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Abstract

Background: The Generation Scotland: Scottish Family Health Study (GS:SFHS) is a family-based population cohort
with DNA, biological samples, socio-demographic, psychological and clinical data from approximately 24,000 adult
volunteers across Scotland. Although data collection was cross-sectional, GS:SFHS became a prospective cohort due
to of the ability to link to routine Electronic Health Record (EHR) data. Over 20,000 participants were selected for
genotyping using a large genome-wide array.

Methods: GS:SFHS was analysed using genome-wide association studies (GWAS) to test the effects of a large spectrum
of variants, imputed using the Haplotype Research Consortium (HRC) dataset, on medically relevant traits measured
directly or obtained from EHRs. The HRC dataset is the largest available haplotype reference panel for imputation of
variants in populations of European ancestry and allows investigation of variants with low minor allele frequencies
within the entire GS:SFHS genotyped cohort.

Results: Genome-wide associations were run on 20,032 individuals using both genotyped and HRC imputed data. We
present results for a range of well-studied quantitative traits obtained from clinic visits and for serum urate measures
obtained from data linkage to EHRs collected by the Scottish National Health Service. Results replicated known
associations and additionally reveal novel findings, mainly with rare variants, validating the use of the HRC imputation
panel. For example, we identified two new associations with fasting glucose at variants near to Y_RNA and WDR4 and
four new associations with heart rate at SNPs within CSMD1 and ASPH, upstream of HTR1F and between PROKR2 and
GPCPD1. All were driven by rare variants (minor allele frequencies in the range of 0.08–1%). Proof of principle
for use of EHRs was verification of the highly significant association of urate levels with the well-established
urate transporter SLC2A9.
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Conclusions: GS:SFHS provides genetic data on over 20,000 participants alongside a range of phenotypes as
well as linkage to National Health Service laboratory and clinical records. We have shown that the combination of
deeper genotype imputation and extended phenotype availability make GS:SFHS an attractive resource to carry out
association studies to gain insight into the genetic architecture of complex traits.

Keywords: Genome-wide association studies (GWAS), Electronic health records, Imputation, Quantitative trait, Genetics,
Urate, Heart rate, Glucose, Haplotype Research Consortium (HRC)

Background
Generation Scotland is a multi-institution collaboration
that has created an ethically sound, family-based and
population-based resource for identifying the genetic
basis of common complex diseases [1–3]. The Scottish
Family Health Study component (GS:SFHS) has DNA and
sociodemographic, psychological and clinical data from
~24,000 adult volunteers from across Scotland. The ethni-
city of the cohort is 99% Caucasian, with 96% born in the
UK and 87% in Scotland. Features of GS:SFHS include the
family-based recruitment, breadth and depth of phenotype
information, ‘broad’ consent from participants to use their
data and samples for a wide range of medical research and
for re-contact, and consent and mechanisms for linkage of
all data to comprehensive routine healthcare records.
These features were designed to maximise the power of
the resource to identify, replicate or control for genetic
factors associated with a wide spectrum of illnesses and
risk factors [3].
GS:SFHS can also be utilised as a longitudinal cohort

due to the ability to link to routine Scottish National
Health Service (NHS) data. Electronic Health Record
(EHR) linkage uses the ten-digit community health index
(CHI) number, a unique identifying number allocated to
every person in Scotland registered with a General Practi-
tioner (GP), and used for all NHS procedures (registrations,
attendances, samples, prescribing and investigations). This
unique patient identifier allows healthcare records for indi-
viduals to be linked across time and location [4]. The
population is relatively stable with comparatively low levels
of geographic mobility and there is relatively little uptake
of private healthcare in the population. Few countries,
other than Scotland, have health service information which
combines high quality data, consistency, national coverage
and the ability to link data to allow for genetic and clinical
patient-based analysis and follow-up.
The Haplotype Reference Consortium (HRC) dataset

is a large haplotype reference panel for imputation of
genetic variants in populations of European ancestry,
recently made available to the research community [5].
Within a simulated genome-wide association study
(GWAS) dataset, it allowed an increased rate of accurate
imputation at minor allele frequencies as low as 0.1%,
which will allow better interrogation of genetic variation

across the allele spectrum. A selected subset of 428
GS:SFHS participants had their exomes sequenced at
high depth and contributed reference haplotypes to the
HRC dataset, making it ideal for more accurate imput-
ation of this cohort [6].
This paper describes genome-wide association analysis of

over 20,000 GS:SFHS participants using two genetic data-
sets (common, genotyped Single Nucleotide Polymorphisms
(SNPs) and HRC-imputed data) across a range of medically
relevant quantitative phenotypes measured at recruitment
in research clinics. To illustrate the quality and potential of
the many EHR linkage-derived phenotypes available, we
selected serum urate as an exemplar due to its direct associ-
ation with disease, gout, and its strong well-studied genetic
associations. About 10% of people with hyperuricemia
develop gout, an inflammatory arthritis that results from
deposition of monosodium urate crystals in the joint.
Genome-wide meta-analyses have identified 31 genome-
wide significant urate-associated SNPs, with SLC2A9 alone
explaining ~3% of the phenotypic variance [7].

Methods
Sample selection
Selection criteria for genome-wide genotype analysis of
the participants were: Caucasian ethnicity; born in the
UK (prioritising those born in Scotland); and full phenotype
data available from attendance at a Generation Scotland
research clinic. The participants were also selected to have
consented for their data to be linkable to their NHS
electronic medical records using the CHI number. The
GS:SFHS genotyped set consisted of 20,195 participants,
before quality control exclusions.

DNA extraction and genotyping
Blood (or occasionally saliva) samples from GS:SFHS
participants were collected, processed and stored using
standard operating procedures and managed through a
laboratory information management system at the
Edinburgh Clinical Research Facility, University of
Edinburgh [8]. DNA was quantitated using picogreen
and diluted to 50 ng/μL; 4 μL were then used in geno-
typing. The genotyping of the first 9863 samples used
the Illumina HumanOmniExpressExome-8 v1.0 BeadChip
and the remainder were genotyped using the Illumina
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HumanOmniExpressExome-8 v1.2 BeadChip, with Infi-
nium chemistry for both [9].

Phenotype measures
Measurement of total cholesterol, HDL cholesterol, urea
and creatinine was from serum prepared from 5 mL of
venous blood collected into a tube containing clot acti-
vator and gel separator at the time of the visit by the
participant to the research clinic. For glucose measure-
ment, 2 mL of venous blood was collected in a sodium
fluoride/potassium oxalate tube, with fasting duration
recorded. Resting heart rate (pulse) was recorded using
an Omron digital blood pressure monitor. Two readings
were taken and the second reading was used in the ana-
lyses. All other cardiometabolic and anthropometric pheno-
type measures (see Table 1) are described in [3].
The EHR biochemistry dataset was extracted on 28th

September 2015 and covers 11,125 participants. EHR data
are held in the Tayside Safe Haven, which is fully accredited
and utilises a VMware Horizon client environment. Data
are placed on a server within a secure IT environment,
where the data user is given secure remote access for its
analysis [4]. For serum urate, records were available from
October 1988 to August 2015. Any data entries in the EHR
relating to pregnancy (keywords one or more of ‘pregna/
labour/GEST/PET’, total of 117 entries in the urate data-
set), were manually removed, as data obtained during preg-
nancy are usually not included in a GWAS. Many of the
participant IDs have multiple readings, spread over time.
For extraction of serum urate data for analysis, the highest
reading was used, as a high reading would trigger a treat-
ment (such as allopurinol) to lower the urate level, which is
then checked by the clinician requesting a subsequent test.

Genotype data quality control
Genotyping quality control was performed using the fol-
lowing procedures: individuals with a call rate less than
98% were removed, as were SNPs with a call rate less than
98% or Hardy-Weinberg equilibrium p value less than 1 ×
10–6. Mendelian errors, determined using relationships
recorded in the pedigree, were removed by setting the
individual-level genotypes at erroneous SNPs to missing.
Ancestry outliers who were more than six standard devia-
tions away from the mean, in a principal component ana-
lysis of GS:SFHS [10] merged with 1092 individuals from
the 1000 Genomes Project [11], were excluded. A total of
20,032 individuals (8227 male participants and 11,805
female participants) passed all quality control thresh-
olds. The number of genotyped autosomal SNPs that
passed all quality control parameters was 604,858.

