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Abstract

Background: The growth factor receptor network (GFRN) plays a significant role in driving key oncogenic
processes. However, assessment of global GFRN activity is challenging due to complex crosstalk among GFRN
components, or pathways, and the inability to study complex signaling networks in patient tumors. Here,
pathway-specific genomic signatures were used to interrogate GFRN activity in breast tumors and the
consequent phenotypic impact of GRFN activity patterns.

Methods: Novel pathway signatures were generated in human primary mammary epithelial cells by overexpressing
key genes from GFRN pathways (HER2, IGF1R, AKT1, EGFR, KRAS (G12V), RAF1, BAD). The pathway analysis toolkit
Adaptive Signature Selection and InteGratioN (ASSIGN) was used to estimate pathway activity for GFRN components in
1119 breast tumors from The Cancer Genome Atlas (TCGA) and across 55 breast cancer cell lines from the Integrative
Cancer Biology Program (ICBP43). These signatures were investigated for their relationship to pro- and anti-apoptotic
protein expression and drug response in breast cancer cell lines.

Results: Application of these signatures to breast tumor gene expression data identified two novel discrete
phenotypes characterized by concordant, aberrant activation of either the HER2, IGF1R, and AKT pathways
("the survival phenotype”) or the EGFR, KRAS (G12V), RAF1, and BAD pathways (“the growth phenotype”). These
phenotypes described a significant amount of the variability in the total expression data across breast cancer
tumors and characterized distinctive patterns in apoptosis evasion and drug response. The growth phenotype
expressed lower levels of BIM and higher levels of MCL-1 proteins. Further, the growth phenotype was more
sensitive to common chemotherapies and targeted therapies directed at EGFR and MEK. Alternatively, the
survival phenotype was more sensitive to drugs inhibiting HER2, PI3K, AKT, and mTOR, but more resistant to
chemotherapies.

Conclusions: Gene expression profiling revealed a bifurcation pattern in GFRN activity represented by two

discrete phenotypes. These phenotypes correlate to unique mechanisms of apoptosis and drug response and
have the potential of pinpointing targetable aberration(s) for more effective breast cancer treatments.
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Background

Breast cancer remains one of the leading causes of
cancer-related death in women [1]. It is well established
that growth factor receptors and their downstream signal-
ing pathways, contribute to breast cancer proliferation,
survival, and metastasis [2, 3]. Molecular aberrations can
occur in various growth factor receptor network (GFRN)
members and have been described in breast cancer [4—6].
These findings have paved the way for GFRN-targeted
treatments which are currently approved for use and be-
ing evaluated in various stages of clinical development
and in clinical trials [7, 8]. Although these treatments do
hold promise, relatively few data are available on the coop-
erativity and diversity of complicated GFRN signaling in
actual breast tumors. Additionally, assessing GFRN activ-
ity in patient tumors is extremely challenging due to the
lack of methods capable of measuring signaling events in
tumors. Drug selection is often guided by expression of
protein biomarkers, and drug resistance often develops
due to compensation by interacting pathways within the
GERN [9, 10]. Therefore, there is a strong need to develop
better methods for measuring and understanding GFRN
signaling events in breast tumors in order to deliver
the most effective treatment regimens and combat
drug resistance [2, 9, 11].

