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Abstract

Bioinformatic analysis of genomic sequencing data to identify somatic mutations in cancer samples is far from
achieving the required robustness and standardisation. In this study we generated a whole exome sequencing
benchmark dataset using the platinum genome sample NA12878 and developed an intersect-then-combine (ITC)
approach to increase the accuracy in calling single nucleotide variants (SNVs) and indels in tumour-normal pairs. We
evaluated the effect of alignment, base quality recalibration, mutation caller and filtering on sensitivity and false
positive rate. The ITC approach increased the sensitivity up to 17.1%, without increasing the false positive rate per
megabase (FPR/Mb) and its validity was confirmed in a set of clinical samples.
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Background
The rapid development of high-throughput sequencing
(or next generation sequencing (NGS)) technology has
enabled great progress in cancer genomics. Decreases in
costs and increases in data output have resulted in the
systematic collection of genome-scale data in large
tumour cohorts [1, 2], improving our understanding of
the mechanisms underlying tumour development, pro-
gression and response to treatments, in addition to setting
the foundation for precision medicine [3, 4]. However, in
contrast with the increasing ease in data generation, bio-
informatic analyses have yet to reach a satisfactory level of
robustness and standardisation, both of which are essen-
tial for correct data interpretation and eventual clinical
translation [5].
Currently, whole exome sequencing (WES) offers the

best trade-off between costs and amount of genetic in-
formation obtained for detecting single nucleotide

variants (SNVs) and small insertions and deletions
(indels) in coding regions. Identifying somatic mutations
is more challenging than identifying germline variants
for several reasons: (1) tumour samples can contain a
high amount of normal tissue contamination, (2) tumour
cells can have acquired major changes in ploidy and
DNA copy number and, finally, (3) somatic mutations
can be present in a subset of tumour cells (i.e. subclonal
mutations). As a consequence, lower variant allele fre-
quencies (VAFs) need to be detected, making them
harder to distinguish from technical noise [5].
A number of methods have been designed specifically

to identify somatic mutations. Several studies comparing
their performances [6–8] have highlighted poor concord-
ance between methods [5, 9, 10]. In addition, not only the
mutation caller, but also all the upstream computational
steps can impact the final results. Unfortunately, identify-
ing the best approach or appropriate parameters is ex-
tremely challenging because the ground truth is normally
unknown.
An important benchmark dataset has been generated

by the Platinum Genomes project, where a catalogue of
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highly accurate whole genome variant calls and
homozygous reference calls has been derived for sam-
ple NA12878 by integrating independent sequencing
data and the results of multiple pipelines (https://
www.illumina.com/platinumgenomes). For example, it
is the basis of the Genome Comparison and Analytic
Testing (GCAT) platform [11] that allows an easy
benchmarking of user’s pipelines for the identification
of germline variants.
To generate a benchmark dataset for the detection of

‘somatic’ mutations, we performed a WES experiment
using two lymphoblastoid cell lines from the HapMap/
1000 Genomes Project (NA12878 and NA11840) in
order to mimic a tumour-normal pair, with NA12878
being the ‘tumour’ and NA11840 being the ‘normal’. We
diluted the NA12878 DNA with an increasing amount
of NA11840 DNA (from 0 to 99.8%) to estimate the per-
formance in detecting mutations within a wide range of
VAFs. Using this dataset we aimed to: (1) evaluate the
effect of alignment and base quality recalibration on mu-
tation calls; (2) compare the performance of Mutect2
and Strelka in identifying SNVs and indels; (3) optimize
the mutation calling by parameter adjustment; (4) derive
an ‘intersect-then-combine’ (ITC) approach to merge in-
formation from multiple tools to increase the sensitivity
and decrease the false positive rate (FPR). The validity of
the ITC approach was then confirmed in a set of clinical
samples.

