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Abstract

Background: Krlippel-type zinc finger genes (ZNF) constitute a large yet relatively poorly characterized gene family.
ZNF genes encode proteins that recognize specific DNA motifs in gene promotors. They act as transcriptional
co-activators or -repressors via interaction with chromatin remodeling proteins and other transcription factors. Only few
ZNF genes are currently linked to human disorders and identification of ZNF gene-associated human diseases may
help understand their function. Here we provide genetic, statistical, and clinical evidence to support association of
ZNF148 with a new intellectual disability (ID) syndrome disorder.

Methods: Routine diagnostic exome sequencing data were obtained from 2172 patients with ID and/or multiple
congenital anomalies.

Results: In a cohort of 2172 patient—parent trios referred for routine diagnostic whole exome sequencing for ID and/or
multiple congenital anomalies (MCA) in the period 2012-2016, four patients were identified who carried de novo
heterozygous nonsense or frameshift mutations in the ZNF148 gene. This was the only ZNF gene with recurrent
truncating de novo mutations in this cohort. All mutations resulted in premature termination codons in the last exon
of ZNF148. The number of the de novo truncating mutations in the ZNF148 gene was significantly enriched (p = 5.

42 x1072). The newly described ZNF148-associated syndrome is characterized by underdevelopment of the corpus
callosum, mild to moderate developmental delay and ID, variable microcephaly or mild macrocephaly, short stature,
feeding problems, facial dysmorphisms, and cardiac and renal malformations.

Conclusions: We propose ZNF148 as a gene involved in a newly described ID syndrome with a recurrent phenotype
and postulate that the ZNF148 is a hitherto unrecognized but crucial transcription factor in the development of the
corpus callosum. Our study illustrates the advantage of whole exome sequencing in a large cohort using a
parent—offspring trio approach for identifying novel genes involved in rare human diseases.
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Background

The human genome contains over 400 Kriippel-type
zinc finger (ZNF) genes. For many of these genes a bio-
logical function has not been elucidated thus far [1].
ZNF genes encode DNA-binding proteins, related to the
archetypal Drosophila regulatory protein Kriippel, which
recognizes specific DNA sequence motifs in gene pro-
moters. They bind the major groove of the double helix
by their C2H2 zinc finger domains, each consisting of a
chain of two cysteines and two histidines that fold
around and are stabilized by a single Zn>* ion. ZNF
genes may function as either transcriptional co-
activators or repressors. They do so by promoting the
binding of transcription factors to their cognate DNA
recognition site or by recruitment of chromatin remod-
eling proteins such as histone deacetylases, methyltrans-
ferases, and demethylases [1, 2]. Most ZNF genes have
been characterized using in vitro binding and reporter
assays for identification of their target genes. By identify-
ing ZNF genes involved in human disease, their broader
role in ontogeny or physiological processes may be eluci-
dated. Despite the extensive size of the gene family, the
number of disease-linked ZNF genes remains relatively
small. Here we identified truncating de novo mutations
in the Zinc Finger Protein 148 (ZNF148; also known as
ZBP-89 or ZFP148) from a large cohort of patient—par-
ents trios referred for diagnostic exome sequencing in
the period 2012-2016. These de novo mutations lead to
syndromic intellectual disability (ID) with corpus callo-
sum anomalies and short stature as shared features, ac-
companied by secondary variable microcephaly or mild
macrocephaly, feeding problems, variable facial features,
talipes, and malformations of the heart and kidneys.