Pedigree correction
Sample identity was verified by comparing the genetic
and recorded gender in the first instance and pedigrees

were checked for unknown or incorrectly recorded rela-
tionships based on estimated genome-wide identity-by-
descent (IBD).
Unrecorded first-degree or second degree relationships

(calculated IBD ≥ 25%) were identified and entered into
the pedigree. Pedigree links to first-degree or second-
degree relatives were broken or adjusted if the difference
between the calculated and expected amount of IBD
was ≥ 25%. After these corrections, any remaining pedi-
gree outliers as determined by examination of the plots
of expected versus observed IBD sharing were identified
and corrected in the pedigree. Due to some missing par-
ental genotypes, autosomal SNP sharing was not always
enough to unambiguously determine whether individuals
were related through the maternal or paternal line. In
such cases, mitochondrial and/or Y-chromosome markers
were compared to help determine the correct lineage.
The full pedigree contains 42,662 individuals (22,383

female participants) in 6863 families, across five genera-
tions (average 2.34 generations per family). Family sizes
were in the range of 1–66 individuals, with an average of
6.22 individuals per family. The final genotyped dataset
contains 9853 parent–child pairs, 8495 full siblings (52
monozygotic twins), 381 half siblings, 848 grandparent–
grandchild pairs, 2443 first cousins and 6599 avuncular
(niece/nephew–aunt/uncle) relationships.

Imputation
In order to increase the density of variants throughout
the genome, the genotyped data were imputed utilising
the Sanger Imputation Service [12] using the HRC panel
v1.1 [5, 13]. This exome sequence data will have greatly
improved imputation quality across the whole cohort.
Autosomal haplotypes were checked to ensure consistency
with the reference panel (strand orientation, reference
allele, position) then pre-phased using Shapeit2 v2r837
[14, 15] using the Shapeit2 duohmm option11 [16], taking
advantage of the cohort family structure in order to
improve the imputation quality [17]. Monogenic and low
imputation quality (INFO < 0.4) variants were removed
from the imputed dataset leaving 24,111,857 variants
available for downstream analysis.

Phenotype quality control and exclusions
Prior to analysis, extreme outliers (those with values
more than three times the interquartile distances away
from either the 75th or the 25th percentile values) were
removed for each phenotypic measure to account for er-
rors in quantification and to remove individuals not rep-
resentative of normal variation within the population.
Approximately 4000 glucose measures were from people
who had not fasted for at least 4 h, so these were ex-
cluded from the fasting glucose analysis. Additionally,
948 individuals were identified as having diabetes, as
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Table 1 Top GWAS hits

Baseline characteristic N dbSNP ID Minor allele
frequency

p value Gene Imputation
quality

Gene association
reported previously?

Region significant in
genotyped data?

Cardiometabolic

Diastolic blood pressure 19,546 rs142892876 0.0010 4.97E-08 CNTN6 0.75 No No

rs528908640 0.0005 1.93E-08 OPA1 0.80 No No

rs568998724 0.0007 2.91E-08 - 0.78 No No

rs187680191 0.0006 2.94E-09 NRG4 0.51 No No

Systolic blood pressure 19,547 None None

Pulse pressure 19,546 None None

Heart rate 19,920 rs9970334 0.4474 4.38E-08 ICMT 0.90 Yes No

rs755291044 0.0017 1.80E-08 - 0.90 No No

rs145669495 0.0022 2.01E-08 CSMD1 0.90 No No

rs142916219 0.0037 2.21E-08 ASPH 0.85 No No

rs365990 0.3637 4.04E-10 MYH6 0.99 Yes GWS

rs148397504 0.0008 3.21E-09 - 0.45 No No

Biochemistry

Serum creatinine 16,347 rs548873184 0.0010 1.47E-08 LINC00626 0.96 No No

rs573421908 0.0027 1.35E-08 SLC35F3 0.80 Yes No

rs62412107 0.0660 1.87E-08 - 0.79 No No

rs3812036 0.2301 1.13E-10 SLC34A1 0.96 Yes GWS

Fasting plasma glucose
(with diabetics)

16,174 rs560887 0.2907 6.02E-68 G6PC2 1.00 Yes GWS

rs9873618 0.2871 9.83E-12 SLC2A2 0.99 Yes GWS

rs917793 0.1831 2.51E-24 YKT6 0.98 Yes GWS

rs13266634 0.3153 3.66E-11 SLC30A8 1.00 Yes GWS

rs533883198 0.0027 3.86E-08 - 0.84 No No

rs7981781 0.2337 1.40E-08 PDX1 0.98 Yes GWS

rs370189685 0.0014 7.32E-09 WDR4 0.63 No No

Fasting plasma glucose
(diabetics removed)

15,226 rs79687284 0.0364 1.87E-08 - 0.78 Yes GWS

rs780095 0.4267 8.20E-09 GCKR 1.00 Yes GWS

rs560887 0.2907 2.09E-75 G6PC2 1.00 Yes GWS

rs8192675 0.2839 8.41E-11 SLC2A2 1.00 Yes GWS

rs917793 0.1831 1.46E-28 YKT6 0.98 Yes GWS

rs11558471 0.3227 4.63E-13 SLC30A8 1.00 Yes GWS

rs143399767 0.0108 1.42E-08 Y_RNA 0.89 No No

rs7981781 0.2337 5.01E-10 PDX1 0.98 Yes GWS

rs370189685 0.0014 2.75E-08 WDR4 0.63 No Suggestive

HDL cholesterol 19,223 rs149963466 0.0016 3.18E-08 - 0.76 No No

rs76183280 0.0048 4.14E-08 AC016735.2 0.78 No No

rs4841132 0.0925 1.08E-08 RP11-115 J16.1 1.00 Yes Suggestive

rs15285 0.2675 1.16E-18 LPL 1.00 Yes GWS

rs2740488 0.2745 2.53E-08 ABCA1 1.00 Yes GWS

rs138326449 0.0032 2.92E-20 APOC3 0.85 Yes No

rs114529226 0.0038 6.98E-09 IGHVII-33-1 0.64 No No

rs261290 0.3442 2.78E-25 ALDH1A2 1.00 Yes GWS

rs3764261 0.3261 1.40E-113 CETP 1.00 Yes GWS
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Table 1 Top GWAS hits (Continued)