Methods
Sample preparation
Two lymphoblastoid cell lines, NA12878 and NA11840,
from the Human Genome Diversity Project (HGDP)-
CEPH collection were obtained from the Coriell Cell
Repository. The NA11840 cell line was chosen from a
set of 17 available CEPH cell lines in our laboratory as
it shared the least number of SNVs with NA12878, so
as to generate the maximum number of virtual somatic
SNVs. The cell lines were grown as suspensions in RPMI
1640-Glutamax (Invitrogen, Waltham, MA, USA) supple-
mented with 10% foetal calf serum and 5% penicillin and
streptomycin at 37 °C and 5% CO2. The cell lines were
passaged at 1:10 dilution, and 10 × 106 cells were har-
vested for DNA extractions.
DNA was extracted from the cell lines using the

DNeasy Blood and Tissue DNA extraction kit (Qiagen,
Manchester, UK) and quantified using a Qubit High
Sensitivity DNA quantification kit (Life Technologies,
Carlsbad, CA, USA). DNA from both cell lines was diluted
to obtain 100 ng/μl stock concentrations.
To generate the serial dilutions of one cell line with the

other, we mixed by volume to obtain the percentage
(volume/volume) as presented in Additional file 1 (n = 12).

Clinical samples
We included WES data from peripheral blood lympho-
cytes (‘buffy coat’) of 10 individuals. The samples were
collected and analysed as part of the study ’Cell-free
DNA in non-metastatic setting’, approved by the Institu-
tional Review Board of the Vall d’Hebron University
Hospital, Barcelona, Spain (PR_AG_67-2013). DNA was
extracted using the QIAamp DNA Mini Kit (Qiagen) ac-
cording to manufacturer’s instructions and quantified
using the Qubit Fluorometer assay (Life Technologies)
as previously described [12]. Two (or three) independ-
ent libraries were generated from each sample and se-
quenced as described in the next paragraphs. These
libraries were sequenced on an Illumina HiSeq 2500 and
Illumina HiSeq 2000 respectively (Illumina, San Diego,
CA, USA).
A breast cancer sample for which two independent

WES data were available was also included. This sample
(ID: AB551) is part of a previously reported biobank [13].

Whole exome sequencing
Adapter-ligated indexed libraries were generated using
the Illumina Nextera Rapid Capture kit (Illumina) from
50 ng of DNA as per manufacturer’s instructions. The li-
braries were quantified using a Qubit High Sensitivity
dsDNA assay (Life Technologies). Five hundred nano-
grams of adapter-ligated barcoded DNA from each sample
from each library were pooled into a capture pool of 12.
Each capture pool was hybridised twice with enrichment
probes for the exome. The fragment sizes of enriched
libraries were assessed using a bioanalyser (Agilent
Technologies, Folsom, CA, USA) and quantified using
KAPA Library Quantification Kits (Kapa Biosystems,
Wilmington, MA, USA).
Paired-end 125-bp sequencing runs were performed

on an Illumina HiSeq 2500 instrument, aiming for a mean
read depth coverage of 100 for the NA12878 dilution
series.

Alignment
Burrows-Wheeler Aligner (BWA)/Genome Analysis Toolkit
(GATK) pipeline
After initial quality control using the FastQC application
(http://www.bioinformatics.babraham.ac.uk/projects/fastqc/),
adapters and low-quality bases (Phred score below 20)
were trimmed off using Trim Galore (v0.3.7) (http://
www.bioinformatics.babraham.ac.uk/projects/trim_galore/).
Reads were aligned to the human reference genome
(hg19/GRCh37 decoy) using BWA-MEM (v0.7.12) and
default parameters. Local realignment and base quality
recalibration (BQR) were performed using the GATK,
v3.4.46. Multiple bam files for the same sample (obtained
on different sequencing lanes) were merged. Alignment
and coverage metrics as well as PCR duplicate marking
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were computed using Picard tools (v1.125) before and
after merging. Local realignment was repeated on all 12
samples together to ensure indel concordance between
samples.

Novocraft pipeline
Adapter and low-quality base (Phred score below 20)
trimming, alignment and BQR were performed in a single
step using Novoalign (v3.02). In a preliminary step, the
alignment score threshold was varied between 50 and 300.
As shown in Additional file 2: Figure S1, modification of
this threshold affects both alignment efficiency and the
running time, and we established that the best comprom-
ise between alignment time and efficiency was at a score
threshold of 250. Bam files were locally realigned using
the GATK, v3.4.46. Sorting and duplicate marking were
done using Novosort (v3.02) before and after merging
the distinct bam files from the same sample. Local re-
alignment was repeated after merging on all 12 samples
together.