Methods

Whole exome sequencing

For whole exome sequencing (WES), a parent—off-
spring trio approach was used as described by us pre-
viously [3, 4]. Exomes were sequenced using DNA
isolated from blood according to standard procedures.
Exome capture was done using the Agilent SureSelect
v4 kit (Agilent, Santa Clara, CA, USA). Exome librar-
ies were sequenced on an Illumina HiSeq instrument
(Ilumina, San Diego, CA, USA) with 101 bp paired-
end reads at a median coverage of 75x. Sequence
reads were aligned to the hgl9 reference genome
using BWA version 0.5.9-r16. Variants were subse-
quently called by the GATK unified genotyper, version
3.2-2 and annotated using a custom diagnostic anno-
tation pipeline. De novo variants in index patients
were called as described by de Ligt et al. [4]. Stand-
ard Sanger sequencing of patient and parental DNA
was used for validation de novo variants identified in
WES data.
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Statistical analyses

To assess whether de novo nonsense mutations in the
ZNF148 gene occurred significantly more frequently in
our ID/MCA patient cohort, we made use of the ZNF148-
specific loss-of-function (LoF) mutation rates [5], exactly
as we described previously in Lelieveld et al. [6]. The LoF
rate was calculated by summing the individual ZNF148
specific de novo mutation rates for nonsense, splice site,
and frame-shift variants. Null hypothesis testing of finding
three nonsense or splice site mutations in the ZNF148
gene was done using a one-sided exact Poisson test based
on a sample size of 2172 individuals with ID/MCA, repre-
senting 4344 alleles. Bonferroni correction for multiple
gene testing was applied by multiplying the obtained
p value by 19,280, i.e. the number of genes captured by
the exome capture kit. To statistically assess whether de
novo mutations clustered within the ZNF148 gene,
random distribution of the mutations over the entire cod-
ing region of the gene (2382 bp) was simulated 10,000
times [6]. The mutual distance between these randomly
applied mutations was calculated and statistically com-
pared to the actual distances between the observed de
novo mutations in our patients, which were present at
c. positions 970, 1581, 1582, and 1792.

Results

Clinical reports

Patient 1 is a 6-year-old girl born at 35 + 4 weeks after an
uncomplicated pregnancy who presented with respiratory
insufficiency and severe feeding problems requiring gav-
age feeding. Birth measurements were normal. Currently,
she has gastrointestinal dysmotility with delayed gastric
passage and receives most of her caloric intake through a
gastrostomy tube. Biochemical analysis of mitochondrial
enzymes showed no abnormalities. Developmental mile-
stones were reached late with independent walking and
first words spoken at the age of 3 years. Her first teeth
erupted after 3 years. She is hyperactive at times and she
gets upset in crowded environments. WISCIII-III-NL
(2.6-7.11 years) intelligence test at 5.6 years showed a
total intelligence quotient (IQ) of 59 (95% confidence
interval (CI) 54-71), verbal IQ of 72 (68-85), and per-
formance IQ score of 63 (57-77) indicating a mild intel-
lectual delay. She attends a school for children with ID.
Cardiac ultrasound for evaluation of a systolic murmur re-
vealed a structurally normal heart. Physical examination at
6 years revealed the following. Her speech was difficult to
understand because of poor pronunciation. She currently
has mild developmental delay, hyperopia (+6.5 dioptres),
secondary mild microcephaly (-2.76 SD) and short stature
(-2.29 SD), upslanted eyes, notched nares with visible
columella, grooved philtrum, slightly prominent lower lip,
pointed chin, and hypertrichosis of the arms and back.
Cardiac ultrasound for evaluation of a systolic murmur
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revealed a structurally normal heart. Complaints of exer-
tional chest pain remain unexplained. Magnetic resonance
imaging (MRI) of her brain showed a thin hypoplastic cor-
pus callosum.