rs143264468 0.0010 1.99E-09 LRRC29 0.81 Yes Suggestive

rs72836561 0.0294 1.55E-11 CD300LG 0.87 Yes No

rs149615216 0.0119 3.20E-09 LIPG 0.97 Yes Suggestive

rs116843064 0.0230 5.57E-10 ANGPTL4 0.84 Yes No

rs7412 0.0779 5.95E-14 APOE 0.98 Yes GWS

rs453755 0.2480 3.22E-08 LILRA3 0.92 Yes No

rs435306 0.2547 2.87E-08 PLTP 1.00 Yes Suggestive

Cholesterol 19,259 rs11591147 0.0169 1.83E-17 PCSK9 0.98 Yes GWS

rs10889333 0.3601 2.12E-10 DOCK7 1.00 Yes GWS

rs12740374 0.2288 8.19E-22 CELSR2 1.00 Yes GWS

rs672889 0.1356 3.77E-16 - 1.00 Yes GWS

rs75331444 0.0720 1.87E-11 ABCG8 0.99 Yes GWS

rs12916 0.3970 6.35E-11 HMGCR 0.99 Yes GWS

rs74617384 0.0838 3.02E-09 LPA 0.93 Yes No

rs4841133 0.0929 2.51E-09 RP11-115 J16.1 1.00 Yes Suggestive

rs2000999 0.1776 7.01E-09 HPR 0.99 Yes Suggestive

rs10412048 0.1086 5.00E-25 - 0.98 Yes GWS

rs7412 0.0779 5.22E-94 APOE 0.98 Yes GWS

Urea 19,293 rs760077 0.4247 6.24E-09 MTX1 0.98 Yes Suggestive

rs16862780 0.1574 3.03E-10 RP11-132 N15.3 1.00 Yes GWS

rs112647987 0.0680 3.07E-08 - 0.99 No No

rs6950388 0.1872 1.57E-08 UNCX 0.95 Yes GWS

rs10224210 0.2799 5.71E-09 PRKAG2 0.92 Yes Suggestive

Anthropometric

Body mass index 19900 rs73139123 0.1830 1.34E-09 - 0.96 Yes GWS

rs10498218 0.0012 3.98E-08 COL4A4 0.84 Yes No

rs149913955 0.0059 2.18E-08 RP11-624 L4.1 0.74 No No

rs571835655 0.0011 6.61E-09 - 0.82 No No

rs55872725 0.3951 5.71E-21 FTO 1.00 Yes GWS

Height 19,965 rs146949893 0.0031 4.49E-08 RP1-35C21.2 0.72 No No

rs558671668 0.0062 2.53E-08 RP11-317P15.6 0.80 No No

rs6765866 0.0007 2.05E-08 CMTM8 0.59 No No

rs1991431 0.4338 5.25E-13 ZBTB38 1.00 Yes GWS

rs35362908 0.1006 7.04E-09 LCORL 0.73 Yes No

rs552283803 0.0016 3.99E-08 ARHGAP24 0.79 No No

rs755546258 0.0007 2.58E-08 DAP 0.72 No No

rs72742734 0.0537 3.61E-08 NPR3 1.00 Yes Suggestive

rs554379257 0.0006 4.83E-08 CTD-2023 N9.1 0.44 No No

rs7766641 0.2551 3.32E-13 HIST1H2BE 1.00 Yes GWS

rs57026767 0.1550 4.50E-11 C6orf1 1.00 Yes GWS

rs566773279 0.0005 1.17E-08 - 0.69 No No

rs1490384 0.4851 7.09E-10 - 1.00 Yes GWS

rs7753012 0.3072 7.60E-14 GPR126 0.99 Yes GWS

rs184469050 0.0088 1.58E-08 - 0.89 No No

rs144225905 0.0010 2.13E-09 - 0.46 No No
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determined from self-reporting at the time of sample col-
lection or from EHR-extracted diagnosis of diabetes at any
time. Apparent non-diabetics with glucose measures >
7 mmol/L were also removed. Analysis of glucose was
performed on both the full fasting dataset and the same
dataset excluding diabetics and high glucose outliers.

Heritability
Heritabilities were estimated for the same phenotype
values that were used to run the GWAS. The ‘polygenic’
command in SOLAR version 8.1.1 [18] was used to esti-
mate heritability based on the social pedigrees (no gen-
etic information was used here). The ‘polygenic’
command in the GenABEL R package [19] was used to
calculate genetic kinship-based heritability. The standard
errors for this latter heritability estimate were obtained
by re-running the ‘polygenic’ command and fixing the
heritability to 0. The difference between the two estimates

yields a one-sided test with a Chi-square distribution with
one degree of freedom.

Genome-wide associations
Genome-wide associations were performed on both ge-
notyped and imputed data. For the HRC-imputed data,
only results from variants with a minor allele count of
20 in our sample (or minor allele frequency [MAF] of
0.05%) were considered. For the common variant geno-
typed data, no MAF cutoff was used. For each pheno-
type, an additive model for the fitted SNP fixed effect
was set up incorporating the same covariates as described
in the relevant published meta-analyses or by direct as-
sessment where no prior meta-analysis analysis plan was
available (full details in Additional file 1: Table S1) and a
random polygenic effect accounting for relatedness among
participants. Some phenotypes (as indicated in Additional
file 1: Table S1) were inverse-normal transformed to

Table 1 Top GWAS hits (Continued)

rs7952436 0.0896 1.91E-12 KDM2A 0.88 Yes No

rs634552 0.1365 2.30E-08 SERPINH1 0.98 Yes GWS

rs76895963 0.0285 3.43E-08 CCND2 0.78 Yes [48, 49] No

rs770307181 0.0005 1.09E-08 - 0.50 No No

rs139770682 0.0005 4.55E-08 - 0.72 No No

rs11614062 0.1943 2.09E-08 SOCS2-AS1 0.99 Yes GWS

rs75061684 0.0006 5.33E-10 - 0.49 No No

rs16942323 0.0344 1.09E-11 ACAN 0.93 Yes No

rs8096254 0.2598 4.32E-12 CABLES1 1.00 Yes GWS

rs6060402 0.3585 2.80E-13 - 0.98 Yes GWS

Waist-to-hip ratio 19,695 rs72959041 0.0566 2.54E-14 RSPO3 0.90 Yes Suggestive

rs149924309 0.0023 3.70E-08 - 0.81 No No

rs187209742 0.0023 4.91E-08 SERPINA10 0.70 No No

rs751156121 0.0006 1.29E-08 - 0.78 No No

Body fat 19,480 rs10921288 0.0235 1.04E-08 - 0.99 No GWS

rs142101835 0.0022 3.25E-08 IRS1 0.69 Yes No

rs560546550 0.0007 3.17E-09 WDR41 0.89 No No

rs571835655 0.0011 2.03E-08 - 0.82 No No

rs55872725 0.3951 5.55E-16 FTO 1.00 Yes GWS

rs141793746 0.0030 3.31E-08 DYM 0.86 No No

NHS EHR linkage

Serum urate 2077 rs6449213 0.1652 1.93E-17 SLC2A9 1.00 Yes GWS

rs75869162 0.0054 1.57E-08 FAM134B 0.80 No No

rs141208451 0.0053 3.13E-09 RP11-430H10.4 0.86 No No

rs187171029 0.0060 1.84E-08 ZNF160 0.91 No No

Summary of the baseline characteristics of the GS:SFHS sub-cohort of 20,032 analysed by GWAS, with genome-wide significant markers from the imputed GWAS
listed. We indicate known associations in published research or present in the NHGRI GWAS Catalog within 100 kb of the sentinal SNP reported here. The column
called ‘Region significant in genotyped data?’ indicates whether any SNPs within 500 kb of the reported SNP reach genome-wide significance (GWS, p < 5*10–8) or
suggestive significance (Suggestive, p < 10–5) in the genotyped data

Nagy et al. Genome Medicine  (2017) 9:23 Page 6 of 14



ensure normal distribution of the model’s residuals, using
the ‘rntransform’ function in the GenABEL R package
[19]. Different GWAS analysis programs were used for the
genotype and imputed data to utilise available computa-
tional resources most efficiently, but both pipelines ac-
count for relatedness.
For the genotype data, the ‘mmscore’ function of Gen-

ABEL was used for the genome-wide association test
under an additive model. This score test for family-based
association takes into account relationship structure and
allows unbiased estimations of SNP allelic effect when re-
latedness is present between individuals. The relationship
matrix used in this analysis was generated by the ‘ibs’
function of GenABEL (using weight = ‘freq’ option), which
uses genomic data to estimate the realized pair-wise
kinship coefficients.
Due to their larger size, the sets of associations with

the HRC imputed variants were performed with the soft-
ware RegScan v0.2 [20]. The pgresidualY estimated from
the polygenic function in GenABEL was used for associ-
ation analysis. The effect size, standard errors and p values
were thereafter corrected to account for relatedness using
the GRAMMAR-Gamma factors also provided by the
‘polygenic’ function [21]. The significance threshold for
the genotype and imputed data was set at p < 5 × 10–8.

Results
Heritability
Genetic and social pedigree-based heritabilities were es-
timated for the phenotypes detailed in Table 1 and are
shown in Additional file 2: Figure S1 and Additional file 1:
Table S2, along with heritabilities previously described for
the same traits (where available) in the literature. The her-
itabilities of our phenotypes are generally in alignment
with those quoted in the literature, except for pulse pres-
sure, whose heritability in our data (0.13, SE 0.01) is ap-
proximately half of the heritability quoted in the literature
(0.24, SE 0.08) [22]. Conversely, our estimates of the
heritability of serum creatinine (0.44, SE 0.01) are more
than twice the heritability quoted in the literature
(0.19, SE 0.07) [23].