Identification of regions of interest
Platinum variant calls for sample NA12878 (the virtual
‘tumour’) and confident regions (high confidence homozy-
gous reference regions plus platinum calls) [14] were down-
loaded from https://www.illumina.com/platinumgenomes
(v7.0.0). Genotype data for sample NA11840 (the virtual
‘normal’) were obtained from the 1000 Genomes website.
Platinum calls were intersected with the Nextera exome
target regions, and variants shared with the NA11840 sam-
ple were excluded. Four multiallelic SNVs and 10 multialle-
lic indels were also excluded. In total we identified a list of
9968 SNVs and 420 indels that are theoretically ‘somatic
variants’ in our virtual tumour-normal pair. The confident
regions were also intersected with the Nextera exome target
regions, defining the regions of interest in which to search
for mutations. After subtracting platinum call regions, a
total of 36,582,697 bp represented our set of reference
regions.

Somatic mutation calling
Mutect2
Mutect2 (included in GATK 3.5) was run for each com-
bination of NA12878 dilution series (from 100% to 0.2%
purity) with the NA11840 sample (tumour-normal mode)
using default parameters, with the exception of the min-
Pruning parameter which determines the minimum sup-
port to not prune paths in the De Bruijn-like graph: this
was set at 3 (instead of the default value 2), as it dra-
matically reduced the running time without affecting
the number of variant calls (data not shown). In the
platinum genome dilution experiment, we included all
mutations passing all the internal filters as well as muta-
tions that failed the ’clustered_events’ and/or ’homologous_

mapping_event’ filters, as germline variations frequently
occur close to each other in the genome.

Strelka
We ran Strelka (v1.0.14) [15] for each virtual ‘tumour-
normal’ pair with recommended starting parameters for
BWA in the configuration file and default parameters.
The isSkipDepthFilters parameter was set to 1 to skip
depth filtration, as suggested by the authors. Mutations
called by default were those passing internal filters iden-
tified using Tier 1 reads and with a QSS_NT > 15 for
SNVs and a QSI_NT > 30 for indels.

Performance evaluation
By intersecting the experimental calls with the list of
platinum calls (9968 SNVs and 420 indels), we computed
the number of true positives (TP), false negatives (FN)
and false positives (FP). This task was performed using
custom scripts that matched the genomic coordinates as
well as reference and alternative alleles. Sensitivity was
then defined as:

Sens ¼ TP
TP þ FN

We also computed the false positive rate per megabase
(FPR/Mb) as:

FPR=Mb ¼ FP
nref

� 106

where n ref is our set of reference regions equal to
36,582,697 bp.

Variant annotation
Somatic mutations called in the breast cancer clinical
sample were annotated using Variant Effect Predictor
(VEP) (http://grch37.ensembl.org/).

Results
Experimental design and quality control
We sequenced two cell lines from the HapMap/1000
Genomes Project, NA12878 (Platinum Genomes) and
NA11840 to mimic a tumour-normal pair allowing iden-
tification of ‘somatic’ SNVs and indels. The NA12878
sample was also mixed with an increasing amount of
NA11840 (up to 99.8% by concentration, Additional file 1)
to mimic normal contamination and the presence of sub-
clonal somatic mutations. All samples were subjected to
WES, and we obtained an average on target coverage of
100× (Additional file 2: Figure S2A).
A list of 9968 high confidence SNVs present in

