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schizophrenia in blood—a no-brainer?

Andrew E. Jaffe'>** and Joel E. Kleinman'”

Editorial summary

Several recent studies have investigated either genetic
or epigenetic variation in schizophrenia. A recent study
presents comprehensive analyses of blood samples to
better characterize the combined role of genetic and
epigenetic variation in schizophrenia. While the paper
identifies significant associations with schizophrenia risk
and diagnosis, the potential relevance to the brain in
schizophrenia is questionable.

Characterizing genetic and epigenetic variation in
schizophrenia
The latest genome-wide association study (GWAS) for
schizophrenia has identified 108 genetic loci that sig-
nificantly confer risk for schizophrenia, with common
variants explaining 18.4 % of the overall variation in
diagnosis [1]. How genetic variation influences risk for
schizophrenia has been a question of great importance
to the field and recent research has suggested that
DNA methylation (DNAm) may mediate genetic risk
for a large number of the GWAS loci in the human
adult [2] and developing [3] brain. However, brain tissue is
difficult to collect and assay in the large number of sam-
ples that are probably necessary to see more subtle effects
of genetic risk on local epigenetic variation and thus re-
searchers often use blood as a surrogate tissue. There are
still many lingering questions surrounding how epigenetic
changes in the blood associated with exposure or outcome
relate to changes in other tissues, particularly the brain.
Recently, Hannon and colleagues [4] have presented
comprehensive analyses of large blood DNAm datasets
to better characterize the combined role of genetic and
epigenetic variation in schizophrenia. In this study, using
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microarrays designed to measure DNAm across the
epigenome, the authors first identified sites (individual
microarray probes) and regions (groups of probes) dif-
ferentially methylated between patients with schizophre-
nia and unaffected controls in blood. These differentially
methylated loci related to genomic regions involved in
immune function, neuronal proliferation, and brain de-
velopment and also significantly overlapped with the 108
GWAS risk loci previously identified for schizophrenia
[1]. By integrating genetic information on the same
subjects, Hannon and colleagues [4] identified sites in
the epigenome associated with overall genetic risk for
schizophrenia (polygenic risk scores (PRSs)). Interest-
ingly, there was little overlap between the effects of PRS
levels (those sites related to genetic risk) and differen-
tially methylated loci (those sites perhaps related to the
consequences of illness) between patients and controls
(Fig. 3 in [4]). The authors also performed Bayesian co-
localization analyses combining GWAS summary statis-
tics and methylation quantitative trait loci (mQTLs)
and provided evidence of convergence of genetic and
epigenetic risk for schizophrenia. A subset of previously
identified co-localized signals in the brain [3] was also
identified in the Hannon et al. [4] blood dataset
(43.6 %, 7/16), including three mapping to the ASSMT
locus that have already been linked to a variable num-
ber of tandem repeats (VNTR) polymorphism in that
locus that is considered to be a likely causal genetic
variant for schizophrenia [5].

Clinical and molecular heterogeneity underlies
schizophrenia

This work joins several other recent large-scale, multi-
phase studies characterizing DNAm changes related to
case—control differences in schizophrenia in the blood,
including Aberg and co-workers [6] and Montano and co-
workers [7]. While all three studies each implemented
stringent statistical analysis and independent replication,
there was surprisingly little overlap of differential methyla-
tion signals across the studies (Table 1). For example,
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Table 1 Replication of significant case—control differences
Discovery threshold Type Study Tissue Probes? Genes®
p<1X 1077 Discovery Hannon et al. [4] (Table 1) Blood 25 16
Replication Montano et al. [7] (eTable 4, N=172) Blood 0 0
Aberg et al. [6] (Table 2, N=65) Blood NA 0
Jaffe et al. [2] (Table S10, N=2,104) Brain 0 1
p<1x107° Discovery Hannon et al. [4] (Table 1) Blood 1223 949
Replication Montano et al. [7] (eTable 4, N=172) Blood 2 9
Aberg et al. [6] (Table 2, N=65) Blood NA 3
Jaffe et al. [2] (Table S10, N=2,104) Brain 6 61

We examined the sites identified as differentially methylated in the Hannon et al. [4] study in the context of previous work across other large blood and brain datasets

Probes refer to the exact lllumina 450 k probe by “cg” identifier

PGenes refer to the nearest gene to each probe or those listed in the tables of the cited papers

none of 25 significantly differentially methylated sites/
probes identified by Hannon and colleagues [4] in the
discovery sample (at p<1x 1077; Table 1 in [4]) were
present in either previous study (Table 1), including the
172 significant and replicated probes and nearby genes
from Montano et al. [7] (€Table 4 in [7]) or the 65 unique
genes with differential methylation signal reported by
Aberg et al. [6] (Table 2 in [6]). Even among the 1223
marginally significant (p <1 x 10™°) probes identified by
Hannon and colleagues [4] in the discovery sample (Table
S3 in [4]) there was minimal overlap in differential methy-
lation signal at the probe (N =2) or gene (N=9 and N =3,
respectively) levels. As there was only one gene in com-
mon (SATBI) between the previous two studies, these
three studies largely present non-overlapping regions of
the epigenome associated with schizophrenia and the
plethora of epiphenomena that accompany the disorder.
Together, these studies underscore the extensive clinical
and molecular heterogeneity underlying this debilitating
brain disorder.

Outstanding questions and next steps

As compelling as these findings are, several questions still
remain regarding the relevance to the brain—the tissue
most relevant to the etiology of schizophrenia—and the
residual influence on epigenetics of other factors such as
cellular composition, antipsychotic medication, substance
abuse, and stress.

For both the case—control differences and also the co-
localization of mQTLs and schizophrenia GWAS risk
single nucleotide polymorphisms (SNPs), we would be
interested in what proportion of blood-identified signal
replicates in brain samples. While Hannon and col-
leagues [4] ask the reverse question—what proportion
of a lesser number of brain-identified co-localization
signals were present in the blood—we believe that the
former question would more directly highlight the use-
fulness of blood as a surrogate for better understanding
the causes and consequences of schizophrenia. We

further found little overlap between probes differen-
tially methylated in the present study and those previ-
ously identified as differentially methylated between
patients and controls in the frontal cortex (6/1223
probes; Table 1) [2].

As mentioned, another question relates to potential
residual influences of cellular composition, medications,
substance abuse, and stress in the case—control differ-
ences identified in blood. While the authors statistically
adjusted for the effect of cellular composition, a very
strong potential confounder in epigenome-wide associ-
ation studies (EWAS) [8] and smoking, one of the stron-
gest environmental influences on DNAm in blood [9],
these other potential confounders might similarly have
strong influences on DNAm but could be much harder
to quantify due to the large number of potential medica-
tions used for treatment, the large number of substances
abused by patients, and the nature of stress. Further-
more, the heterogeneous collection of cell types in the
blood, each with unique epigenetic signatures and with
potentially variable ages and lifespans of cells since
leaving the bone marrow, makes whole blood a difficult
tissue to interpret epigenetic differences.

Ultimately, this study pushes the boundaries of EWAS
of schizophrenia in the blood and reminds us of the im-
portance of studying the brain in schizophrenia in future
work. While blood may be a useful biomarker, identify-
ing epigenetic factors and their interplay with genetic
risk variants in the brain offers the promise of finding
novel targets and treatments to improve the lives of
patients with schizophrenia.
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