Genome-wide association studies
We selected four cardiometabolic, six biochemical and
four anthropometric quantitative traits to evaluate GWAS
outputs from: (1) directly genotyped and (2) HRC-
imputed data. The chosen traits are diastolic blood pres-
sure, systolic blood pressure, pulse pressure, heart rate,
serum creatinine, fasting plasma glucose, HDL cholesterol,
total cholesterol, urea, urate, body mass index, height,
waist-to-hip ratio and body fat percentage. The majority
of these traits have strong genetic associations when
analysed within large multi-cohort meta-analyses,
therefore, any genome-wide associations detected in

the GS:SFHS cohort can be compared with the estab-
lished body of knowledge.
Sentinel variants for all the independent genome-wide

significant association signals for each phenotype are
listed in Table 1, together with their imputation quality
if they were not directly genotyped and whether an asso-
ciation signal had previously been reported within
±500 kb. All significant findings were checked against
the National Human Genome Research Institute cata-
logue of published GWAS [24] and, if not present there,
were searched for in published papers and other online
resources. All SNPs showing trait associations exceeding
the threshold for genome-wide significance are reported
in Additional files 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, and 14
and in Miami plots, with results using the directly geno-
typed and HRC-imputed data opposing each other to re-
flect the gain brought by imputation (Additional file 2:
Figures S2–S14). The Q-Q plots for all analyses are
shown in Additional file 2: Figure S15 with inflation
factors reported in Additional file 1: Table S3. No
phenotype showed significant inflation, indicating that
correction for stratification has been adequately applied.
Multiple, previously identified, significant findings were
obtained for all of the traits except for blood pressure
measures (Table 1), validating the quality of both the
genotypic and the phenotypic data in GS:SFHS. We
identified 37 new independent associations across 12 of
the 14 selected research clinic-measured phenotypes in-
cluding four for diastolic blood pressure. Only four of
the sentinel SNPs for the novel signals had a MAF
greater than 1% (range: 1.08–6.8%); all others are rare,
including 13 very rare with MAF < 10–3. All but one
(rs10921288, MAF = 0.0235, associated with body fat %)
were not directly genotyped. In contrast, of the sentinel
SNPs in already reported associated regions, only five
had a MAF lower than 1%. These include a previously
reported replicated association with the same rare vari-
ant, the APOC3 splice variant rs138326449 associated
with HDL cholesterol [25].
Taking advantage of the availability of pedigrees for

GS:SFHS, we looked at whether some of the rare imputed
variants are distributed randomly in the population or
whether they segregate within families and related individ-
uals. These results are presented in Additional file 1: Table
S4 and support a clustering of these variants in families.
In Figs. 1 and 2, the results of the GWAS with fasting

plasma glucose and resting heart rate, respectively, are
depicted in more detail using Miami plots. We identified
two novel associations in fasting glucose (Table 2),
rs143399767, 2.7 kb upstream of Y_RNA, a non-coding
RNA which mainly associates with RNA-binding pro-
teins like Ro-60 and insulin-like growth factor 2 messen-
ger RNA binding protein 1 (IGF2BP1) in cytoplasmic
ribonucleoprotein complexes [26] and rs370189685 is
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within an intronic variant of WD repeat domain 4
(WDR4), a gene which codes for a transfer RNA-modifying
enzyme Both of these are rare variants (minor allele
frequencies of 1.08% and 0.1%, respectively). We also
replicated known associations in GCKR, G6PC2,
SLC2A2, YKT6, SLC30A8 and PDX1. We identified
four new associations with heart rate (Table 3):

rs145669495, a CSMD1 intronic variant; rs142916219,
a ASPH intronic variant; and two associations with
rs755291044 and rs148397504 in intergenic regions.
We additionally replicated known associations at
ICMT and MYH6. The estimated effects of the associ-
ated variants in GS:SFHS are shown in Tables 2 and 3
and are compared to those of top hits reported in the

Fig. 1 Miami plot of fasting plasma glucose. The top panel shows the GWAS results using all SNPs imputed to the HRC reference panel, while the
bottom panel shows only directly genotyped SNPs. In the Miami plot − log10 (p value) is plotted on the y-axis and chromosomal location is plotted
on the x-axis. The genome-wide significance threshold after correction for multiple testing (p value < 5 × 10–8) is indicated by a dark grey dashed line,
while suggestive significance (p value < 10–5) is indicated by a light grey dashed line. The # symbol denotes a hit in an intergenic region. Red arrows
indicate SNPs that are not plotted because they have a high –log10 (p value) (indicated in brackets)

Fig. 2 Miami plot of resting heart rate. The top panel shows the GWAS results using all SNPs imputed to the HRC reference panel, while the bottom
panel shows only directly genotyped SNPs. In the Miami plot − log10 (p value) is plotted on the y-axis and chromosomal location is plotted on the
x-axis. The genome-wide significance threshold after correction for multiple testing (p value < 5 × 10–8) is indicated by a dark grey dashed
line, while suggestive significance (p value < 10–5) is indicated by a light grey dashed line. The # symbol denotes a hit in an intergenic region
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meta-analysis summary files (glucose) [27] or the
GWAS catalogue (heart rate), respectively. The SNP
MAFs from GS:SFHS are also compared against those
in the HRC imputation panel.

GWAS of serum urate extracted from electronic health
records
In the 11,125 individuals with NHS EHR biochemistry
available, there are 2356 GS:SFHS participants with
serum urate measured at least once and a total of 6268
tests. The proportion of participants who have had at
least one test recorded for urate is 21%. Of these partici-
pants, 214 have been identified as having taken allopurinol,
a urate-lowering medication, either through self-reporting
at GS:SFHS clinic visit or through NHS prescription data
linkage. The highest urate measure from all individuals
was used for GWAS.
The GWAS for urate was performed using both

genotype and imputed data, taking into account the
sex of the participant and adjusting for participant
age at the time of the test. The results of these analyses
are displayed in Fig. 3. In both analyses, the association
with the lowest p value was at the well-established

SLC2A9 locus and the most significant SNP was
rs6449213 with a p value of 7.2 × 10–17 in the genotype
data and 5.13 × 10–17 in the imputed data (Table 4, Fig. 3).
This was the only locus reaching genome-wide signifi-
cance for this trait in the genotyped analysis. Addition-
ally, three loci exceeded our threshold for significance
in the imputed analysis – the sentinal SNPs are
rs75869162 in RP11-260E18.1-001 (a long non-coding
RNA of unknown function), rs141208451 in RP11-
958 J22.2 (a novel processed transcript) and RP11-
430H10.4 (a long non-coding RNA of unknown func-
tion); and rs187171029, an intronic variant in
ZNF160. All of these new associations are with rare
variants (MAF < 1%, range: 0.53–0.6%) not present in
the results of the largest serum urate GWAS from
the Global Urate Genomics Consortium (GUGC) [28]
(Additional file 1: Table S5).

Discussion
The continued improvement in scale and coverage of
haplotype reference panels for use in imputation has
opened possibilities for exploration of the contribution
of low frequency and rare variants to traits previously

Table 2 Fasting glucose top hits

Gene SNP Chr Position Effect
allele

GS minor allele
frequency

HRC
MAF

GS
p value

GS effect
size

Meta top
SNP

Meta
p value

GS and meta
SNP R2

GS and meta
SNP D’

PROX1-AS1 rs79687284 1 214150821 C 0.036 0.0306 1.87E-08 0.20 rs340874 6.80E-08 0.02 0.99

GCKR rs780095 2 27741105 G 0.427 0.4516 8.20E-09 0.07 rs1260326 1.26E-24 0.72 0.93

G6PC2 rs560887* 2 169763148 C 0.291 0.2861 2.09E-75 0.24 rs560887 4.68E-100 1 1

SLC2A2 rs8192675 3 170724883 C 0.284 0.3067 8.41E-11 –0.09 rs11920090 1.90E-11 0.32 0.99

YKT6 rs917793 7 44245853 T 0.183 0.1766 1.46E-28 0.17 rs4607517 1.39E-51 1 1

SLC30A8 rs11558471* 8 118185733 G 0.323 0.3129 4.63E-13 –0.09 rs11558471 3.96E-21 1 1

Y_RNA rs143399767 9 96182703 C 0.011 0.0160 1.42E-08 0.36 NA NA NA NA

PDX1 rs7981781 13 28499962 A 0.234 0.2296 5.01E-10 0.09 rs2293941 2.93E-08 0.99 0.99

WDR4 rs370189685 21 44276432 C 0.001 0.0009 2.75E-08 –1.15 NA NA NA NA

Summary of top hits of the imputed GWAS analysis of fasting plasma glucose (15,226 people after those with diabetes were removed) in Generation
Scotland, compared with top hits in a meta-analysis reported in [50]. Starred (*) SNPs indicate the same SNP in the GS and meta-analysis datasets. En-
tries in bold are within 500,000 bases of a SNP that reached genome-wide significance in the genotyped GWAS analysis. Entries with missing
meta-analysis top SNPs (indicated by NA) are novel associations that did not reach significance in the meta-analysis