Growth factor receptors, such as epidermal growth
factor receptor 1 (EGFR), human epidermal growth fac-
tor receptor 2 (HER2), and insulin-like growth factor 1
receptor (IGF1R), are key regulatory nodes of the GFRN
and are often aberrantly activated across breast cancer
subtypes [6, 12, 13]. Approximately 15-30% of breast
cancer patients are diagnosed with HER2-positive breast
cancer, which is characterized by amplification of HER2
[12]. EGFR amplifications occur in 25% of all triple-
negative breast cancer (TNBC) patients and are often
associated with poor outcomes [6, 8, 14]. High IGF1R
activity occurs in up to 50% of breast tumors and is
seen across all breast cancer subtypes [13]. These re-
ceptors can activate downstream oncogenic growth cas-
cades such as the phosphoinositide 3-kinase (PI3K) and
mitogen-activated protein kinase (MAPK) pathways,
forming a complex, interconnected, and dynamic sig-
naling network [2, 8]. Activation of PI3K by growth fac-
tor receptors triggers the PI3K/AKT/mammalian target
of rapamycin (mTOR) pathway, leading to cell prolifer-
ation, metabolic changes, and cell survival [15-17]. In
the MAPK pathway, following growth factor receptor
activation, RAS becomes activated followed by activa-
tion of RAF1, MEK, and ERK, leading to transcriptional
changes that impact cellular proliferation, motility, and
evasion of apoptosis [6, 8, 18, 19]. Both the PI3K and
MAPK pathways contribute to tumor progression by
disrupting the balance of pro- and anti-apoptotic pro-
teins of the BCL-2 protein family in the mitochondrial
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(also known as intrinsic) pathway of apoptosis [20, 21].
Particular GFRN members can upregulate anti-apoptotic
proteins such as BCL-2, BCL-XL, and MCL-1 and down-
regulate pro-apoptotic proteins such as BAD, BAX, and
BIM, all of which contribute to apoptosis evasion and re-
sistance to cancer treatments in patients [22-29]. ERBB
receptor tyrosine kinases, such as EGFR and HER?2, have
a great deal of overlap in the downstream pathways they
activate; however, individual ERBB receptors have the
capability to preferentially bind particular downstream
signaling molecules [30, 31]. Furthermore, preclinical
studies have shown that EGFR- and HER2-driven can-
cers show differential response to targeted therapies.
EGFR mutant cancers are less responsive to single-agent
PI3K/AKT inhibitors in comparison to HER2-amplified
cancers and require the inhibition of both the PI3K and
MEK pathways [32]. These suggest that ERBB proteins
can couple to distinct signaling pathways and invoke
non-redundant physiological effects, which warrants for
specificity for the different GFRN components. There-
fore, an accurate assessment of global GFRN activity is
pivotal for selecting targeted treatment strategies that
consider the diversity of growth and cell survival mecha-
nisms in breast cancer patients.

Despite advances in the cellular and molecular
characterization of breast cancer, effective personalized
breast cancer treatment remains elusive. Immunohisto-
chemical and gene expression profiling-defined breast
cancer molecular classification has advanced our under-
standing of breast cancer prognosis, treatment, and im-
proved survival. Currently, breast cancers are stratified
into different clinical subtypes in order to determine
specific treatments, and several breast cancer subtyping
approaches are currently available. For example, fluores-
cence in situ hybridization (FISH) or immunohisto-
chemistry (IHC) techniques are often used to determine
clinical subtypes based on common receptor protein al-
terations such as estrogen (ER), progesterone (PR), and
HER2 receptor amplification [7, 33]. Additionally, Ki-67
(proliferation marker), CK 5/6 (cytokeratin marker), EGFR,
androgen receptor (AR), and p53 (apoptosis marker) are
used as biomarkers to further classify breast cancer using
IHC methods. Although helpful, IHC methods are often
subjected to bias due to tissue handling, fixation, antibody
sources, and need for physical evaluation by pathologists
[34, 35]. More recently, Perou [14, 36] and Serlie et al. [37]
proposed five “intrinsic subtypes” that have shown utility
in guiding therapy by leveraging gene expression data,
differences in clinical outcomes, and responses to neoadju-
vant chemotherapy [7, 38]. Further, evaluation of gene ex-
pression has led to the proposition of several additional
subtypes, including claudin-low, molecular apocrine, and a
novel luminal-like subtype [39-44]. While molecular
subtypes continue to emerge, routine use of such subtypes
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in clinical settings is not sensitive and specific due to some
critical limitations. For example, tumors of the same
clinical or intrinsic subtype can show differences in
growth, survival, and response to therapies [45], and clin-
ical and intrinsic subtypes are sometimes discrepant [46].
Approximately one-third of HER2+ tumors are not classi-
fied as the HER2-enriched intrinsic subtype and up to 25%
of clinically characterized ER+ tumors are not classified as
the luminal intrinsic subtype [36]. While IHC methods are
single protein based, intrinsic subtypes are fundamentally
empirical and do not focus on distinct biological proper-
ties. Thus, both IHC and intrinsic subtypes fail to recapitu-
late the biological heterogeneity within each subtype [47].
Recent studies highlight the discordance between the
IHC and intrinsic subtypes, which calls for additional
work [47, 48]. To address these challenges, pathway-
level subtyping may provide complementary information
for determining therapeutic targets. For example, identi-
fication of specific aberrant pathways within the triple
negative and basal-like subtypes may help to explain
additional heterogeneity and better target these subtypes
pharmacologically [49]. Here, breast cancer inter-tumor
heterogeneity was explored in terms of GFRN activity
for its well-known role in growth, evasion of apoptosis,
and drug response.