NA12878 and not in NA11840 was derived (see Methods).
For these loci we computed the VAFs in our data to verify
that the observed median values for heterozygous and
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homozygous SNVs matched the expected values in the di-
lution series (Additional file 2: Figure S2B). It is worth
noting that whilst the median VAFs matched the expected
values, confirming dilution accuracy, a wide dispersion of
VAF values was observed, with 265 SNVs having a VAF of
0 in the 100% NA12878 sample, mostly caused by low or
no coverage in that specific locus. An additional group of
495 SNVs had coverage less than 10× in our dataset. We
did not exclude these SNVs, as uneven coverage is com-
monly observed in WES data. Although the selected plat-
inum calls were not identified as SNVs in the publicly
available data for NA11840, some were clearly present in
our NA11840 data (556 mutations had a VAF greater than
0.2, Additional file 2: Figure S3). Again, these loci were
retained because they might be either real SNVs or prob-
lematic regions with higher noise. The inclusion of the
above-mentioned SNVs meant that our sensitivity would
never reach 100%.
Raw sequencing data were processed using two dis-

tinct alignment pipelines (hereafter named BWA/GATK
and Novocraft; the statistics above have been computed
on Novocraft bam files), and ‘somatic’ SNVs and indels
were called using Mutect2 and Strelka. Mutations were
initially identified using default parameters and again
using optimised filtering criteria. We then applied an
intersect-then-combine (ITC) approach as detailed in
Fig. 1 and subsequent paragraphs.

Performances of the different pipelines were measured
in terms of sensitivity computed for each sample in the
dilution series and FPR/Mb estimated in the most diluted
sample. For FPR/Mb estimation, we only used the most
diluted sample because we observed new mutations in the
least diluted NA12878 samples (likely to be caused by
genetic drift) that would be wrongly accounted as false
positives. This is supported by the fact that in the least
diluted samples (100% and 80% NA12878) most of the
hypothetical false positives overlap, whilst in the most
diluted samples none of them overlaps (Additional file 2:
Figure S4).

Mutation calling using default parameters and effect of
base quality recalibration
When calling SNVs using default parameters, Mutect2
had higher sensitivity, particularly at low VAFs, but at
the expense of a slightly higher FPR/Mb when compared
to Strelka (Fig. 2a, c, e). However, none of the approaches
reached 80% sensitivity in the pure NA12878 sample.
Performances were lower in indel calling, with Strelka
showing the lowest sensitivity but also a much lower
FPR/Mb in combination with the BWA/GATK pipeline
(Fig. 2b, d, f ).
The base quality recalibration (BQR) step can consider-

ably change the performance. Indeed, when BQR was not
performed, low frequency SNVs were called with a higher

RAW data

BWA/GATK
w/ BQR

BWA/GATK
w/o BQR

Novocraft
w/ BQR

Novocraft
w/o BQR

Mutect2 Strelka

Optimised
filtering

Intersect

Mutect2 Strelka Mutect2 Strelka

Mutect2 Strelka

Optimised
filtering

Optimised
filtering

Optimised
filtering

Intersect

Combine

Fig. 1 Analysis workflow. Schematic representation of the workflow of analyses applied to the NA12878 platinum genome dilution series. Raw
data have been initially analysed using two alignment pipelines (BWA/GATK-based and Novocraft-based) with or without base quality recalibration.
Somatic calls were identified using two distinct tools: Mutect2 and Strelka. For base quality recalibrated data, mutation caller parameters have been
adjusted to improve overall performance. The intersection between mutations from the same caller but different alignment pipelines was selected to
reduce the number of false positives. Subsequently, the unions of these filtered calls from Mutect2 and Strelka were combined to obtain the final set
of calls
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sensitivity, but associated with a dramatic increase in FPR/
Mb (Fig. 2a, c, e). Therefore, for all subsequent analyses,
base quality recalibrated data were used. In base quality
recalibrated data, although the alignment algorithms did
not seem to have a major impact on sensitivity (Fig. 2a
and c), the SNV FPR/Mb was higher in both callers when
used with BWA/GATK alignments (Fig. 2e). In addition, a
higher FPR/Mb was observed when Strelka was used to
call indels on Novocraft-aligned data (Fig. 2f).