Table 3 Heart rate top hits

Gene SNP Chr Position Effect
allele

GS minor allele
frequency

HRC
MAF

GS
p value

GS effect
size

GWAS catalog
top SNP

GWAS catalog
p value

GS and meta
SNP R2

GS and meta
SNP D’

ICMT rs9970334 1 6296238 G 0.447 0.4502 4.38E-08 0.70 rs846111 7.00E-40 [51] 0.47 0.98

- rs755291044 3 87751558 A 0.002 - 1.80E-08 8.60 NA NA NA NA

CSMD1 rs145669495 8 4102424 G 0.002 0.0024 2.01E-08 7.66 NA NA NA NA

ASPH rs142916219 8 62481520 G 0.004 0.0022 2.21E-08 5.97 NA NA NA NA

MYH6 rs365990* 14 23861811 G 0.364 0.3644 4.04E-10 0.78 rs365990 5.00E-45 [52] 1 1

- rs148397504 20 5376623 A 0.001 0.0006 3.21E-09 18.54 NA NA NA NA

Summary of top hits of the imputed GWAS analysis of heart rate in 19,920 Generation Scotland participants, compared with associations reported in
the GWAS catalogue. The starred (*) SNP indicates the same SNP in the GS and GWAS catalogue. Entries in bold are within 500,000 bases of a SNP that
reached genome-wide significance in the genotyped GWAS analysis. Entries with missing GWAS catalogue top SNPs (indicated by NAs) are novel associations
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analysed in GWAS [25, 29], where the contribution of
common variation is better known.
We investigated the use of the recently released

HRC imputation set to perform GWAS in a large study
of > 20,000 individuals from the GS:SFHS cohort, illustrat-
ing both the promise and the challenge of such studies.

Study advantages
This analysis is performed on the largest single homoge-
neous population sample, to date. We detected most
known genetic associations with common variants
(MAF > 5%) using the genotyped dataset alone. For many
of these associations, a weaker signal was detected using
the genotyped GWAS, which became stronger in imputed
SNPs that are presumably more closely linked to the
causal variant. We identify such associations in many of
the traits reported in Table 1 and the majority are within a
known association signal.

The pedigree-based heritability estimates are slightly
higher than the heritabilities estimated using the genetic
data, which could be because the genotype-based herit-
ability estimation only considers additive genetic effects
(but not dominant or epistatic effects). Additionally,
the pedigree-based heritability might be capturing the
effects of a shared environment between family mem-
bers living in the same household, which can inflate
the heritability estimates.
Imputated data generated most of the association signals

with low frequency and rare variants. We investigated, in
greater detail, the biological relevance of the associations
detected in heart rate.
We identified four new associations with heart rate

(Table 3). rs755291044 is located 300 kb upstream of the
nearest gene, 5-Hydroxytryptamine Receptor 1 F (HTR1F),
which codes for a subunit of the serotonin receptor. Sero-
tonin (5-hydroxytryptamine) is known to modulate heart

Fig. 3 Miami plot of uric acid. The top panel shows the GWAS results using all SNPs imputed to the HRC reference panel, while the bottom panel
shows only directly genotyped SNPs. In the Miami plot− log10 (p value) is plotted on the y-axis and chromosomal location is plotted on the x-axis.
The genome-wide significance threshold after correction for multiple testing (p value < 5 × 10–8) is indicated by a dark grey dashed line, while
suggestive significance (p value < 10–5) is indicated by a light grey dashed line

Table 4 Uric acid top hits

Gene SNP Chr Position Effect allele GS minor allele
frequency

HRC MAF GS p value GS effect
size

Meta top
SNP

Meta p value

SLC2A9 rs6449213 4 9994215 T 0.165 0.1857 1.93E-17 0.592 rs12498742 <1 E − 700

FAM134B rs75869162 5 16617922 A 0.005 0.0019 1.57E-08 2.24 rs386845 1.18E-02

RP11-430H10.4 rs141208451 11 45538920 A 0.005 0.0011 3.13E-09 2.32 rs11038475 7.36E-03

ZNF160 rs187171029 19 53599256 T 0.006 0.0040 1.84E-08 2 rs16984293 2.58E-02

Summary of top hits of the imputed GWAS analysis of uric acid in 2077 Generation Scotland participants, compared with top hits in a meta-analysis reported in
the GUGC. Top hits were extracted from the region within 100,000 bases of the imputed GWAS top SNP. Entries in bold are within 500,000 bases of a SNP that
reached genome-wide significance in the genotyped GWAS analysis
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rate and blood pressure through direct vascular effects and
indirectly through the sympathetic nervous system [30].
Intronic variant rs145669495 is within the CUB and

Sushi Multiple Domains 1 gene (CSMD1), which has a re-
ported association with blood pressure in a Korean cohort
[31]. While there is only a weak epidemiological correlation
between heart rate and blood pressure, it is interesting that
we find two genetic loci that affect both phenotypes.
rs142916219 lies within an intron of the Aspartate

Beta-Hydroxylate/Junctin gene (ASPH), which is a regu-
lator of calcium homeostasis. Some isoforms encoded by
this gene localize to the sarcoplasmic reticulum, which is
the smooth endoplasmic reticulum found in muscle tissue
(including heart muscle). The relationship between cal-
cium concentration and (heart) muscle contraction is well
documented [32] and reductions in the level of ASPH
have been linked to heart failure and arrhythmia [33].
rs148397504 is 80 kb upstream of the Prokineticin

Receptor 2 gene (PROKR2) and 150 kb downstream of
the glycerophosphocholine Phosphodiesterase 1 gene
(GPCPD1), within a CTCF binding site. PROKR2 encodes
a receptor for prokineticin, a secreted protein that pro-
motes angiogenesis [34] and heart development [35]. Acti-
vation of this receptor leads to calcium mobilization and
PROKR1, a paralog with unusually high sequence similar-
ity to this receptor, has been associated with insulin-
mediated Akt signalling and myocardial fibrosis, diastolic
dysfunction and impaired capillary formation [36, 37].
GPCPD1 (formerly GDE5), the upstream gene, is

highly expressed in the fetal heart and is involved in
skeletal muscle differentiation [38]. We note that this
variant has a low imputation quality (0.44), so this asso-
ciation should be treated with caution until it is repli-
cated in another study or is confirmed through direct
sequencing in carriers.
It is encouraging that these novel associations lie

within, or near, genes that are known, or suspected, to
affect cardiac muscle function and morphology, blood
pressure and heart rate.
We note that an association which reached genome-

wide significance in the genotype data (rs6127466, p =
4.58 × 10–8) drops to just below the threshold in the
HRC-imputed data (p = 7.27 × 10–8). This SNP lies within
the KIAA1755 gene, which has been found to associate
with heart rate in the GWAS catalogue. During quality
control, five individuals had their genotypes set to missing
at this SNP. These individuals’ genotypes were then im-
puted, allowing them to be included in the analysis and
subsequently altering the p value of the association.
We also show here the validity of phenotypes derived

from electronic health records in GS:SFHS. The value of
EHRs in genomics research is becoming widely recog-
nised (e.g. [39, 40]). The focus to date has largely been
on genetic associations with International Classification

of Disease (ICD-9 or ICD-10) codes which are available
in most EHR systems but successful GWAS of several
liver biochemistry measures in 3294 samples from the
eMERGE network have recently been described [41].
The anticipated GWAS hits in SLC2A9 were found for

serum urate in this project and validate this EHR data
resource as a valuable method of acquiring additional
phenotypes for the GS:SFHS cohort. We did not detect
significant effects from other known urate loci, such as
ABCG2, but this is not entirely surprising given that our
sample size is much smaller than most consortium
meta-analyses. However, the majority show comparable
effect size and direction (Additional file 2: Figure S16).
We did, however, detect three new loci with signals

driven by rare variants (Table 4).
As well as linking to routine biochemistry, linkage can

be made to hospital inpatient episode data (Scottish
Morbidity Record, SMR01; ICD-10 codes) and to pre-
scribing data, providing multiple opportunities to further
exploit this approach.

