency.

Conclusions: Our results demonstrate that further improvements in CNV callers are necessary to improve
reproducibility and to include wider spectrum of CNVs (including the small CNVs). These CNV callers should be
evaluated on multiple independent, heterogeneously generated datasets of varying size to increase robustness
and utility. These approaches to the evaluation of exome CNV are essential to support wide utility and
applicability of CNV discovery in exome studies.
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Background

Reproducibility is receiving increasing attention across the
biomedical enterprise [1]. Genomics is no more or less af-
fected by issues of reproducibility, but because it is a fast-
moving field, there have been few opportunities to evaluate
reproducibility. With advances in next-generation sequen-
cing (NGS) technology, new tools are constantly being de-
veloped to mine and maximize the utility of NGS data. A
major challenge with computational predictions is the re-
producibility of the performance on a dataset other than
the one it was trained on. A common mistake is overfitting,
wherein the performance of the prediction is adjusted for
an optimal outcome under a narrow set of conditions,
which may not be reproducible in other datasets.

In this study, we examined the reproducibility of copy
number variation (CNV) predictions from exome se-
quence (ES) data. While studying CNVs is not the primary
purpose of ES, by applying computational methods, it may
be possible to predict putative CNVs from ES data. In fact,
integrating substitutions and indel mutation results from
ES data with CNV data would increase the power of ES
studies. To this end, numerous tools are now available to
predict CNVs from ES data, and more are continuing to
be developed [2-18].

Unlike genome sequence (GS) data, in addition to the
problems arising from GC contents and low complexity
regions, the targeted enrichment ES methodology pro-
duces non-uniform read depths, which can confound
CNV predictions. Despite the challenges, the relatively
lower cost of ES compared to GS coupled with the lim-
ited current capability to interpret the non-protein-
coding regions in a genome makes ES an attractive
option. CNVs are becoming increasingly important,
because about 9 % of mutations that cause Mendelian
diseases can be considered as CNVs [19]. Thus,

Table 1 Summary of methods used in CNV callers
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accurate exome CNV prediction would be a valuable
resource. Discovering CNVs from ES data is a challen-
ging and complicated problem. This is reflected by the
proliferation of tools and the lack of consensus in the
field on the best computational method. While a hand-
ful of CNV caller comparison papers have been pub-
lished, no study has investigated the reproducibility of
CNV prediction to the best of our knowledge [20-22].

In this study, we set out to examine the performance
reproducibility of population-based CNV callers from
exome data. We included population-based callers that
were publicly available when this study began. The callers
included in this study were: CoNIFER (Copy Number
Inference From Exome Reads), CONTRA (Copy Number
Targeted Resequencing Analysis)) EXCAVATOR, and
XHMM (eXome-Hidden Markov Model) [4, 9, 10, 14].
These callers have different approaches to pre-processing
the data and predicting CNVs, as summarized in Table 1.
By testing heterogeneous experimental conditions, we ob-
jectively evaluated the reproducibility of these methods.

We tested the callers under three conditions: varied
data input (i.e. data generated from several sequencing
centers), varied sample sizes, and distinct capture meth-
odology. We obtained the data generated by the NIH
(ClinSeq®), Broad Institute (BI), and the Washington
University Genome Sequencing Center (WUGSC). We
included 971 samples from ClinSeq®, 167 samples from
the BIL, 116 samples from the WUGSC (see “Methods”).
All three ES datasets were ascertained from primarily
healthy people. This criterion was important in our
study, as patient populations can have higher number of
structural variants, including CNVs [23].