Optimising mutation caller parameters
To improve the performance of both mutation callers,
various caller-specific filtering criteria were assessed. In

Mutect2, we looked at the reasons for rejection of the
false negative calls to understand which internal filters
caused rejection, thereby identifying which parameters
needed adjustment (Additional file 2: Figure S5). We
considered both the undiluted NA12878 and the 10% di-
luted sample, hypothesising that reasons for failure
might be different at high and low VAFs. Indeed, in the
undiluted NA12878, independent of the alignment pipe-
line, most of the false negatives were rejected because
the alternative alleles were observed in the normal sam-
ple (i.e. NA11840). As previously mentioned, some of
these false negatives might be due to the presence of un-
reported SNVs in the NA11840 sample; however, a

a b

c

e

d

f

Fig. 2 Effect of alignment and base quality recalibration on sensitivity and FPR. Sensitivity in detecting SNVs (a, c) or indels (b, d) in our dilution
series using Mutect2 (a, b) or Strelka (c, d) and each of four different alignment pipelines. e, f FPR/Mb in SNV (e) or indel (f) calling as a function
of the alignment pipeline and mutation caller used
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proportion is likely caused by background noise or
technical cross-sample contamination (Additional file 2:
Figure S3B).
Default Mutect2 parameters for the ‘alt_allele_in_normal’

filter allow for no more than one read bearing the alterna-
tive allele in the normal sample, and it must represent less
than 3% of the reads mapping over the locus. Taking ad-
vantage of a dataset where the ground truth (or a good ap-
proximation of it) is known, we measured the change in
performance as a function of the threshold applied. In-
creasing the percentage of alternative allele present in the
normal sample will likely increase not only the sensitivity
but also the FPR, mainly because one might call germline
mutations as somatic. Therefore, we added an extra filter
by computing the ratio between the VAF observed in the
tumour and the VAF observed in the normal (hereafter
called T/N ratio). As expected, increasing the percentage
of alternative allele allowed in the normal increased both
sensitivity and FPR/Mb, but by applying the T/N ratio we
could obtain higher sensitivity and lower FPR/Mb com-
pared with default parameters. This was true for both
100% and 10% NA12878 samples and independent of the
alignment pipelines (Additional file 2: Figures S6, 7).
Not surprisingly, in the 10% NA12878 sample the

main reason of failure was the ‘t_lod_fstar’ filter, where
the log-likelihood ratio of the data under the variant and
reference models has to exceed a specified threshold
(default = 6.3). Varying the threshold confirmed that it is
a trade-off between sensitivity and FPR/Mb (Additional
file 2: Figures S6, 7).
In Strelka, mutation calls are separated in Tier 1 and

Tier 2, where the first is a set of input data filtration and
model parameter settings with relatively stringent values,
whereas the second uses more permissive settings [15].
It has been suggested by the Strelka authors to consider
Tier 1 calls only and apply a QSS_NT (quality score
reflecting the joint probability of somatic variant and
genotype of the normal) threshold of 15. Including Tier
2 calls increased both sensitivity and FPR/Mb, but by
also changing the QSS_NT threshold it was possible to
increase the sensitivity and decrease the FPR/Mb. As be-
fore, this is true independently of the dilution and align-
ment pipeline (Additional file 2: Figure S8). The same
applies to indels, where the default QSI_NT threshold is
30, although smaller improvements were observed
(Additional file 2: Figure S9).
Based on the analyses above, we selected the best

thresholds to increase the sensitivity (in particular at
high VAF, without losing sensitivity at low VAFs), whilst
in most cases reducing the FPR/Mb. For Mutect2 we in-
cluded SNVs and indels with a percentage of alternative
allele in normal up to 7% but a T/N ratio higher than 5.
In Strelka we included Tier 1 and Tier 2 calls with a
QSS_NT > 25 for SNVs and QSI_NT > 35 for indels. The

improvement in performance using the aforementioned
parameters is summarised in Fig. 3.

The intersect-then-combine (ITC) approach
After parameter optimisation, we hypothesised that
some of the false positives might be caused by alignment
errors, and to test this hypothesis we compared the calls
from the same mutation caller but from different align-
ment pipelines. Interestingly, only a small percentage (an
average of 1% for SNVs and 3.9% for indels) of true posi-
tive calls was discordant, whilst half of the false positives
were called in one case but not the other (an average of
50% for SNVs and 48% for indels) (Table 1). Therefore,
considering only the intersection of calls identified by
the same mutation caller but with two different alignment
pipelines reduced the sensitivity slightly but reduced the
FPR dramatically. Importantly, this makes it possible to
combine the calls from the two mutation callers (i.e.
Mutect2 and Strelka), significantly increasing the sensitiv-
ity (because they still show a significant disagreement) but
still at a low enough FPR. Notably, the subset of mutations
called by both Mutect2 and Strelka has an extremely high
true positive rate (Table 2). We checked that variants
called by one caller but not the other were not caused by
a different representation of the same variant. We found
that only in one case the same insertion next to a repeti-
tive region was represented as 14:29261307 A- > AC in
Mutect2 and 14:29261305 A- > AAAC in Strelka.
The ITC approach allowed us to achieve a sensitivity