Limitations
Validation of rare variant imputation
Most of the low frequency and rare variants were im-
puted and absent from the genotyping arrays and would
need to be validated by direct genotyping. We found
that the associated rare variants tended to cluster within
related individuals, as up to 90% (and on average, 55%)
of the carriers of each rare variant reported for heart
rate, fasting glucose and serum urate shares a kinship
coefficient of greater than 0.05 (are fourth-degree rela-
tives) with at least one other carrier. In fact, most of
these pairs of carriers have a kinship coefficient ≥ 0.25
(second-degree relatives) and are assigned to the same
family in the pedigree file. This gives some support to
the validity of these variants and illustrates the advan-
tage gained by imputing into family-based cohorts. The
splice variant rs138326449 (MAF 0.032% in GS:SFHS) in
the APOC3 gene has been validated in a pioneering
GWAS UK10K study that first report its association with
HDL cholesterol, plasma triglycerides and VLDL levels
in the ALSPAC and TwinsUK cohorts [25]. Four other
rare variants—rs142101835 (IRS1), associated with body
fat; rs143264468 (LRRC29), associated with HDL choles-
terol; rs10498218 (COL4A4), associated with BMI; and
rs573421908 (SLC35F3), associated with serum creatini-
ne—also replicated in our study. In addition, two of the
novel loci associated with diastolic blood pressure in our
study have been implicated in clinical studies. Polymor-
phisms in mitochondrial dynamin like GTPase (OPA1)
were reported to have an age-dependent association with
blood pressure and hypertension in a Korean population
[42]. Low levels of serum Neuregulin 4 (NRG4) were re-
cently shown to be strongly associated with elevated
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blood pressure and fasting glucose in a Chinese study of
over 1200 obese adults [43].

Validation of novel association
We used a threshold for genome-wide significance of
5 × 10–8, as a more stringent one based on the number
of independent variants tested and number of traits
tested would leave very few of the previously described
association signals, listed in Table 1, reaching genome-
wide significance while most of those (admittedly those
driven by the common variants) have been well repli-
cated in large studies. It is clear that a proportion of the
results reported here will be false positives and all novel
associations will need replication.
For a more global assessment of our data quality we

compared the alleles reported in GS:SFHS HRC imputed
data versus the available high quality exome chip data
for the same samples (52,007 overlapping SNPs with
[maf > = 5e-4]) and found high levels of agreement and a
concordance of 95.3% for all SNPs, 98.4% concordance
for SNP with a MAF > = 0.01 (20,012 SNPs) and 89% for
rarer SNPs (frequency < 0.01) (31,995 SNPs). We have
also checked for concordance for the genome-wide sig-
nificant hits found in our association studies with the
available exome sequence data from 864 individuals in
GS:SFHS and identified 20 SNPS, all of which had a con-
cordance of at least 97%. Unfortunately, only two rare
variants identified in our GWAS—rs142101835 (IRS1)
and rs138326449 (APOC3)—were among these 20 SNPs.
We also made a further attempt to confirm some add-

itional novel variants by checking HRC-imputed results
from two other cohorts (ORCADES and VHS) (http://
www.orcades.ed.ac.uk/orcades/VHSS.html), but because
of the considerably smaller sample sizes (~2000 in each
cohort) no rare variants were sufficiently frequent to
establish a replication.
Replication in other populations may be difficult for the

rare variants because variants such as these of large effect
will be kept at low frequency and not found in other dis-
parate populations by the effects of natural selection,
which are likely much more pronounced on large effects
than on small. However, the precedent of replication of
the APOC3 variant rs138326449 is promising and very
large study in the UK (such as UKBiobank) where similar
imputations will be performed are soon to be available.

Conclusions
Here, we present the first detailed description of the entire
GS:SFHS GWAS dataset. While a subset of Generation
Scotland has already served as a valuable co-discovery and
replication cohort for genetic associations for a range of
traits (e.g. [44–46]), here we demonstrate the stand-alone
value of the full cohort through replication of established
genetic associations, as well as through the discovery of

several novel associations. Although not presented here,
the family-based structure of GS:SFHS allows the shared
variation between individuals within families to be disen-
tangled into its genetic and environmental components
(e.g. [47]).With the growing emphasis on the use of rou-
tine administrative health data, studies such as this project
become increasingly important in order to provide infor-
mation on the accuracy and validity of other findings that
are based on EHRs.
This dataset is now available for collaborative studies

and meta-analyses that are consistent with the original
‘broad’ consent [2].

Additional files

Additional file 1: Table S1. Phenotypes and covariates. Table S2.
Phenotype heritability. Table S3. Lambdas for all traits, calculated using
GenABEL’s estlambda median function. Table S4. Top hits from GUGC
serum urate meta-analysis. Table S5. Relatedness of rare variant carriers.
(PDF 598 kb)

Additional file 2: Figure S1. Phenotype heritabilities. Figure S2. Miami
plot for height. Figure S3. Miami plot for BMI. Figure S4. Miami plot for
waist circumference. Figure S5. Miami plot for waist-to-hip ratio. Figure S6.
Miami plot for body fat percentage. Figure S7. Miami plot for diastolic blood
pressure. Figure S8. Miami plot for creatinine. Figure S9. Miami plot for urea.
Figure S10. Miami plot for fasting glucose (all individuals included).
Figure S11. Miami plot for fasting glucose (excluding diabetics and
measurements of >7 mmol/L). Figure S12. Miami plot for HDL cholesterol.
Figure S13. Miami plot for total cholesterol. Figure S14. Miami plot for
total cholesterol adjusted for statin use. Figure S15. QQ plots for all traits
analysed. Figure S16. Comparison of effect sizes for GUGC top hits in the
GS:SFHS EHR analysis. (PDF 2160 kb)

Additional file 3: GS_HRC_imputed_Body_Mass_Index_significant_
SNPS. (XLSX 36 kb)

Additional file 4: GS_HRC_imputed_Diastolic_Blood_Pressure_
significant_SNPS. (XLSX 8 kb)

Additional file 5: GS_HRC_imputed_Heart_Rate_significant_SNPS.
(XLSX 9 kb)

Additional file 6: GS_HRC_imputed_Serum_Creatinine_significant_
SNPS. (XLSX 10 kb)

Additional file 7: GS_HRC_imputed_Fasting_Glucose (including_
diabetics)_significant_SNPS. (XLSX 33 kb)

Additional file 8: GS_HRC_imputed_Fasting_Glucose (excluding_
diabetics)_significant_SNPS. (XLSX 36 kb)

Additional file 9: GS_HRC_imputed_HDL_cholesterol_significant_SNPS.
(XLSX 71 kb)

Additional file 10: GS_HRC_imputed_Height_significant_SNPS.
(XLSX 64 kb)

Additional file 11: GS_HRC_imputed_Total_cholesterol_significant_
SNPS. (XLSX 92 kb)

Additional file 12: GS_HRC_imputed_Urea_significant_SNPS. (XLSX 12 kb)

Additional file 13: GS_HRC_imputed_Waist_Hip_Ratio_significant_
SNPS. (XLSX 8 kb)

Additional file 14: GS_HRC_imputed_Body_Fat_significant_SNPS.
(XLSX 19 kb)

Abbreviations
CHI: Community health index; EHR: Electronic health record; GS:SFHS: Generation
Scotland: Scottish Family Health Study; GWAS: Genome-wide association study;
HRC: Haplotype Research Consortium; IBD: Identity-by-descent; MAF: Minor allele
frequency; NHS: National Health Service; SNP: Single Nucleotide Polymorphism

Nagy et al. Genome Medicine  (2017) 9:23 Page 12 of 14

http://www.orcades.ed.ac.uk/orcades/VHSS.html
http://www.orcades.ed.ac.uk/orcades/VHSS.html
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4
dx.doi.org/10.1186/s13073-017-0414-4


Acknowledgements
We are grateful to all the families who took part in the Generation Scotland:
Scottish Family Health Study, the general practitioners and Scottish School of
Primary Care for their help in recruiting them, and the whole Generation
Scotland team, which includes academic researchers, IT staff, laboratory
technicians, statisticians and research managers. We thank staff at the
University of Dundee Health Informatics Centre for their expert assistance
with EHR data linkage. IJD is supported by The University of Edinburgh
Centre for Cognitive Ageing and Cognitive Epidemiology, part of the cross
council Lifelong Health and Wellbeing Initiative (MR/K026992/1); funding
from the BBSRC and MRC is gratefully acknowledged. Data on glycaemic
traits have been contributed by MAGIC investigators and have been
downloaded from www.magicinvestigators.org.