Since the data from different centers can have many
confounding variables, to further test the reproducibility
with minimized confounders, we ran the CNV callers on

CNV caller Pre-processing quality control Approach to discovering CNVs Published
validation rate
CoNIFER [9] RPKM for each target (filter targets with median +1.5 SVD-ZRPKM threshold values 94 % PPV
RPKM <1), ZRPKM , SVD-PCA transformation.
Filter samples >0.5 SVD-ZRPKM
CONTRA [4] Removes base coverage <10, library-size Base-level log-ratios using adjusted coverage, followed 86.8 % SPE
correction by removing linear dependency by region-level log-ratios using mean of base-level log 954 % SEN
between log-coverage and log-ratio ratios.
Two-tailed p value on normal distribution of region-level
log-ratio. Heuristic approach of using different solutions
of segmentations for large CNVs
EXCAVATOR [14] Data correction by using the medians of Exon- HMM to discover five states of CNVs (double loss, ~50 % PPV

mean-read-count values respect to GC content,
mappability, and exon sizes. Log-transformed
ratio, LOWESS scatter plot normalization

XHMM [10] Filter extreme GC content (<0.1 or >0.9), low
complexity (>10 %), target size (<10 bp or
>10 kb), samples (mean RD <25 or >500),
targets (Mean RD <10 or >500). SVD-PCA

normalization, remove K components=0.7/n s

loss, neutral, gain, or multiple gain)

Z-score calculation as input for three-state HMM 67-92 % SEN
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subsets of ClinSeq” data. By using ClinSeq°, we minimized
the sequencing center effect and other variability that
may rise from downstream analyses. To test the repro-
ducibility for varying sample sizes, we randomly sam-
pled from a pool of ClinSeq® samples that were
captured and sequenced with the same protocol and
processed with the same bioinformatics pipeline. Lastly,
we also tested the reproducibility of CNV prediction
reliability on different capture methodology. The sam-
ple size and capture methodology analyses were tested
in triplicates by random sampling, allowing us to exam-
ine the reproducibility for the same condition runs.

Methods

Data collection

Three datasets were collected to objectively test the
performance of CNV predicting programs. To minimize
the sequencing center bias, the ES data from BI and
WUGSC from the 1000 Genome Project were down-
loaded. Only the samples with CNV experimental data
available were included in this study. A total of 168 ES
data from BI and 116 ES data from WUGSC were in-
cluded (see the Additional file 1: Table S1). The corre-
sponding CNV data (Affy 6.0 and Illumina 1 M arrays)
were obtained from the Hapmap Project website (fPPV://
fPPV.ncbinlm.nih.gov/hapmap/cnv_data/). The Hapmap
CNV data were lifted over to hgl9 using UCSC Liftover
tool. ClinSeq” was used as an independent source of ES
data (dbGaP Accession phs000971.v1.pl). In total, 971 ES
samples were included. The ClinSeq® samples were cap-
tured by one of the following methods: Agilent SureSelect
Human Exon (38 MB), Agilent SureSelect ICGC (50 Mb),
[lumina TruSeq v1,v2. All samples were sequenced by the
NIH Intramural Sequencing Center (NISC) and aligned to
hgl19 reference genome. Due to the heterogeneous captur-
ing methods used for samples, only the intersecting tar-
gets were used in this study. The IDs for samples included
in this study are listed in the Additional file 1: Table S1.

Exome CNV predicting programs

Four CNV predicting software packages were down-
loaded and installed: XHMM, CoNIFER, CONTRA,
EXCAVATOR [4, 9, 10, 14]. XHMM, CoNIFER (v-0.2.2),
EXCAVATOR Package (v2.2), and CONTRA (v2.0.4).
CoNIFER was run on python version 2.7.5 with pysam
version 0.6. For CONTRA, python v2.6, R version 2.13.0,
and bedtools version 2.16.2 were used. XHMM was run
with GATK version 3.1-1 and plinkseq version 0.09. The
QC analysis for data was followed as recommended by
each CNV tool and the default parameters were used. The
software was run as is and no custom scripts were added
to the original codes. For CoNIFER, we set the number
of singular values to remove as 6, a liberal value, to in-
clude any copy number polymorphisms discovery. The
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scree plots were examined and this number was near
the inflection point for all runs. Table 2 summarizes
different tests run on each CNV callers. The association
analyses were performed using R. The ANOVA and the
Spearman’s rank correlation were calculated.