While biochemical measurement of pathway activity
is challenging in human tumors due to limited tissue
availability and instability of specific proteins, patterns
of activity across multiple genes—or gene expression
signatures—can be used as surrogates for pathway acti-
vation in tumors and to model biological phenotypes
[50-54]. Pathway activation has been used to predict drug
response to targeted therapies in cell lines [52, 54, 55], but
to the best of our knowledge, this is the first study which
measures activity of seven GFRN members concurrently
at the pathway level in patient samples. In this study, 1119
breast tumors were profiled for GFRN activity across The
Cancer Genome Atlas (TCGA) and across 55 breast can-
cer cell lines from the Integrative Cancer Biology Program
(ICBP43) [56, 57] (Fig. 1). Pathway activity was estimated
in samples using novel GFRN gene expression signatures
for the HER2, IGF1R, AKT, EGFR, KRAS (G12V muta-
tion), RAF1, and BAD pathways. These GFRN signatures
were generated by performing sequencing on RNA col-
lected from primary human mammary epithelial cells
(HMECs) overexpressing HER2, IGFIR, AKTI1, EGFR,
KRAS (G12V), RAF1, or BAD for 18-36 h. These signa-
tures capture early transcriptional events, which occur
shortly after oncogene activation, and represent the
transcriptional profile of pathway activation, and not of
a transformed cell.

Using the pathway analysis toolkit Adaptive Signature
Selection and InteGratioN (ASSIGN), the signatures
were projected onto each breast cancer data set and
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uncovered two discrete patterns of GFRN activity [58].
One pattern was characterized by concurrent activation
of the HER2, IGF1R, and AKT pathways, and another
was characterized by concurrent activation of the EGFR,
KRAS, RAF1, and BAD pathways. Typically, when one
set of pathways was active, the other set was inactive,
indicating that each sample tends to have a dominant
GERN phenotype. Pathways activation of HER2, IGF1R,
and AKT was nicknamed the “survival phenotype” and
activation of EGFR, KRAS, RAF1, and BAD as the
“growth phenotype”. These names were chosen for sim-
plicity and based on the known role of AKT signaling
in cancer cell survival and the known role of EGFR/
RAS signaling in cellular growth [59, 60]. Importantly,
genomic pathway activity corresponded to apoptotic
phenotypes. The growth phenotype showed upregula-
tion of anti-apoptotic protein MCL-1 and downregula-
tion of pro-apoptotic protein BIM as a mechanism of
escaping apoptosis. Additional subgroups were also
identified within each phenotype, including HER2 high
and HER2 low activity groups within the survival
phenotype and BAD high and BAD low activity groups
within the growth phenotype. These discrete subgroups
displayed differences in response to targeted therapies
and chemotherapies. Therefore, these phenotypes can
serve as surrogates for GFRN activity that capture
significant variability in the gene expression data, differ-
entiate survival mechanisms, and correlate to drug
response significantly. A major component of the het-
erogeneity found across tumor expression data was
contributed by GFRN signaling and was independent of
ER, PR, and HER2 status compared to intrinsic sub-
types. Additionally, a unique aspect is that GFRN activ-
ity explained the data in a biologically meaningful way.
For example, while intrinsic subtyping approaches are
based on empirical patterns of gene expression and do
not necessarily represent a biological process, the sub-
grouping approach represents aberrant activity in
specific GFRN pathway signaling. Therefore, pathway-
based phenotypes and subgroups have the potential to
complement existing methods and identify biologically
and clinically relevant patterns in tumors. Taken to-
gether, pathway signatures not only aid in assessing
general pathway activity patterns in a biologically rele-
vant way, but also show promise to select better treat-
ment targets for breast cancer patients.