Funding
Genotyping of the GS:SFHS samples was carried out by the Edinburgh
Clinical Research Facility, University of Edinburgh and was funded by the
Medical Research Council UK and the Wellcome Trust (Wellcome Trust
Strategic Award ‘STratifying Resilience and Depression Longitudinally’
(STRADL) (Reference 104036/Z/14/Z). GS:SFHS received core support from
the Scottish Executive Health Department, Chief Scientist Office, grant
number CZD/16/6. The MRC provides core funding to the QTL in Health and
Disease research program at the MRC HGU, IGMM, University of Edinburgh.

Availability of data and materials
The datasets supporting the conclusions of this article are included within
the article (and its Additional files).

Authors’ contributions
All authors contributed to the writing of the manuscript, in an iterative
manner. CHayward led the statistical data analyses with support from RN, TB,
JM, JEH, DMH, SMK and AC. LE and JG performed the array genotyping. PJ
performed the GWAS in the ORCADES and VHS cohorts, CA and PN analysed
population substructure. DP, AM, BS, LH and SP are Principal Investigators for
GS:SFHS. AMcI is Principal and DJP and IJD are Co-Investigators for STRADL.
CHayward, JFW, NH, AW, CH and VV are Programme Leaders of the QTL group
at the MRC HGU, in which the analyses were performed. The main text was
drafted by RN, VV, CHayward and SK, with comments and amendments made
by all authors, who have each read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate
All components of recruitment to GS:SFHS received ethical approval from
the NHS Tayside Committee on Medical Research Ethics (REC Reference
Number: 05/S1401/89). GS:SFHS has subsequently been granted Research
Tissue Bank status by the Tayside Committee on Medical Research Ethics
(REC Reference Number: 15/ES/0040), providing approval for a wide range of
uses within medical research, including genetic analyses and record linkage.
Permission for use of NHS EHR data in record linkage was also obtained from the
NHS Privacy Advisory Committee. Only samples and data from those GS:SFHS
participants who gave written consent for record-linkage of their GS:SFHS data to
their medical records were used. This study conformed to the principles of the
Helsinki Declaration.

Author details
1MRC Human Genetics Unit, University of Edinburgh, Institute of Genetics
and Molecular Medicine, Western General Hospital, Crewe Road, Edinburgh
EH4 2XU, UK. 2Centre for Genomic and Experimental Medicine, University of
Edinburgh, Institute of Genetics and Molecular Medicine, Western General
Hospital, Edinburgh, UK. 3Edinburgh Clinical Research Facility, University of
Edinburgh, Edinburgh, UK. 4Division of Psychiatry, University of Edinburgh,
Royal Edinburgh Hospital, Edinburgh, UK. 5Farr Institute of Health Informatics
Research, Edinburgh, UK. 6Centre for Cognitive Ageing and Cognitive
Epidemiology, Department of Psychology, University of Edinburgh,
Edinburgh, UK. 7Division of Applied Health Sciences, University of Aberdeen,
Aberdeen, UK. 8Division of Cardiovascular and Medical Sciences, University of

Glasgow, Glasgow, UK. 9Medical Research Institute, University of Dundee,
Dundee, UK. 10Usher Institute of Population Health Sciences and Informatics,
University of Edinburgh, Edinburgh EH8 9AG, UK.

Received: 17 August 2016 Accepted: 9 February 2017

References
1. Smith BH, Campbell H, Blackwood D, Connell J, Connor M, Deary IJ, et al.

Generation Scotland: the Scottish Family Health Study; a new resource for
researching genes and heritability. BMC Med Genet. 2006;7:74.

2. Generation Scotland. http://www.generationscotland.org . Accessed 02
Mar 2017.

3. Smith BH, Campbell A, Linksted P, Fitzpatrick B, Jackson C, Kerr SM, et al.
Cohort Profile: Generation Scotland: Scottish Family Health Study (GS:SFHS).
The study, its participants and their potential for genetic research on health
and illness. Int J Epidemiol. 2013;42:689–700.

4. Pavis S, Morris AD. Unleashing the power of administrative health data: the
Scottish model. Public Health Res Pract. 2015;25, e2541541.

5. McCarthy S, Das S, Kretzschmar W, Durbin R, Abecasis G, Marchini J. A
reference panel of 64,976 haplotypes for genotype imputation. Nat Genet.
2016;48:1279–83.

6. Joshi PK, Prendergast J, Fraser RM, Huffman JE, Vitart V, Hayward C, et al. Local
exome sequences facilitate imputation of less common variants and increase
power of genome wide association studies. PLoS One. 2013;8, e68604.

7. Vitart V, Rudan I, Hayward C, Gray NK, Floyd J, Palmer CN, et al. SLC2A9 is a
newly identified urate transporter influencing serum urate concentration,
urate excretion and gout. Nat Genet. 2008;40:437–42.

8. Kerr SM, Campbell A, Murphy L, Hayward C, Jackson C, Wain LV, et al. Pedigree
and genotyping quality analyses of over 10,000 DNA samples from the
Generation Scotland: Scottish Family Health Study. BMC Med Genet. 2013;14:38.

9. Gunderson KL. Whole-genome genotyping on bead arrays. Methods Mol
Biol. 2009;529:197–213.

10. Amador C, Huffman J, Trochet H, Campbell A, Porteous D, Generation S, et
al. Recent genomic heritage in Scotland. BMC Genomics. 2015;16:437.

11. Auton A, Brooks LD, Durbin RM, Garrison EP, Kang HM, Korbel JO, et al. A
global reference for human genetic variation. Nature. 2015;526:68–74.

12. Sanger Imputation Service. https://imputation.sanger.ac.uk/ . Accessed 02
Mar 2017.

13. Participating cohorts. http://www.haplotype-reference-consortium.org/
participating-cohorts . Accessed 02 Mar 2017.

14. Delaneau O, Marchini J, Zagury JF. A linear complexity phasing method for
thousands of genomes. Nat Methods. 2012;9:179–81.

15. Delaneau O, Zagury JF, Marchini J. Improved whole-chromosome phasing
for disease and population genetic studies. Nat Methods. 2013;10:5–6.

16. O’Connell J, Gurdasani D, Delaneau O, Pirastu N, Ulivi S, Cocca M, et al.
A general approach for haplotype phasing across the full spectrum of
relatedness. PLoS Genet. 2014;10, e1004234.

17. Durbin R. Efficient haplotype matching and storage using the positional
Burrows-Wheeler transform (PBWT). Bioinformatics. 2014;30:1266–72.

18. Almasy L, Blangero J. Multipoint quantitative-trait linkage analysis in general
pedigrees. Am J Hum Genet. 1998;62:1198–211.

19. Aulchenko YS, Ripke S, Isaacs A, van Duijn CM. GenABEL: an R library for
genome-wide association analysis. Bioinformatics. 2007;23:1294–6.

20. Haller T, Kals M, Esko T, Magi R, Fischer K. RegScan: a GWAS tool for quick
estimation of allele effects on continuous traits and their combinations.
Brief Bioinform. 2015;16:39–44.

21. Svishcheva GR, Axenovich TI, Belonogova NM, van Duijn CM, Aulchenko YS.
Rapid variance components-based method for whole-genome association
analysis. Nat Genet. 2012;44:1166–70.

22. van Rijn MJ, Schut AF, Aulchenko YS, Deinum J, Sayed-Tabatabaei FA,
Yazdanpanah M, et al. Heritability of blood pressure traits and the genetic
contribution to blood pressure variance explained by four blood-pressure-
related genes. J Hypertens. 2007;25:565–70.

23. Arpegard J, Viktorin A, Chang Z, de Faire U, Magnusson PK, Svensson P.
Comparison of heritability of Cystatin C- and creatinine-based estimates
of kidney function and their relation to heritability of cardiovascular disease.
J Am Heart Assoc. 2015;4, e001467.

24. Welter D, MacArthur J, Morales J, Burdett T, Hall P, Junkins H, et al. The
NHGRI GWAS Catalog, a curated resource of SNP-trait associations. Nucleic
Acids Res. 2014;42:D1001–6.