Analyses datasets

For varied data input, we used four datasets: 54
ClinSeq® samples, 116 WUGSC samples, 167 BI sam-
ples, and 48 BI Gujarati Indians (BI GIH) samples. For
different sample size analysis, sample sizes of n =10,
30, 50, 75, or 300 were chosen from ClinSeq®. For each
sample size, the runs were performed in triplicates by
random sampling, except for sample size 300. For
sample size 300, duplicate experiments were performed.
To minimize the capture kit bias, the samples were
selected from Agilent SureSelect Human All Exon
capture kits. For capture kit analysis, four datasets were
used from ClinSeq®: (1) exomes captured by Agilent
SureSelect Human All Exon capture kit; (2) Agilent
SureSelect ICGC capture kit; (3) Illumina TruSeq v2
capture kit; (4) heterogeneous mixture of exomes from
all three capture enrichment kits. Mixed capture data
were composed of 16 samples randomly selected from
each of the three capture kits, totaling 48 samples.
Forty-eight samples were randomly drawn three times
for all datasets. Plots were generated using ggplot2 R
library package.

Table 2 Summary of CNV runs on different callers

Dataset XHMM CoNIFER CONTRA EXCAVATOR
BI (167) o 0 b 0
WUGSC (116) ) ) - o)

Bl GIH (48) ) ) 0 ¢)
ClinSeq® (54) ) ) 0 0

Sample size analysis (ClinSeq® in triplicates by random sampling)

10 0 ) - 6]
30 ) ) - 0
75 ) ) - o)

100 0 0 - 6]
300 o) o) - o)

Capture kit analysis (48 samples from ClinSeq® in triplicates by random
sampling)

SS HAE @) @) - 0]
SSICGC O O - O
TruSeq v2 O O - O
Mix capture® 0 ] - 0

Bl Broad Institute, WUGSC Washington University Genome Sequencing Center,
BI-GIH Broad Institute Gujarati Indians in Houston, Texas

20 denotes that a caller was run on a given dataset

b_ denotes that a caller was not run on a given dataset

“Indicates data comprising 48 samples, 16 samples from each of the three
capture kit samples
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Assessing reproducibility

For the 1000 Genomes Project samples, available CNV
data were used to check the accuracy of calls (see “Data
collection” section). For the ClinSeq® set, we used a sin-
gle nucleotide polymorphism (SNP) array to validate the
CNVs. All samples were run and analyzed by the
NHGRI Genomics Core, NIH. A total of 496 samples
were run either on Illumina Infinjum HumanExome-12
v1.1 BeadChip, Illumina Infinium HumanExome-12 v1.2
BeadChip, or Ilumina Infinium Immuno BeadChip.
Samples with a call rate of >0.99 were considered and
SNPs with GenTrain score <0.7 were filtered out.
CNVPartition v3.2 (minimum contiguous SNPs =4, con-
fidence threshold = 0, GC wave adjust = True) and Nexus
v7.5 (minimum contiguous SNPs=4, significance
threshold = 5E-7, maximum contiguous SNP spacing
(kbp) = 1000) were used to call CNVs. We took an inter-
section of the regions between the CNV experimental
data and exome target location. The predicted CNVs
were considered as subject to validation if the predicted
regions span at least four SNPs from chip data. Bedtools
version 2.19.0 was used to intersect genomic regions.
Positive predicted value (PPV) was defined as CNV calls
supported by SNP array out of all predicted CNVs that
are subject to validation, while false positive (FP) was de-
fined as CNV calls not supported by the SNP array out
of all predicted CNVs that are subject to validation. Sen-
sitivity was defined by the number of CNVs called by
both CNV predictions and SNP array, out of the total
known SNP array CNVs in the dataset that have at least
one exome target. Chromosomes Y and X were removed
from this study.