Patient 2 was the first child of healthy unrelated parents.
Prenatal ultrasound showed multiple congenital anomal-
ies: agenesis of the corpus callosum, right hydronephrosis,
left multicystic kidney, and bilateral pes equinovarus. Birth
was by Caesarian section after 31 + 2 weeks gestation be-
cause of fetal bradycardia. Apgar scores were 2-4-7 after 1,
3, and 5 min. After delivery, he was apneic, pale, hypo-
tonic, and bradycardic with a heart rate of 60/min. Renal
ultrasound showed multicystic dysplastic right kidney and
left hydronephrosis. Cardiac ultrasound showed open
ductus arteriosus. Physical exam after birth and postmor-
tem exam revealed short stature (—2.5 SD) and a number
of dysmorphic features including a small fontanel, flat oc-
ciput, coarse square shaped face, broad nasal bridge, wide-
set eyes with infraorbital creases, retrognathia, upturned
nose, prominent columella, long smooth prominent phil-
trum, narrow palate, retrognathia with small chin, wide-
spaced inverted nipples, 3 cm palpable liver, sacral dimple,
flat buttocks, small male genitalia with inguinal testes,
small hands and feet with dorsal furrowing of the skin,
right helical notch, bilateral prominent crus helici, vertical
groove in the left ear lobe, short neck, superfluous skin
with hypertrichosis on face, uppers arms, legs, and back,
and talipes equinovarus with deeply grooved skin of foot
soles. Infant Respiratory Distress Syndrome (IRDS) devel-
oped with poor circulation and lactic acidosis persisting
until death 6 days after birth. Postmortem investigation
including brain MRI confirmed the renal abnormalities
and corpus callosum agenesis as well as wide intracerebral
ventricles in an otherwise normal brain.

Patient 3 is an 1l-year-old girl, the second child of
healthy Caucasian parents, born at 38 + 5 weeks. Prenatal
ultrasound at 32 weeks of gestation showed symmetric
cerebral ventriculomegaly especially of the posterior horns.
At birth, she was hypotonic and hyporeactive with respira-
tory insufficiency with Apgar scores of 5-6-8 at 1, 5, and
10 min. Because of feeding problems, gavage was needed
during the first 5 days. A capillary malformation on her
forehead, nose, and upper lip faded in due time. She took
her first independent steps at 2 years and said her first
words at the age of 3 years. Axial hypotonia remained evi-
dent throughout childhood. Fast head growth in her first
year led to secondary macrocephaly at 2 years, while short
stature developed at 2 years in the presence of growth hor-
mone deficiency for which growth hormone therapy was
started at 3 years. She is hyperactive, shows compulsive be-
haviors, has frequent temper tantrums, and was diagnosed
with PDD-NOS. WISCIII intelligence test at the age of
8 years showed a total IQ of 58, verbal IQ of 62, and per-
formance IQ score of 69. Due to early breast development
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at the age of 8 years, Lucrin was given to prevent further
development of puberty. Periodic palpitations and tachycar-
dia at the age of 7 years remain unexplained after cardio-
logic examination including ECG and cardiac ultrasound.
Physical examination at 7.2 years showed long face, high
slightly prominent forehead, prominent occiput, mild
macrocephaly (around +2.5 SD), curly hair, trident hairline,
down slanting palpebral fissures, minimal epicanthic folds,
slightly hooded eyelids, prominent columella, malocclusion
of upper and lower incisors, pointed chin, genua valga, and
pedes plani. MRI scan of the brain revealed corpus callo-
sum agenesis. The phenotype was considered suggestive of
Noonan syndrome. However, no mutation was found after
screening of all known genes linked with Noonan, Cardio-
Facio-Cutaneous (CFC), and Costello syndromes.