Nagy et al. Genome Medicine  (2017) 9:23 Page 13 of 14

http://www.magicinvestigators.org/
http://www.generationscotland.org/
https://imputation.sanger.ac.uk/
http://www.haplotype-reference-consortium.org/participating-cohorts
http://www.haplotype-reference-consortium.org/participating-cohorts


25. Timpson NJ, Walter K, Min JL, Tachmazidou I, Malerba G, Shin SY, et al. A
rare variant in APOC3 is associated with plasma triglyceride and VLDL levels
in Europeans. Nat Commun. 2014;5:4871.

26. Kohn M, Lederer M, Wachter K, Huttelmaier S. Near-infrared (NIR) dye-labeled
RNAs identify binding of ZBP1 to the noncoding Y3-RNA. RNA. 2010;16:1420–8.

27. Scott RA, Lagou V, Welch RP, Wheeler E, Montasser ME, Luan J, et al. Large-
scale association analyses identify new loci influencing glycemic traits and
provide insight into the underlying biological pathways. Nat Genet. 2012;44:
991–1005.

28. Kottgen A, Albrecht E, Teumer A, Vitart V, Krumsiek J, Hundertmark C, et al.
Genome-wide association analyses identify 18 new loci associated with
serum urate concentrations. Nat Genet. 2013;45:145–54.

29. UK10K Consortium, Walter K, Min JL, Huang J, Crooks L, Memari Y, et al. The
UK10K project identifies rare variants in health and disease. Nature. 2015;
526:82–90.

30. Saxena PR, Villalon CM. Cardiovascular effects of serotonin agonists and
antagonists. J Cardiovasc Pharmacol. 1990;15 Suppl 7:S17–34.

31. Hong KW, Go MJ, Jin HS, Lim JE, Lee JY, Han BG, et al. Genetic variations in
ATP2B1, CSK, ARSG and CSMD1 loci are related to blood pressure and/or
hypertension in two Korean cohorts. J Hum Hypertens. 2010;24:367–72.

32. Marks AR. Calcium and the heart: a question of life and death. J Clin Invest.
2003;111:597–600.

33. Pritchard TJ, Kranias EG. Junctin and the histidine-rich Ca2+ binding protein:
potential roles in heart failure and arrhythmogenesis. J Physiol. 2009;587:3125–33.

34. Guilini C, Urayama K, Turkeri G, Dedeoglu DB, Kurose H, Messaddeq N, et al.
Divergent roles of prokineticin receptors in the endothelial cells: angiogenesis
and fenestration. Am J Physiol Heart Circ Physiol. 2010;298:H844–52.

35. Arora H, Boulberdaa M, Qureshi R, Bitirim V, Gasser A, Messaddeq N, et al.
Prokineticin receptor-1 signaling promotes Epicardial to Mesenchymal
Transition during heart development. Sci Rep. 2016;6:25541.

36. Boulberdaa M, Turkeri G, Urayama K, Dormishian M, Szatkowski C, Zimmer L,
et al. Genetic inactivation of prokineticin receptor-1 leads to heart and
kidney disorders. Arterioscler Thromb Vasc Biol. 2011;31:842–50.

37. Dormishian M, Turkeri G, Urayama K, Nguyen TL, Boulberdaa M, Messaddeq
N, et al. Prokineticin receptor-1 is a new regulator of endothelial insulin
uptake and capillary formation to control insulin sensitivity and cardiovascular
and kidney functions. J Am Heart Assoc. 2013;2, e000411.

38. Okazaki Y, Ohshima N, Yoshizawa I, Kamei Y, Mariggio S, Okamoto K, et al. A
novel glycerophosphodiester phosphodiesterase, GDE5, controls skeletal
muscle development via a non-enzymatic mechanism. J Biol Chem. 2010;
285:27652–63.

39. Krishnamoorthy P, Gupta D, Chatterjee S, Huston J, Ryan JJ. A review of the
role of electronic health record in genomic research. J Cardiovasc Transl
Res. 2014;7:692–700.

40. Carey DJ, Fetterolf SN, Davis FD, Faucett WA, Kirchner HL, Mirshahi U, et al.
The Geisinger MyCode community health initiative: an electronic health
record-linked biobank for precision medicine research. Genet Med.
2016;18:906–13.

41. Namjou B, Marsolo K, Lingren T, Ritchie MD, Verma SS, Cobb BL, et al. A
GWAS study on liver function test using eMERGE network participants. PLoS
One. 2015;10, e0138677.

42. Jin HS, Sober S, Hong KW, Org E, Kim BY, Laan M, et al. Age-dependent
association of the polymorphisms in the mitochondria-shaping gene, OPA1,
with blood pressure and hypertension in Korean population. Am J Hypertens.
2011;24:1127–35.

43. Cai C, Lin M, Xu Y, Li X, Yang S, Zhang H. Association of circulating
neuregulin 4 with metabolic syndrome in obese adults: a cross-sectional study.
BMC Med. 2016;14:165.

44. Soler Artigas M, Wain LV, Miller S, Kheirallah AK, Huffman JE, Ntalla I, et al.
Sixteen new lung function signals identified through 1000 Genomes Project
reference panel imputation. Nat Commun. 2015;6:8658.

45. Joshi PK, Esko T, Mattsson H, Eklund N, Gandin I, Nutile T, et al. Directional
dominance on stature and cognition in diverse human populations. Nature.
2015;523:459–62.

46. Davies G, Marioni RE, Liewald DC, Hill WD, Hagenaars SP, Harris SE, et al.
Genome-wide association study of cognitive functions and educational
attainment in UK Biobank (N = 112 151). Mol Psychiatry. 2016;21:758–67.

47. Xia C, Amador C, Huffman J, Trochet H, Campbell A, Porteous D, et al.
Pedigree- and SNP-associated genetics and recent environment are the
major contributors to anthropometric and cardiometabolic trait variation.
PLoS Genet. 2016;12, e1005804.

48. Steinthorsdottir V, Thorleifsson G, Sulem P, Helgason H, Grarup N, Sigurdsson
A, et al. Identification of low-frequency and rare sequence variants associated
with elevated or reduced risk of type 2 diabetes. Nat Genet. 2014;46:294–8.

49. Yaghootkar H, Stancakova A, Freathy RM, Vangipurapu J, Weedon MN, Xie
W, et al. Association analysis of 29,956 individuals confirms that a low-
frequency variant at CCND2 halves the risk of type 2 diabetes by enhancing
insulin secretion. Diabetes. 2015;64:2279–85.

50. Manning AK, Hivert MF, Scott RA, Grimsby JL, Bouatia-Naji N, Chen H, et al.
A genome-wide approach accounting for body mass index identifies
genetic variants influencing fasting glycemic traits and insulin resistance.
Nat Genet. 2012;44:659–69.

51. Arking DE, Pulit SL, Crotti L, van der Harst P, Munroe PB, Koopmann TT, et
al. Genetic association study of QT interval highlights role for calcium
signaling pathways in myocardial repolarization. Nat Genet. 2014;46:826–36.

52. den Hoed M, Eijgelsheim M, Esko T, Brundel BJ, Peal DS, Evans DM, et al.
Identification of heart rate-associated loci and their effects on cardiac
conduction and rhythm disorders. Nat Genet. 2013;45:621–31.

•  We accept pre-submission inquiries 

•  Our selector tool helps you to find the most relevant journal

•  We provide round the clock customer support 

•  Convenient online submission

•  Thorough peer review

•  Inclusion in PubMed and all major indexing services 

•  Maximum visibility for your research

Submit your manuscript at
www.biomedcentral.com/submit

Submit your next manuscript to BioMed Central 
and we will help you at every step:

Nagy et al. Genome Medicine  (2017) 9:23 Page 14 of 14


	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Sample selection
	DNA extraction and genotyping
	Phenotype measures
	Genotype data quality control
	Pedigree correction
	Imputation
	Phenotype quality control and exclusions
	Heritability
	Genome-wide associations

	Results
	Heritability
	Genome-wide association studies
	GWAS of serum urate extracted from electronic health records

	Discussion
	Study advantages

	Limitations
	Validation of rare variant imputation
	Validation of novel association

	Conclusions
	Additional files
	Abbreviations
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Author details
	References