Results

Reproducibility in varying data input

Sequencing centers need to be able to select a caller
that will make robust predictions of CNVs. Unfortu-
nately, most CNV callers are developed and piloted on
only a single or a limited dataset. We set out to exam-
ine the performance of several callers on heterogeneous
datasets to better understand the potential real-world
behavior of the programs. We ascertained ES data from
three independent centers (ClinSeq®, BI, WUGSC) and
examined the variability of four prediction traits: the
number of CNV calls per sample, predicted CNV sizes,
the call type percentages (duplications/deletions), and
PPV. We chose the PPV as the standard calculation
throughout this study to measure the validity of the
calls, as the sensitivity alone does not accurately reflect
the reliability of CNV calls and can be driven by high
or low numbers of calls. In addition, it is more valuable
to know how likely the calls are true, in practice, when ap-
plying CNV callers to identify putative CNVs for further
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: : true CNVs
validation. The PPV was defined as A= " CNVA predicied

CNVs were defined as the number of CNV calls that were
concordant between the exome CNV prediction and the
experimental data (see “Methods”).

In these analyses, four datasets were used. We included
167 samples from BI, 116 samples from WUGSC, 48
samples of BI Gujarati Indians descent, and 54 ClinSeq”
samples. The BI Gujarati Indians samples were isolated as
one dataset from the larger BI samples and 54 ClinSeq®
samples were randomly selected from the whole ClinSeq®
cohort (see “Methods”). All callers were run using default
settings. We were only able to run CONTRA on smaller
datasets as additional source code modification was re-
quired to run CONTRA on larger sample datasets. While
we did not run CONTRA on large datasets, we still show
our results obtained from running CONTRA on smaller
sets, as the purpose of this study is not to compare the
callers but to examine the reproducibility. All runs are
summarized in Table 2. For each run, we examined the
following traits: CNV calls per sample, CNV size, per-
centage of call types (duplication, deletion), and PPV.
The association between each trait versus data input
was calculated using R Analysis of Variance (ANOVA)
package.

Because these samples were from primarily apparently
healthy individuals, we hypothesized that the mean number
of CNV calls per sample (X) should be similar. For each

caller, we examined the average number of CNV calls per

Total Number of CNVs called
Number of samples

We calculated standard deviations (SD) to examine
the dispersion of X between the runs for each caller
to examine the difference in the number of calls
made between each simulated experiments. The X for
EXCAVATOR was in the range of 20-88 (SD =30).
The X was in the range of 3-20 (SD =10.8) and 15-23
(SD =3.6) for CoNIFER and XHMM, respectively (Fig. 1a).
The X range for CONTRA was 148-3241 (SD = 2187).
The X varied significantly for each dataset for all cal-
lers (p <0.001, see Fig. 1b).

Next, we examined the median sizes and call types of
the CNV calls across the datasets for each caller. The
median sizes of CONTRA calls were in the range of
121-129 bp (SD=5.7 bp). The median sizes were in
the range of 32-69 kb (SD=17 kb) for CoNIFER,
7.5-36 kb (SD=12 kb) for XHMM, and 65-133 kb
(SD =29 kb) for EXCAVATOR (Fig. 1c). For all callers,
CNV sizes were associated with data input (p <0.001,
Fig. 1b). For call types, we examined the percentages of
each call type (duplications or deletions). Deletion calls
were in the range of 70-99 % for CONTRA, 30-52 %
deletions for CoNIFER, 40-69 % for EXCAVATOR, and
43-51 % for XHMM (Fig. 2a). The percentages of each
call types were variable among datasets for CONTRA,
EXCAVATOR, and XHMM (p <0.001, Fig. 2).