Methods

Overexpression of genes of interest in human mammary
epithelial cells

In order to create gene expression signatures representa-
tive of pathway activation, GFRN oncogenes were over-
expressed in HMECs. HMECs from a non-cancer-related
breast reduction surgery performed at the University of
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Utah were isolated and cultured according to previously
published protocols [61]. Cells were grown in serum-free
mammary epithelial basal medium (MEBM) plus the
addition of a “bullet kit” (Lonza) and supplemented with
5 mg/ml transferrin and 10™> M isoproterenol at 5% CO,.
Cells were brought to quiescence by growth in low serum
conditions (0.25% MEBM + bullet kit, no EGF) for 36 h.
Cells were infected with recombinant adenovirus (at 500
MOI) expressing either human oncogenes AKT1, IGFIR,

BAD, HER2, KRAS (GI12V), and RAFI or GFP control
(Additional file 1: Figure S1). Cells were incubated with
virus for 18 h except for KRAS (G12V), which was incu-
bated for 36 h. The adenoviral expression systems invoke
transient gene expression changes, which allow us to
capture the early transcriptional events of each oncogene,
as opposed to the transcriptional profile of a transformed
cell. Recombinant adenoviruses were amplified and con-
centrations were determined using previously published
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protocols [62]. All viruses were obtained from Vector
Biolabs, except RAFI (Cell Biolabs) and EGFR (gift
from Duke University).

Western blot analysis for expression of growth factor
proteins in HMECs and apoptotic proteins in breast
cancer cell lines

Proteins from HMECs and following cell lines were
extracted: HCC3153, HCC1395, ZR75B, HCCI1569,
HCC2218, SKBR3, LY2, SUM52PE, ZR7530, MDAMB361,
AU565, BT474, BT483, CAMA1, HCC1419, HCC1428,
MCF7, MDAMBI175, T47D, ZR751, HCC1954, JIMT],
BT549, HCC1143, HCC1806, HCC1937, HCC38, HCC70,
HS578T, and MDAMB213 (Additional file 2: Sheet 1).
To collect protein, cells were washed with PBS, scraped on
ice into PBS, pelleted by centrifugation, lysed in lysis buffer
for 15 minutes (50 mM Tris (pH 8.0), 140 mM Na(Cl,
5 mM EDTA, 1% TritionX-100, 0.1% SDS, protease
cocktail (Sigma), phosphatase inhibitors cocktails 2 and 3
(Sigma), and centrifuged at 13,000 x g for 15 minutes.
Protein quantification of lysates was determined using a
BCA assay (Pierce). Electrophoresis was performed on a
8-12% Tris-HCI polyacrylamide gel (BioRad) for HMEC
Western blots and 18% Criterion TGX Tris/Glycine gels
(BioRad) for apoptotic protein western blots. Proteins were
then transferred to a PVDF membrane using the iBlot® 2
Dry Blotting System (Thermo Fisher Scientific). Mem-
branes were blocked for 1 h with SuperBlock™ (Thermo
Fisher Scientific) and probed with the following primary
antibodies: AKT (#9272), pAKT (#13038), BAD (#9292),
EGFR (#4267), pEGFR (#2234), HER2 (#2165), pHER2
(#2244), IGFIR (#3027), pIGFIR (#3021), KRAS (sc-30),
pMEK (#9154), p-cRAF (#9427), GAPDH (#5174), and
B-tubulin (#2146). Of note, pAKT ran higher than ex-
pected due to AKT myristoylation. Breast cancer cell line
lysates were probed with the following: MCL-1 (#5453),
BIM (#2933), and B-actin (#3700). All antibodies were
obtained from Cell Signaling Technology, besides KRAS,
which was obtained from Santa Cruz.