Patient 4 is a 7-year-old girl, the third child of a 30-year-
old mother and a 37-year-old father. Abnormal prenatal
ultrasound findings, including cystic kidneys and a cardiac
defect in the fetus, prompted amniocentesis which showed
a normal female karyotype and normal FISH for 22q11 de-
letion. After delivery at 36 weeks after induction, she was
apneic at birth responding to positive pressure ventilation
(PPV); APGAR scores 4-7-8 at 1, 5, and 10 min. Birth
measurements were normal and bilateral clubfeet were
noted. Coarctation of the aorta associated with mitral
valve stenosis, overall consistent with hypoplastic left heart
syndrome spectrum, were found on postnatal echocardio-
gram and initially managed with prostaglandin E1,
followed by balloon dilation and aortic repair. Renal ultra-
sound showed a right-sided multicystic kidney. She devel-
oped feeding problems requiring tube feedings and
growth restriction with normal growth hormone status
and bone age. Her development has been globally delayed
from early on and at the age of 6 years she had an expres-
sive language disorder with very restricted vocabulary
compared to relatively good receptive language skills. She
is able to use sign language and assistive communication
devices; she receives special education through the public
health system. Her behavior is generally mellow, but she
has social anxiety and becomes easily overstimulated.
Ophthalmology and orthopedics are following her for
hyperopia with mild bilateral optic nerve hypoplasia and
bilateral clubfeet, respectively. She underwent repeated
tympanostomy and bilateral tube placement for recurrent
otitis media associated with conductive hearing loss. Phys-
ical features at the age of 7 years include severe micro-
cephaly (-8.7 SD) and short stature (-5.11 SD) and
bilateral clubfeet. Her distinct craniofacial gestalt is char-
acterized by an oval-shaped head and face with mild
bitemporal constriction, deep-set eyes with upslanting,
short and narrow palpebral fissures, mild telecanthus, a
prominent nose with low-hanging prominent columella,
midface hypoplasia, prognathia, thin lips, highly arched
palate, widely spaced teeth of abnormal shape, unusual
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ears with underfolded helices, prominent anthelix, and
underdeveloped attached earlobes. Her neurological exam
is non-focal. A computed tomography (CT) scan of the
head was suggestive of partial dysgenesis of the corpus cal-
losum. MRI of her brain was not performed.

Clinical features of the four patients with ZNF148 mu-
tations are summarized in Table 1. Clinical photographs
are shown in Fig. 1.

Genomic analyses
During routine diagnostic WES in the Radboud University
Medical Center (RUMC) in Nijmegen during the period
2012-2015 we identified patients 1-3, out of a total of 2172
WES trio analyses of patients with ID and/or MCA and
both their parents. The three patients had heterozygous
truncating de novo mutations in ZNF148, the only ZNF
gene in which such mutations occurred recurrently in our
cohort. Patient 4 was identified via GeneMatcher [7]. All
four mutations were located in the last exon (exon 9) of the
ZNF148 gene (reference sequence NM_021964.2) and were
as follows: patient 1: c.1792A>T (p.Lys598*); patient 2:
¢.1583dup (p.Ser529Glufs*2); patient 3: ¢.970dup (p.Ser324-
Phefs*14); and patient 4: ¢.1581_182insC (p.Lys528GInfs*3).
These four de novo mutations all yield a premature
termination codon (PTC) in the ZNF148 transcript,
respectively, 458, 265, 197, and 265 codons upstream of
the canonical wild-type termination codon (Fig. 2).
Variants in additional genes were detected in three
patients. Patient 1 had heterozygous de novo missense
mutations of unknown significance in the TCERGI1
gene (NM_006706.3:¢.2359G > A; p.Asp787Asn) and in
the SART3 gene (NM_014706.3:c.1526A > G; p.Asn509-
Ser), neither of which can be related to the clinical pheno-
type currently. Mutations in these two genes have not been
described thus far and we did not observe other patients in
our cohort harboring de novo mutations in these genes.
Patient 3 showed a likely benign, homozygous missense
variant in the PDCD4 gene (NM_014456.4:c.1198C > G;
p.GIn400Glu), which has low heterozygous frequency in
ExAC of 0.02% in Europeans [8] and which is also reported
homozygously once in this database. In patient 4, a mater-
nally inherited heterozygous missense variant in COL3A1
(NM_000090.3 ¢.3938A > G; p.Lys1313Arg), was found.
This variant has been classified as variant of uncertain sig-
nificance (VUS) in ClinVar as variant RCV000181114.1 [9].
However, neither the patient nor his mother or other indi-
viduals on the maternal side of the family have clinical
symptoms suggestive of vascular Ehlers-Danlos syndrome
(EDS type 1V), the only syndrome known to be caused by
pathogenic mutations in COL3A1. Moreover, this COL3A1
variant has a MAF of 0.26% in Europeans in the Exome
Variant Server [10].

Next, we calculated the statistical probability of the num-
ber of de novo nonsense and frameshift mutations in our
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entire cohort of 2172 WES parent—offspring trios sequenced
at RUMC. There was a significant increased number of such
mutations in the ZNF148 gene in our ID/MCA cohort
(p =542 x 107%). The distribution of the four mutations was
not random over the coding region of the ZNF148 gene, but
the mutations were significantly clustered (p = 0.033).