True

sample (X) for each run, where X =
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C Significance of regression analysis of each attribute across the data

Fig. 1 Examining the number of CNVs called, sizes, and correlations. a The boxplot of the number of average number of CNVs per sample across
the dataset b The significance of association between the exome study attributes (X-axis) and varying data input. Each row shows association
values for the given caller (Y-axis). Reliability = PPV. ¢ Boxplots for predicted CNV median size distribution
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The reliability of the CNV calls was measured by the
PPV (see “Methods” and Additional file 1: Table S2 for
more information). We calculated the PPV for duplica-
tion and deletion calls separately. For duplication calls,
the ranges of PPV were 0-0.53 for CONTRA, 0.07-0.61
for CoNIFER, 0-0.31 for EXCAVATOR, and 0.20-0.37
for XHMM. For deletion calls, the range of PPV was 0—
0.15 for deletions and 0-0.53 for duplications (Fig. 2a—d).
For CoNIFER, the range of PPV was 0.07-0.61. All callers
had higher PPVs for deletions (Fig. 2¢, d). The PPVs for
deletions were in the range of 0-0.15 for CONTRA, 0.02—
0.86 for CoNIFER, 0-0.73 for EXCAVATOR, and
0.05-0.67 for XHMM. PPV observed for all calls was

significantly variable between each run for CoNIFER,
EXCAVATOR, and CONTRA (p <0.001, Fig. 2).

In summary, all four attributes of CNV calls exam-
ined in this study (the number of CNV calls per sample,
median sizes, the percentages of call types, and the
PPV) significantly varied between each run (p <0.05).
Dispersion observed using SD showed a wide range of
values for these traits. The results from our analyses
showed that the CNV predictions from distinct exome
dataset yield dataset-specific number of CNV calls per
sample, median sizes, the percentages of call types, and
the PPV, mediated by the confounders of exome
methodology.
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A CNV Calls by Type B Positive Predictive Value
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EXCAVATOR
C D
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Fig. 2 Examining CNV calls by type. a Percentages of deletion and duplication calls. b PPVs categorized by duplications and deletions. ¢ PPVs of
duplication calls. d PPVs of deletion calls. FdelR(Fdel) deletion calls that were not verified, FdupR(Fdup) duplication calls that were not verified,
TDelR(Tdel) deletion calls that were verified, TdupR(Tdup) duplication calls that were verified
A\

Effects of sample size

Data collected from different sequencing center can
have multiple confounders. Therefore, we further tested
the reproducibility of CNV callers using different sam-
ple sizes with minimized confounding effects. We sim-
ulated a series of experiment sizes by analyzing subsets
of ClinSeq® data. To minimize confounding effects, we
eliminated the heterogeneity of capture kit bias by using
only the Agilent SureSelect Human Exon (38 Mb) capture
data. We selected sample sizes (n) of 10, 30, 75, 100, and
300 exomes and applied CoNIFER, EXCAVATOR, and
XHMM to predict CNVs. CONTRA was excluded in this
analysis for the same reason mentioned in the previous
section. For each set, the samples were randomly chosen
in separate, triplicate runs for each size. We examined the
correlation of the PPV and the sample sizes by calculating
the Spearman’s rank correlation coefficients (p) for all
callers. Fewer than 10 CNVs subject to validation were
detected for sample sizes 10 using XHMM and CoNIFER
(see Additional file 1: Table S3), thus the results from
sample size 10 were excluded.

Surprisingly, the PPVs of CoNIFER (p=-0.80) and
EXCAVATOR (p =-0.77) calls were strongly and nega-
tively correlated with the sample sizes. CoNIFER had
the highest PPV at sample size of 30 (Fig. 3a). Based on

a negative correlation between the PPV and the sample
sizes, in conjunction with the increasing number of
CNV calls per sample, we concluded that the CoNIFER
calls were less reliable as the sample sizes increased.
Even though a negative correlation was observed for
EXCAVATOR, no valid conclusions could be made as
the PPVs were consistently low (<0.05) for all sample
sizes No correlation of sample size and PPV was ob-
served for XHMM (Fig. 3a).