of 86.7% for SNV calling in the pure sample and 50.2%
sensitivity for indels; these values were significantly higher
than the default performances for each single approach
whilst simultaneously controlling for the FPR/Mb (Fig. 4).
For example, the ITC approach showed the same FPR/Mb
of the Strelka/Novocraft pipeline; however, the sensitivity
was systematically higher across the dilution series. In par-
ticular, sensitivity in SNV detection increased up to 17.1%
in the 40% NA12878, whilst sensitivity in indel detection
increased up to 16.4% in the 60% NA12878 sample.
Sensitivity was also estimated for the subset of SNVs and

indels heterozygous in the NA12878 sample (Additional
file 2: Figure S10). This allows a VAF approximation for
these SNVs and indels for each sample in the dilution
series, hence allowing an estimation of the sensitivity as
a function of the VAF. In this subset of mutations, the
sensitivity in the 100% NA12878 sample (expected VAF =
50%) was 87.8% for SNVs and 55.4% for indels.
We anticipated a significant number of false negatives

caused either by low coverage or alternative allele drop-
out (see the ’Experimental design and quality control’
subsection). Indeed, we found that 28.6% of the false
negative SNVs using the ITC approach were due to low
coverage (<10×) whilst an additional 9.9% showed a
VAF = 0 in our data (but coverage >10×).
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Finally, we looked at the false positive calls still present
using the ITC approach (Additional file 2: Figure S11
and Additional file 3). Some of the false positive SNVs
were clustered and could be avoided using extra filtering
steps based on the distance between calls. In addition,
we noticed the presence of several C > A transversions,
probably caused by oxidative DNA damage during sam-
ple preparation [16]. False positive indels were located in
low complexity/repetitive regions where polymerase slip-
page could introduce errors.

Validation in clinical samples
After developing our approach and testing the perform-
ance in the platinum genome experiment, we aimed to

confirm its validity in clinical samples. We first used a
set of 10 normal samples for which two or three inde-
pendent replicates were available. We called ‘somatic’
mutations in each pair of replicates using one replicate
as ‘tumour’ and the other as ‘normal’ and vice versa. In
this setting, we assumed that any mutations called are
false positives, giving us the opportunity to estimate the
FPR/Mb. For the four combinations of alignment pipe-
lines and mutation callers, the observed FPR/Mb values
were slightly higher than what was observed in the
benchmark dataset. Importantly, the FPR/Mb was the
lowest using the ITC approach (Fig. 5a, b) and slightly
lower than what was observed in the benchmark data-
set (Fig. 4b, d).

a b

c d

Fig. 3 Effect of parameter adjustments on sensitivity and FPR. Changes in sensitivity (a, c) and FPR/Mb (b, d) after optimised filtering of Mutect2
(a, b) or Strelka (c, d) calls in combination with the two alignment pipelines (BWA/GATK and Novocraft)

Table 1 Intersection of calls obtained using different alignment pipelines

TP - 100% NA12878a FP

BWA/GATK only (%) Intersection Novocraft only (%) BWA/GATK only (%) Intersection Novocraft only (%)

SNVs Mutect2 90 (1.1) 8435 91 (1.1) 23 (65.7) 12 15 (55.6)

Strelka 107 (1.3) 7928 37 (0.5) 12 (50.0) 12 5 (29.4)

Indels Mutect2 11 (6.4) 162 6 (3.6) 3 (60.0) 2 2 (50.0)

Strelka 7 (4.0) 169 3 (1.7) 0 (0.0) 2 8 (80.0)
aOut of 9968 candidate SNVs and 420 true positive