Dose response assay

Cell lines were plated at 2000 cells per well in 384 well
plates for 24 h at 37 °C. Detailed information on the cell
lines and their growth conditions is provided in Additional
file 2: Sheet 1. All cell lines were obtained from American
Type Culture Collection (ATCC). Drugs were diluted to
six doses in media containing 5% FBS (Gibco/Life tech-
nologies) and 1% anti—anti (Gibco/Life technologies).
Erlotinib, trametinib, UMI-77, obatoclax, doxorubicin,
and neratinib were purchased from Selleckchem, and
bafilomycin and AKT1/2 inhibitor were from Sigma-
Aldrich. Drugs were dissolved in 100% DMSO and
stored at —80 °C. Detailed information on drug doses is
provided in Additional file 2: Sheet 2. Cell viability and
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growth was measured using CellTiter-Glo (Promega)
72 h post-treatment. All treatment doses were per-
formed in four replicates. The Drug Discovery Core
Facility, a part of the Health Sciences Cores at the
University of Utah, performed the dose response assay.
EC50s (concentration of each drug that provides half of
the maximum response) were determined and converted
to drug sensitivity values defined as the negative log of
the EC50s (-logEC50) (Additional file 2: Sheet 3). EC50
values were calculated from dose response data by
plotting in GraphPad Prism 4 and using the equation
Y=1/(1+ 10" ((logtC50 — X) x HillSlope)) with a variable
slope (Yinin =0 and Y0, = 1).

RNA preparation and RNA sequencing

After transfection with adenovirus and Western blot val-
idation, cells were pelleted, washed in PBS, and stored in
RNAlater (Ambion). Cells were then DNase treated, and
RNA was extracted using the RNeasy kit (Qiagen). RNA
replicates were generated for each overexpressed gene:
six each for AKT, BAD, IGFIR, and RAF1I,; five for HER2;
and 12 for GFP control (Gene Expression Omnibus (GEO)
accession GSE83083). Additionally, 9 replicates of each of
KRAS and GFP control were generated (GEO accession
GSE83083). The EGFR signature and its corresponding
GFP control were previously generated with six replicates
of each (GEO accession GSE59765). RNA concentration
was determined with a Nanodrop (ND-1000). cDNA li-
braries were prepared from extracted RNA using the Illu-
mina Stranded TruSeq protocol (Illumina). cDNA libraries
were sequenced at Oregon Health and Sciences University
using the Illumina HiSeq 2000 sequencing platform with
six samples per lane. Single-end reads of 101 base pairs
were generated.

Gene expression data processing, normalization, and
datasets

The Rsubread R package (version 1.14.2) was used to
align and summarize RNA-seq reads to the UCSC hg19
reference genome and annotations [63, 64]. All RNA-seq
data in this study, including HMEC overexpression
data (GSE83083, GSE59765), TCGA breast cancer data
(GSE62944), and ICBP breast cancer RNA-Seq dataset
(GSE48213), were processed and normalized using a
pipeline that can be found at https://github.com/srp33/
TCGA_RNASeq_Clinical [60, 65].

Generation of gene expression signatures

Adaptive Signature Selection and InteGratioN (ASSIGN;
version 1.9.1), a semi-supervised pathway profiling tool-
kit, was used to generate gene expression signatures. A
formal definition of the ASSIGN model and software
implementation was reported previously [58]. RNA-Seq
data from HMECs overexpressing GFP control were
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compared to HMECs overexpressing AKT1, IGFIR, BAD,
HER2, KRAS (G12V), RAF1, and EGFR. ASSIGN uses a
Bayesian variable approach to select genes with the high-
est weights and signal strengths, indicating differential
expression. These genes represent oncogenic signatures
(Additional file 1: Figure S2).

Gene set enrichment analysis on RNA-Seq signatures

The R package Gene Set Variation Analysis for micro-
array and RNA-Seq data (GSVA; version 1.22.0), a non-
parametric, unsupervised method for estimating vari-
ation of gene set enrichments in gene expression data,
was used to perform this gene set enrichment analysis
[66]. GSVA was downloaded from Bioconductor (3.4).
RNA-Seq data from HMECs overexpressing GEP (control),
AKTI, IGFIR, BAD, HER2, KRAS(GI2V), RAFI, and
EGFR was used as input for the GSVA algorithm. The
following gene sets were used and downloaded from the
Molecular Signatures Database (http://software.broadins
titute.org/gsea/downloads.jsp) [67]; 1320 gene sets from
the C2: canonical pathways collection (c2.cp.v5.2.sym-
bols.gmt) and 50 gene sets from the hallmarks collection
(h.all.v5.2.symbols.gmt). The following GSVA parameters
were used: minimum gene set size = 10, maximum gene
set size =500, verbose=TRUE, rnaseq=TRUE, and
method = “ssgsea”. GSVA returns a matrix containing
enrichment scores for each sample and gene. The R
package limma (version 3.30.2) [68] was used to perform
a differential expression analysis between each overex-
pressed gene sample and its respective GFP control
sample. The full results from the gene set enrichment
analysis can be found in Additional file 3.