Interestingly, we observed a wide range of PPV even
within replicate sample size runs, some by more than
threefold differences. For example, for a sample size of
100, the PPV was in the range of 0.10-0.36 for CoNIFER
and 0.09-0.29 for XHMM. EXCAVATOR had PPV <0.05
for all runs. However, EXCAVATOR had sensitivity >0.80,
presumably being driven by the high number of CNV calls
(Fig. 3a, b and Additional file 1: Table S4, S5).

The observed results show the lack of reproducibility
in PPV. The published performance of CNV callers
could not be replicated in this analysis (Table 1). The
correlation of the sample size and the PPV may be ex-
plained by noise introduced by additional samples that
are not successfully removed and normalized. The
range of PPV values for the replicate runs demonstrated
the inconsistency of PPV. Based on this, we concluded
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that the exome CNV calling reproducibility is a challenge
even with minimized confounders.

Effects of capture enrichment kit heterogeneity

Lastly, we examined the reproducibility of CNV perform-
ance using a distinct capture kit data generated at a single
sequencing center. We used ClinSeq® data comprising
three capturing enrichment Kkits: Agilent SureSelect
Human All Exon 38 Mb (HAE), Agilent SureSelect ICGC
50 Mb (ICGC), and Illumina TruSeq V2 (TSV2). Four
datasets were used: HAE, ICGC, TSV2, and heteroge-
neous capture (mix). The simulated single capture data
(HAE, ICGC, TSV2) consisted of 48 samples randomly
chosen from a sample pool of each capturing method.
The mix set consisted of 16 randomly chosen samples

from each of the three capturing methods. This was re-
peated three times.

First, we tested the significance of relationships between
each capturing method and the PPVs for all calls. We
hypothesized that the single capture data (HAE, ICGC, or
TSV2) would have higher PPV than the heterogeneous
capture data (mix). To test this, we checked for associ-
ation of PPV and the data category (single or mix capture)
using linear model association. No significant association
was observed (p >0.05). We then tested the association of
PPVs and each capture methodology (HAE, ICGC, TSV2,
mix). No significant association was observed (p >0.05).
This was explained by the wide range of PPVs observed
for all callers, as was seen in the sample size analyses
(Fig. 3¢, d and Additional file 1: Table S4). For example,
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the range for mix sample was 0-0.31 for CoNIFER,
0.05-0.20 for XHMM, and 0-0.01 for EXCAVATOR.
As seen previously, we observed PPV <0.05 for all
EXCAVATOR runs (Fig. 3c). Sensitivity was comparable
to other callers, again, driven by high number of CNV
calls (Fig. 3d). We did not observe the high prediction
accuracy as in published results for the callers (Table 1).
In addition, triplicate runs sampling from the same
sample pools showed a wide range of PPV values. We
concluded that none of the CNV callers we have evalu-
ated here perform reliably across heterogeneous sample
sets.

Examining CNVs at exon-resolution

Using a 300 ClinSeq° samples, the largest sample size in
this study, we examined the CNVs using exon-
resolution to better understand the potential limitations
of the callers. The CNV sizes from the SNP array were
significantly smaller compared to the computationally
predicted CNVs (Fig. 4). The median number of exons
spanning CNVs for SNP array was 5, compared to 13,
33, and 10 for CoNIFER, EXCAVATOR, and XHMM,
respectively (see Additional file 1: Table S6). No CNVs
with <5 exons were predicted using CoNIFER and
EXCAVATOR. Interestingly, the median number of
exons for true positives (TP) was higher than the me-
dian number of exons for all predicted CNVs (TP + FP)
(Fig. 4, Additional file 1: Table S6, and Additional file 2:
Figure S1).