Callari et al. Genome Medicine  (2017) 9:35 Page 7 of 11



Next, we looked at a tumour-normal pair for which
two independent replicates of the tumour sample were
available. In this case, mutations called in both cases are
very likely to be true positives, while those not overlap-
ping will be enriched in false positives. Consequently, an
improvement in mutation calling performances should
lead to an increase in the percentage and absolute num-
ber of overlapping mutations. Importantly, one replicate
(R1) had a 52× average coverage whilst R2 had a 79×
average coverage; this implies that most of the calls in
R1 should overlap the calls in R2, whilst a higher per-
centage of non-overlapping calls can be expected for R2.
For each replicate we computed the total number and
the percentage of overlapping somatic mutations after
applying each combination of alignment pipeline and
mutation caller or the ITC approach. The observed pat-
tern fits with the difference in coverage between the two
replicates and, more importantly, shows that the ITC
strategy leads to the highest number of overlapping

mutations (Fig. 5c, d). Indeed, 37 extra mutations (over-
lapping between the two replicates) were identified with
our approach compared with the second best (Mutect2
Novocraft). Interestingly, some of them were affecting
cancer-related genes, i.e. a missense mutation in TFE3, a
stop-gain mutation in KMT2C and a stop-gain mutation
in the putative tumour suppressor gene RPS6KA2 [17]
(Additional file 4).

Discussion
Cancer genomics has acquired a prominent role in oncol-
ogy, providing information on cancer biology and mecha-
nisms of resistance, and its clinical application is
becoming a reality [18, 19]. However, computational ana-
lysis of sequencing-based data is facing a lack of standard-
isation, as demonstrated by recent reports [5, 20]. In this
study we focused on improving the identification of
somatic SNVs and indels in WES data.

Table 2 Union of somatic mutations identified using different callers

TP - 100% NA12878 FP

Mutect2 only Intersection Strelka only Mutect2 only Intersection Strelka only

Union SNVs 712 7723 205 8 4 8

Union indels 42 120 49 2 0 2

a b

c d

Fig. 4 Performance of the intersect-then-combine (ITC) approach. Sensitivity (a) and FPR/Mb (b) in identifying somatic SNVs after applying the ITC
strategy compared with performance using each single alignment pipeline in combination with each mutation caller. Sensitivity (c) and FPR/Mb
(d) in identifying somatic indels after applying the ITC strategy compared with performance using each single alignment pipeline in combination
with each mutation caller
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Generating appropriate benchmark datasets to esti-
mate pipeline performance is not a trivial task. In recent
reports, somatic mutations have been spiked in compu-
tationally [20] or derived after manual curation of high
coverage data [5]. The first approach is limited to SNVs
and overestimates the performances because it generates
mutations only in regions with sufficient coverage. The
second is likely to generate an incomplete list of real
mutations, in particular those having low frequency. The
best available standard for germline mutation caller
benchmarking is represented by the platinum genome
sample NA12878 [11, 21]. Using this sample, we created
here a benchmark dataset suitable for the evaluation of
new methods and pipelines aiming to identify somatic
mutations. A similar approach has been proposed in [6],
but we generated a dilution series experimentally and
not in silico, mimicking more realistically the detection
of low VAF mutations. Although not a perfect system,
we believe it represents one of the best possible approxi-
mations to the ground truth. Limitations are linked with
the fact that tumour genomes are more complex than
normal lymphoblastoid cell lines, and some low

complexity or repetitive genomic regions might not have
been considered. Remarkably, we were able to confirm
our findings in clinical samples, obtaining similar FPR/
Mb values and evidence for an increase in sensitivity
using our ITC approach.
Note that, among mutations called with our approach

and not with the second best performing pipeline, there
were several missense mutations in proliferation and can-
cer genes, among them a stop-gain mutation in RPS6KA2,
a putative tumour suppressor gene [17], and a stop-gain
mutation in KMT2C, which has been found mutated in
several cancer types (http://cancer.sanger.ac.uk/cosmic).
This highlights how the bioinformatic analysis can signifi-
cantly impact downstream data interpretation and the
chances to identify the functionally relevant aberrations in
a tumour sample.
In many studies, precision and recall are usually com-