Discussion

We detected de novo mutations in the last exon of ZNF148
in four patients and show significant enrichment of such
mutations in our cohort of 2172 parent—offspring trios ana-
lyzed by WES. The core features in these four individuals
with ZNF148-associated syndrome are: underdevelopment
of the corpus callosum; mild to moderate developmental
delay and ID; variable microcephaly or mild macrocephaly;
short stature; feeding problems; facial dysmorphisms in-
cluding wide-set eyes; low columella and pointed chin; and
cardiac and renal malformations. But there were also no-
ticeable differences between these four individuals. The
clinical course in patient 1 is noteworthy for persisting
feeding problems necessitating feeding by gastrostomy until
now. Patient 2 had a coarse appearance and died from car-
diac and pulmonary insufficiency on day 6. Patient 3 had
mild secondary macrocephaly and developed secondary
growth retardation with growth hormone deficiency and
showed catch-up growth to normal height with GH re-
placement therapy. The phenotype of patient 3 was very
suggestive of Noonan syndrome but testing showed no
mutation in all genes associated with Noonan, CFC, and
Costello syndrome. Patient 4 has very short stature and had
severe microcephaly from birth. Her facial features were
reminiscent of Floating Harbor syndrome (FHS).

The absence of mutations leading to PTCs in the
ZNF148 gene in the general population, their significant
overrepresentation in our cohort, and ZNF148 constraint
metrics, ie. “Probability of Loss-of-function Intolerance”
(pLI) =0.93 as described [8] and absence of nonsense or
frameshift mutations in >100,000 alleles in ExAC [8] and a
high rank haploinsuffiency (HI) score of 10.07 [11], strongly
indicate that this gene is highly intolerant to truncating mu-
tations. These calculations in combination with the pheno-
typical overlap in the identified patients strongly support
causality for the de novo PTC mutations in ZNF148.

ZNF148 encodes a Kriippel-type zinc finger protein,
with four C2H2 zinc finger motifs that bind similar DNA
sequence elements in different gene promoters [12]. A
BLASTP search [13] showed no apparent homology to
other ZNF genes and the gene is relatively poorly charac-
terized with regard to tissue-specific expression. However,
ZNF148 mRNA is ubiquitously transcribed throughout
numerous anatomical structures of the developing human
fetal brain with highest expression in most regions until
16 weeks post conception [14, 15]. Unfortunately, no data
are available on the gene’s expression in the developing
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Table 1 Clinical features of four patients with de novo mutations in the last exon of the ZNF148 gene

Patient 1

Patient 2

Patient 3

Patient 4

Gender and
current age

ZNF148

mutation

Additional
variants

Pregnancy

Birth

Birth weight
Birth length

Birth head
circumference

Feeding
problems

Length

Weight

Head
circumference

Developmental
milestones

Cognition

Head

Hair

Eyes

Nose

Philtrum

Girl, 6.7 years

Cc1792A > T, p.Lys598*

SART3 c.1526A > G; p.Asn509Ser
TCERGT ¢.2359G > A; p.Asp787Asn

Uncomplicated, mother noted
diminished fetal movements

Uneventful, 35 + 4 weeks

268 kg (~0.30 SD)
47 ¢cm (=037 SD)
32 cm (-0.75 SD)

Severe, tube feeding need for
sufficient caloric intake

110.2 (-2.29 SD) at 6.6 years

17 kg (-1.09 SD for length) at
6.6 years

(-2.76 SD) at 6.5 years

Walked independently at 3 years.
Spoke 3 years

WPPS1-IIl (2.6-3.1 years) at

3.7 years: TIQ 57 (95% Cl 52-74)
disharmonic profile: VIQ 72, PIQ
55.