Of the known CNVs in the 300 ClinSeq® cohort, 55 % of
the CNVs were not detected by all callers (false negative
calls (EN)). These FN calls were heavily biased towards
the smaller CNVs; 46 % of the CNVs spanned <3 exons
and 88 % of the CNVs spanned <8 exons (see Additional
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file 1: Table S7). This indicated limitations in detecting
small CNVs from exome. Of the FN CNV calls, 24 % of
the FN calls for CoNIFER, 22 % of EXCAVATOR calls,
and 25 % of XHMM calls were accurately called as CNV
by at least one other caller. This indicated that the RD
CNV signals were present in the exome sequencing data
and may have been mitigated through the normalization
and/or did not reach the threshold in the discovery
algorithm.

Examining the false positive calls

Using a 300 ClinSeq® sample run, we examined the
FP regions for the three callers to examine the over-
lap. More than 90 % of the FP calls were unique to a
caller and only 14 FP were called by all three callers,
which was 10 % of the FP calls for CoNIFER, 1 % for
EXCAVATOR, and 13 % for XHMM (Additional file 2:
Figure S2). This suggested that the majority of the false
calls were unique to a caller. This indicated that the FP
calls were attributable to different normalization and dis-
covery algorithms.

Discussion

Our study demonstrates the challenges of CNV predic-
tions from exomes. The major issue we observed was
the lack of reproducibility of PPV among distinct exome
datasets. Even when the confounders of exome method-
ology were minimized (e.g., same sequencing center,
same capture methodology, same sample size, same bio-
informatics pipeline), the triplicate runs still yielded a wide
range of PPVs, seen in both sample size and capture ana-
lyses. We concluded that the performance of CNV calling
is data-dependent and could not be generalized. Our re-
sults indicated that each simulated experiment was unique
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and resulted in an inconsistent PPV. This also explains
why other studies have failed to reproduce the same pre-
diction performance [20, 21, 24].

There are many factors that can contribute to the
complexity and uniqueness of exome data. A well-
known contributor is the GC content. High or low GC
content regions of genomes are difficult to sequence
due to the reduced amplification in PCR steps and thus
results in poor coverage [25]. In addition, as GC con-
tent affects the target affinity, it can affect the target
hybridization efficiency and/or the enrichment [26].
Thus, even with the same capture enrichment method,
the coverage from one sample to another for the same
regions can vary significantly. While many CNV callers
address the GC effect by normalizing or filtering out
for extreme GC targets, successfully removing GC bias
is still a challenge.

The pre-processing and normalization steps adjust for
such biases occurring in exome data. This step is crucial
to systematically remove noise stemming from the various
steps of exome methodology, which otherwise gives rise
to a FP CNV signals. Retaining a true CNV signal while
removing noise is a challenging problem. Uniquely,
EXCAVATOR corrects for GC content, mappability,
and library size by using a median normalization ap-
proach, as opposed to the filtering methods [14]. While
this normalizes the data, this approach is not able to
remove problematic extreme regions and is thus suscep-
tible to high FP predictions. This may explain the low
PPVs observed this throughout this study (PPV <0.05).
While both CoNIFER and XHMM use the SVD-PCA
normalization method, the negative correlation with sam-
ple sizes was observed only for CoNIFER. This suggested
that the difference in results is due to the CNV discovery
step. CoNIFER uses SVD-ZRPKM cutoff to determine the
CNV signals. A fixed threshold cutoff may not be appro-
priate for all sample sizes due to increase in the noise as
more data are added. An adjustment for increased sample
size may be appropriate for a large population study.

Our results indicated that a dataset with heteroge-
neous capture methodologies did not negatively affect
the CNV calling compared with a capture data from a
single methodologic source. This is surprising because
we expected that the mix capture data would introduce
false signals due to the difference in probe designs.
However, that effect was not observed. We concluded
that the biases arising from different capture designs
were successfully removed and normalized.

We observed challenges with detecting small CNVs
using all callers. CONIFER requires at least three exons
to exceed the pre-determined threshold whereas
EXCAVATOR requires at least two. However, the smal-
lest predicted CNV spanned five exons and no CNVs were
detected at this pre-defined minimum number of exons.
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Further examination of the FP calls showed that they were
unique to a caller. This indicated that the FP calls were
driven by the normalization pre-processing and/or the
discovery algorithm. An improvement in normalization
and the discovery algorithm of CNVs is necessary to re-
duce the FP calls and to detect small CNVs.