puted as metrics to estimate performance [5, 20]. We pre-
ferred to use sensitivity and FPR/Mb instead [6]. Precision,
also known as true positive rate, is highly dependent on the
number of real mutations in the sample. In our platinum
genome experiment, nearly 10,000 mutations could be
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called, keeping the precision high even in the presence of
hundreds of false positives. By contrast, the FPR/Mb gives a
direct estimation of the expected number of false positives,
independently of the number of real mutations present.
Sensitivity and recall indicate the same metrics. Although
the number of mutations in our benchmark dataset is
higher than in most cancer types, this is not a shortcoming.
On the contrary, from a statistical point of view, a higher
number of candidate mutations helps in obtaining a more
robust estimation of sensitivity.
We chose to use tools that have been shown to out-

perform others and are commonly used by the commu-
nity and big cancer genomics consortia [5, 6]. Mutect2
has been recently released; therefore, the previous ver-
sion has been more widely used and benchmarked. We
present here the results obtained using Mutect2 because
it has not been previously compared with other tools and
also because of its ability to call both SNVs and indels.
However, similar conclusions can be drawn (for SNVs)
using the older version of Mutect (data not shown).
In our study we evaluated the impact of several factors

on the list of called mutations. The effect of alignment
on mutation calling has been recently reported as minor
[20]. We report here concordant results in terms of
overall performances; however, we clearly show that most
of the false positives are a consequence of misalignment.
Indeed, selecting the somatic mutations identified by the
same caller but after alignment with two different algo-
rithms allowed us to remove around 50% of false positives
with a minimal loss (~1%) in sensitivity. A bigger impact
was the base quality recalibration step; when not applied,
it causes a huge number of false positives. Interestingly, in
a recent comparison of whole genome sequencing pipe-
lines, only 5 of the 18 involved groups applied a base
quality recalibration step [5].
Overall, Mutect2 outperformed Strelka in terms of

sensitivity, particularly at lower VAFs, although showing
a tendency for higher FPR/Mb. Both tools benefited
from an adjustment of default filtering thresholds, an as-
pect often overlooked in previous reports. Importantly,
we introduced a T/N ratio as an additional filtering cri-
terion that, in combination with a more relaxed thresh-
old for the alternative allele in the matched normal,
allowed an increase of up to 9% sensitivity in Mutect2
calls whilst reducing the FPR/Mb. As a cautionary note,
some of the threshold applied in the filtering optimisa-
tion step might be in some way dependent of coverage,
library preparation or sequencing platform and might
not be generalised, but we expect the ITC approach here
proposed to be generalisable and valid even when pick-
ing different tools. We estimated that the use of the ITC
approach approximately doubles the required CPU time
compared with a single aligner/single caller approach, and
extra storage is temporarily required for the additional

bam file to be generated. However, we note that the use of
high performance computing and parallelisation is com-
mon practice and would minimize this drawback. Indeed,
the observed increase in performance far outweighs any
drawbacks secondary to increased computing resources
required.
Our study clearly indicates the importance and advan-

tages of having a benchmark dataset to test somatic mu-
tation calling pipelines and quantitatively measure their
performance. Therefore, the dilution series herein gener-
ated represent a valuable resource that we are making
publicly available through the precisionFDA platform
(https://precision.fda.gov/).
The combination of multiple callers has been previously

suggested, but it has involved either taking the intersec-
tion or the union of them, drastically losing sensitivity in
the first case (in particular when one tool performs worse
than the other) or hugely increasing the number of false
positives in the second. Here we propose a two-step strat-
egy allowing us to merge the calls from two different tools
whilst keeping the FPR/Mb low.

Conclusions
Identification of somatic SNVs and indels in WES data
has been suboptimal. Here we propose a computational
approach based on the combination of two aligners and
two mutation callers to increase the sensitivity whilst con-
trolling for the false positive rate. We also provide a bench-
mark dataset based on the platinum genome NA12878 to
objectively test the performance of any bioinformatic
pipeline for the identification of somatic mutations.
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