WPPSI-III-NL 2.6-7.11 years) TIQ 59
(95% CI 54-71), VIQ 72 (68-85),
PIQ 63 (57-77)

Mild intellectual delay

Triangular-shaped face with
pointed chin

Normal blond straight head hair,
hypertrichosis of arms and back

Epicanthus, upslanted palpebral
fissures
Hyperopia +6.5 D

Full nasal tip, prominent
columella

Deeply grooved

Boy, died on postnatal
day 6 after sudden
bradycardia

€.1583dup;
p.Ser529Glufs*2

None

Decelerative CTG just
before birth

CS at 31 + 2 weeks,
Apgar scores 2-4-7, not
breathing, pale, hypo-
tonic, and lactic acid-
0sis postpartum

1.84 kg (+0.04 SD)
39 cm (262 SD)
29.2 cm (~037 SD)

Not applicable

40 cm (=2.5 SD)
at 6 days

184 kg (+0.04 SD)
at 6 days

29.2 cm (-0.37 SD)
at 6 days

Not applicable

Not applicable

Coarse face, slight
frontal bossing

Hypertrichosis with
lanugo hair on face

Slight right epicanthus,
wide-set eyes, remark-
able broad left eye-
brow with long hairs

Long, smooth philtrum

Smooth

Girl, 11.7 years

¢970dup; p.Ser324Phefs*14

PDCD4 ¢.1198C > G; p.GIn400Glu
homozygous

Uncomplicated

CS at 38+ 5 weeks, Apgar scores
5-6-8, hypotonic and hyporeac-
tive, Continuous Positive Airway
Pressure for respiratory
insufficiency

3315 kg (+0.14 SD)
49 cm (-0.50 SD)
35 cm (+0.49 SD)

Feeding problems during first
week with 5 days of tube
feeding

151.7 (+0.04 SD) at 11.3 years,
catch up with growth hormone
substitution therapy started at

3 years because of growth
retardation (-2.48 at 2.7 years),
and growth hormone deficiency

384 kg (-0.33 SD for length) at
11.3 years

582 cm (+2.84 SD) at 11.3 years
and fluctuating above and
below +3 SD between 6 and
10 years

Walked independently at 4 years
and started talking > 3 years

WISCIII at 8 years

Total 1Q 58, verbal 1Q 62,
perfomal 1Q 69 Attends school
for children with severe learning
problems

Slight frontal bossing, triangular-
shaped face with pointed chin
Curly hair

Wide-set, slight epicanthus,
downslanting palpebral fissures

Prominent columella

Normal

Girl, 7 years

€.1581_1582insC; p.Lys528GlInfs*3

COL3AT c.3938A > G; pK1313R;
heterozygous, maternally inherited,
MAF 0.26%; classified as VUS in
ClinVar (RCV000181114.1)

Renal cysts and heart defect on
fetal ultrasound

Induced vaginal delivery at 36 +
0 weeks. Apgar scores 4-7-8. Ap-
neic at delivery, responding to
PPV. Started on PGE for known
COA.

1.990 kg (-1.49 SD)
42 cm (=255 SD)
285 cm (-3.2 SD)

Feeding problems during neonatal
period with tube feedings.
Persistent FTT

9347 cm (-5.11 SD) at 6 years of
age

11.79 kg (0%ile, z-score -5.71) at
6 years of age

41 cm (-8.7 SD) at 6 years

Rolled over at 3 months. Crawled
at 18 months. Walked
independently at 4 years.
Approximately 20 words

No formal developmental
assessment. Attends elementary
school receiving special education
through the public school system.
Uses communication devices for
expressive language. Receptive
language seems good

Oval-shaped face with mild
bitemporal constriction

Fine hair

Mild telecanthus, upslanting, short
and narrow palpebral fissures
hyperopia, mild bilateral optic
nerve hypoplasia

Prominent nose with low-hanging
prominent columella

Smooth
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Table 1 Clinical features of four patients with de novo mutations in the last exon of the ZNF148 gene (Continued)