In this study, we have used the recommended default
parameters for all CNV callers. Optimizing and tuning
the parameters may improve the CNV prediction per-
formance. However, this requires prior knowledge of
existing true CNVs in the dataset, which oftentimes is
not available for researchers using exome CNV callers
to screen for CNVs. In addition, tuning the parameters
to optimize the performance of a subset of data may
potentially lead to an over-fitting, contradicting the
objective of this project. We also appreciate the limita-
tions of SNP chips in accurately identifying CNVs [27].
This was one of the reasons why we decided to measure
the concordance of the CNV calls from exome against
the SNP chip data (PPV) rather than focusing on the
sensitivity and specificity. While PPV is a subset of
accuracy, it still gives an estimate on the quality of the
CNV predictions and was appropriate for this study to
examine reproducibility in performance.

Our results unequivocally demonstrate the challenges
in reproducibility of exome CNV calling. One way to
improve the reproducibility of CNV calling would be to
train and test the algorithm on large number of data-
sets. For a classifier in a machine learning approach,
one of the techniques to reduce the over-fitting the
data and variance of the performance is to use k-fold
cross-validation, where the suggested k > 10 [28]. Simi-
lar to this concept, the field would benefit from a large,
standardized set of heterogeneously generated exome
data upon which CNV callers could be validated and the
optimal parameters can be tested on. This set should in-
clude a wide range of sample sizes, independent data that
were generated from different sequencing centers, and dif-
ferent ethnic backgrounds. In addition, understanding the
attributes of genes that lead to high or low PPVs could
further improve on the algorithms of CNV callers. For
example, genomic regions with similarity in sequence or
(retro)pseudogenes are likely to give FFP CNV signals.
Characterization of CNV frequency for a gene or a gene
CNV tolerance level in conjunction with frequencies of
CNV calls in a population may be insightful. Incorporating
gene attributes in a model may enhance the ability to
distinguish the true CNVs versus artifact signals arising
from ambiguous mapping of genomic regions or noise.
We also recommend evaluating for PPV, in conjunction
with the sensitivity and specificity. We repeatedly ob-
served high sensitivity with low PPV. Exome callers are
typically applied when genome-wide CNV screening is not
available. Thus, high PPV is desired in practice. An effort
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to detect small CNVs (<3 exons) is also necessary to study
a larger spectrum of CNVs and increase the utility of
extracting CNVs from exome data.

Conclusion

By examining the exome CNV predictions under hetero-
geneous conditions, we have shown that the reproducibil-
ity of four CNV caller predictions was poor. The technical
confounders and complexity of ES methodology contrib-
uted to the uniqueness of individual datasets, which made
the reproducibility of CNV prediction performance a chal-
lenge. While CNV callers are potentially valuable and
could increase the power and utility of ES studies, we have
shown that there is still a need for improvement. As more
ES and complementing high-quality CNV studies become
available and further improvements are made in CNV
calling algorithms, the wide applicability of CNV callers
will maximize the utility of ES data.

Additional files

Additional file 1: Table S1. Lists all the IDs used in this study. Table S2
gives details of independent dataset analysis. Tables S3 and S4 give details
of size and capture analyses. Table S5 lists ClinSeq® CNVs identified from
SNP chips used in this study. Table S6 lists the summary of CNV sizes for
300 ClinSeq run at base pair and exon resolution. Table S7 lists SNP array
CNV calls used for 300 ClinSeq samples. (XLSX 57 kb)

Additional file 2: Figure S1. Is the density plot of size comparison
between the predicted CNVs and the validated CNVs, Figure S2 shows
a Venn diagram of false positives overlapping between the callers.
(PPTX 289 kb)
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