Batch adjustment and estimation of pathway activity in
ICBP and TCGA BRCA patient samples

HMEC oncogenic signatures (training data) were applied
to 55 ICBP breast cancer cells and 1119 TCGA breast
cancer patient gene expression datasets (test data) to es-
timate pathway activation status. To avoid confounding
batch effects within and between the training and test
data, the data were adjusted for batch effects. First, in
order to visualize batch effects in the data a principal
component analysis (PCA) was performed on the train-
ing (HMEC overexpression RNA-Seq) data. The training
data were sequenced separately in three batches, and sig-
nificant batch effects were observed. Batch effects were
adjusted using the ComBat function from the R package
sva (version 3.21.1) [65, 69]. ComBat was run using the
reference-batch option, which adjusts the data to match
an indicated batch. The sequencing batch containing
AKT1, IGFIR, BAD, HER2, and RAF1 was selected as
the reference batch. A model-matrix indicating which
pathway was associated with each training replicate was
also included. After the first batch adjustment, PCA was
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performed on the adjusted training data and the test
data (ICBP breast cancer cell lines or TCGA breast tu-
mors). Significant batch effects were identified between
the training and test data and performed a second round
of ComBat adjustment, using the training data as the
reference batch. After the second batch adjustment,
PCA was performed to confirm the resolution of the
batch effect. Additionally, background baseline gene
expression differences were adjusted between oncogenic
signatures and test samples (ICBP cell lines and TCGA
patient data) using ASSIGN’s adaptive background
parameter. The variation in magnitude and direction of
signature-relevant gene expression between oncogenic
signature training samples and test samples was ad-
justed using ASSIGN’s adaptive signature parameter.
The model specification options for all analyses are
listed in Additional file 1: Table S1. Default ASSIGN
settings were used for all other parameters.

Optimization of single-pathway estimates in ICBP cell line
and TCGA BRCA patient data

To determine the optimum number of genes for each
oncogenic signature, signatures with gene list lengths
from 25 to 500 genes, in 25 gene increments, were
generated using ASSIGN'’s single pathway settings. By
default, ASSIGN chooses gene lists that contain an equal
number of genes that have increased or decreased ex-
pression with pathway activation. ASSIGN also allows a
specific gene to be anchored in the signature, making
sure that the gene is always included in the signature,
even if it is not chosen during gene selection or if it is
removed from the signature after Monte Carlo simula-
tion. Anchor genes were chosen based on the oncogene
overexpressed in each signature. Pathway predictions
generated by ASSIGN are represented as values from
zero to one. Values of zero represent no pathway activity
and values of one represent high pathway activity. For all
the signatures that passed internal leave-one-out cross-
validation, pathway estimates were included for further
validation in proteomics, mutation, and gene expression.
To determine optimal signature gene list lengths and
evaluate the robustness of the generated signatures,
pathway activation estimates from ICBP and TCGA
were correlated with proteins that reflect downstream
pathway activation from corresponding ICBP and TCGA
RPPA data as a measurement of protein quantity [70, 71].
Significant correlations were found between pathway acti-
vation estimates for all GFRN signatures and appropriate
downstream pathway proteins [13, 72-74] (Additional
file 1: Table S1). Mutation-based analysis was performed
using t-tests between patient groups based on mutation
status in oncogenic proteins. For example, TCGA muta-
tion data were analyzed and higher AKT activation and
lower BAD activation estimates were found in patients
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with PI3KCA mutations (Additional file 1: Figures S3a,
b) and higher HER2 pathway activation estimates
were found in HER2-positive tumors (Additional file 1:
Figure S3c). In gene expression data, higher pathway
activity for AKT, EGFR, IGF1R, and RAF1 in TCGA
samples classified as “high” expressing using percentiles
from TCGA RNA-Seq dataset for their respective genes
AKTI, EGFR, IGFIR, and RAFI were found (Additional
file 1: Figure S3d-g). Samples with 90th percentile or
higher expression were considered “high”, 10th percent-
ile or lower “low”, and 10th to 90th percentile “inter-
mediate” expressing samples for AKT1, EGFR, and
RAF1. For IGFIR validation, samples with 80th per-
centile or higher IGFIR expression were considered
“high”, 20th percentile or lower “low”, and 20th to 80th
percentile “intermediate” expressing samples. Finally,
pairwise Spearman correlation values and calculated p
values between pathway predictions and corresponding
TCGA reverse phase protein array (RPPA) data were
used to determine which gene numbers gave the best
correlations. The HER2 and AKT signatures performed
better with fewer genes. Therefore, 5, 10, 15, and 20
gene signatures for HER2 and AKT were generated.
Significant correlations were seen between pathway es-
timates and RPPA protein scores. For example, AKT
pathway activation estimates were significantly corre-
lated with AKT, PDK1, and phosphorylated-PDK1 pro-
tein levels in both ICBP and TCGA (p values <0.0001)
samples. Due to the lack of proteins available to valid-
ate the BAD signature, negative correlations between
BAD pathway estimates and AKT protein based on the
knowledge that activation of AKT leads to BAD inhib-
ition were used [23]. The optimized gene list was the
list that gave the best average correlation in the ex-
pected direction for the RPPA data correlated with each
pathway in TCGA data and was significant both in
ICBP and TCGA data, with an ICBP correlation of at least
0.3 and a maximum gene list length of 300 genes.
Additional file 4 includes a gene list of optimum gene
numbers determined for each signature. Additional file 5
contains scaled ASSIGN pathway activity predictions for
each of the seven optimized pathways in TCGA and ICBP.