Mouth Full lower lip Normal Wide-set points of upper

vermilion

Ears Prominent crus helicis of right ear Large Low-set and posteriorly rotated

Jaw Pointed chin Slight micrognathia, Pointed chin

pointed chin

Thorax Normal Wide-spaced inverted ~ Normal

nipples

Limbs Congenital trigger thumb, Bilateral talipes Pedes plani, slight genua valga
dysplastic nail of left hallux equinovarus with

deeply grooved foot
soles

Genital Normal Undescended right Normal

testis

Puberty No No Early breast development

starting at 8 years

Epilepsy No + (EEG burst No

suppression)

Brain MRI brain: thin corpus callosum, MRI brain: absent MRI brain: absent corpus
slightly delayed myelination, corpus callosum, wide  callosum, colpocephaly
suggestion of bilateral parieto- lateral ventricles,
occiptalpolymicrogyria, periven- bleeding
tricular hyperintensities

Heart Normal Open ductus arteriosus, Normal

heavy heart — no
evidence of
cardiomyopathy

Kidneys Renal ultrasound not done yet Multicystic dysplastic Normal renal ultrasound

left kidney, pyelectasia/
hydronephrosis of right
kidney

Endocrine Not investigated Not investigated Early signs of puberty, growth

hormone deficiency

Other Recurrent upper airway infections, Short neck Frequent rhinitis in the first year

delayed intestinal mobility
problems, late first tooth
eruption > 3 years

Wide mouth with thin upper
vermillion border; highly arched
palate, widely spaced teeth of
abnormal shape

Unusual shape with underfolded
helix and prominent anthelix

Pointed chin with prognathia
Normal

Bilateral talipes equinovarus

Normal
No
No

CT brain: suspected partial
deficiency of the rostrum of the
corpus callosum; non-specific foci
in the left frontal and left occipital
skull of unknown etiology. No MRI

Coarctation of aorta, mitral valve
stenosis

Multicystic dysplastic right kidney.
History of multiple urinary tract
infections. Normal voiding
cystourethrogram

Normal bone age and growth
hormone status

Frequent otitis media status post

tympanostomy and tube
placement

corpus callosum but based on the patients’ phenotypes
this is highly expectable. Homozygous ZNF148 knock-out
mice are not viable while heterozygous mice show no
consistency in observed phenotype [16]. Besides its four
ZNF motifs, the protein contains an N-terminal acidic
domain, three basic domains, a serine-rich/proline, glu-
tamic acid, serine, threonine (PEST)-rich domain, and a
C-terminal activation domain (Fig. 2 and [12]).

Over 30 target genes of ZNF148 have been identified to
date [16]. A number of these target genes can be hypothet-
ically linked to the clinical phenotype observed in the pa-
tients. For example, ZNF148 directly activates promoter
activity of the growth hormone (GH) receptor [17, 18] and
altered ZNF148 dosage or altered protein function may
therefore be related to the short stature observed (Table 1).
Likewise, in vitro reporter assays showed that ZNF148 is a
key regulator of PKD1 and PKD2 gene promoters. The

kidney abnormalities observed in patients 2 and 4 may
therefore be related to aberrant ZNF148-driven PKD gene
transcription [19]. The phenotype of patient 4 resembles
FHS, which has some similarities with Rubinstein-Taybi
syndrome (RTS) such as short stature, prominent colu-
mella, and renal and cardiac anomalies [20]. While our pa-
tients have a prominent columella and some have heart
defects, the overall resemblance is still limited. It is notable
though that ZNF148 binds the RTS-related EP300 protein,
indicating that shared pathways may be affected in our pa-
tients and RTS patients. These pathways regulated by
EP300-ZNF148 interactions are likely involved in chroma-
tin remodeling by histon deacetylation via complexing with,
for example, HDAC1 or HDAC3 [21-23].

All patients harboring ZNF148 mutations had maldevel-
opment of the corpus callosum (MCC), which can be re-
lated to abnormal neuronal proliferation or migration,
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face with pointed chin and wide-set eyes

Fig. 1 Photographs of (from top to bottom) patients 1, 3, and 4 with de novo truncating ZNF148 mutations. Note common features like triangular-shaped

abnormal telencephalic midline patterning, or abnormal
axonal growth or guidance (reviewed in [24]). Although
over 50 genes have currently been linked to MCC [24],
none of these has clear overlap with ZNF148 with regard to
biological function or the cellular pathways they are in-
volved in. In addition, the clinical phenotype of our patients
is different from known syndromes in which MCC is a fea-
ture [24]. We thus postulate ZNF148 as novel genetic factor
required for corpus callosum development.

As all four de novo PTC mutations occurred in the last
exon of the ZNF148 gene, they most probably do not to
lead to nonsense-mediated RNA decay (NMD), but rather
are likely to yield a truncated protein [25]. This pattern of
“last exon de novo PTC mutations” is also observed for
several other genes, where pathogenic PTCs only appear
to be located in the last exon (occasionally with rare ex-
ceptions in the penultimate exon) or where last exon mu-
tations give a distinct clinical phenotype, e.g. SOX10,
EZH2, NOTCH3, KAT6A, and ASXL1 [26-30]. Although
all four mutations in ZNF148 are distal to its C2H2 zinc
finger domains, they truncate the protein in such a way
that it is missing the larger part of the C-terminal activa-
tion domain (Fig. 2). These truncated proteins would be
expected to have altered biological function, e.g. inability
to interact with components of transcription-initiator or

transcription-repressor complexes (LoF), to have a domin-
ant negative effect or to have a “gain-of-function (GoF)”
effect. The ExAC database currently lists two variants that
may lead to NMD, both of which are located at the canon-
ical splice acceptor site of intron 5. Still, it is difficult to
draw conclusions on whether NMD of ZNF148 transcript
is “benign,” because of: (1) the small number of individuals
in ExAc (i.e. only two LoF mutations per ~110,000 alleles);
(2) the lack of phenotypic data for these two individuals
and the fact that corpus callosum abnormalities may have
subtle clinical manifestation; and (3) the fact the splice ef-
fect of these two variants has only been predicted by in
silico tools. No deletions or other genetic aberrations of
ZNF148 have thus far been reported in literature, while
the DECIPHER database [31] does currently not report
single gene copy number variants for ZNF148. It
remains therefore elusive whether HI of the ZNF148
gene can lead to a clinical phenotype and whether that
phenotype would be similar to that associated with pro-
tein truncation, the likely mechanism in our patients.
Thus, a rationale exists for further studies that investi-
gate by which molecular mechanisms and molecular in-
teractions the ZNF148 protein is involved in the
genesis of clinical phenotypes, in particular corpus cal-
losum abnormalities.
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Fig. 2 Top: Structure of the ZNF148 gene (NM_021964.2) located in chromosome band 3g21.2 and the location of the de novo mutations in the
last exon (exon 9). Bottom: ZNF148 protein structure. The protein consists of 794 amino acids (AA). Structural domains in the ZNF148 protein
include the acid domain (AA 54-99), three basic domains (AA 129-153, 313-335, and 470-485), four adjacent ZNFs (AA 173-278), a serine-rich /
proline, glutamic acid, serine, threonine (PEST)-rich domain, and a C-terminal activation domain that interacts with other proteins (figure based on

Conclusion

Based on the de novo ZNF148 gene mutation rate in
our patients, the nature of these mutations (i.e. de
novo and truncating), the location of the observed
mutations in the last exon, and the patients’ overlap-
ping clinical phenotypes, we provide evidence that de
novo truncating ZNF148 mutations cause a syndrome
characterized by ID, short stature, aberrant head size
(from microcephaly to mild macrocephaly), feeding
problems, variable facial characteristics including tele-
canthus/wide nasal bridge, low columella and pointed
chin, cardiac and renal malformations, and talipes.
We furthermore postulate that the ZNF148 protein is
a hitherto unrecognized but crucial transcription fac-
tor in the development of the corpus callosum. Our
study illustrates the advantage of WES in a large cohort
using a parent—offspring trio approach for identifying

novel genes involved in rare human diseases, based on re-
currence of mutations and clinical and statistical evidence.
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