Software implementation of pathway activity prediction
with generated signatures

The signatures presented here have been included in the
latest version of the ASSIGN package (version 1.11.3) so
that pathway activity prediction can be easily performed
on other datasets. Because the gene list length can affect
the results of ASSIGN analysis, the signatures can be
used in their original form, or the gene list lengths can
be optimized based on maximizing correlations between
ASSIGN activity predictions and a set of variables, such
as RPPA data.
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Determination of growth factor phenotypes in ICBP
and TCGA

Cell lines from ICBP, patient tumors from TCGA, and
breast cancer cell lines for in vitro experiments were
classified as either the survival or growth phenotype by
calculating the mean of scaled pathway activation values
for HER, IGFIR, and AKT for the survival phenotype
and the mean of scaled pathway activation values for
BAD, EGFR, KRAS, and RAF1 for the growth pheno-
type. Each sample was classified as either survival or
growth phenotype based on which phenotype had the
highest mean (Additional file 5).

Identification of additional drug response heterogeneity
within growth factor phenotypes

To classify samples into subgroups within the growth
factor phenotypes that corresponded to high and low
HER2 activity within the survival phenotype and high
and low BAD activity within the growth phenotype, the
R function kmeans was used to perform k-means clus-
tering on the scaled pathway activity data for AKT,
HER2, BAD, and EGFR pathways with four means and
100 random starts. Additional file 5 contains sample
classifications for the ICBP and TCGA data. After classi-
fying samples, ¢-tests were performed using the R func-
tion t.test on known HER2/AKT/PI3k/mTOR targeting
drugs and EGFR/MEK targeting drugs from the drug
response assay described above between the cell lines
identified as AKT/HER2 high and AKT/HER2 low, and
between the cell lines identified as EGFR/BAD high and
EGFR/BAD low. P values were corrected using a FDR
correction and identified drugs that showed a signifi-
cantly different drug response among the growth factor
subgroups. When determining how growth phenotypes
and ER, PR, and HER2 status performed in assessing
drug response, mean drug response across all available
cell lines as the cutoff were used. Cell line drug sensitiv-
ity value above this cutoff was considered as “sensitive”
and otherwise “resistant”.

Statistical analyses

The prcomp function from the stats R package was used
to compute the principal components in TCGA breast
cancer patient RNA-Seq data. The Spearman rank-based
pairwise correlation method was used for all principal
component-based correlations, pathway predictions, and
protein correlations. The cor.test function from the stats
R package was used to calculate p values for each cor-
relation [75-77]. Student’s ¢-tests were used to find the
differences in principal component values based on
IHC-based subtypes and mutation status within GFRN
phenotypes; pathway activity based on mutation status
and drug; sensitivity differences based on pathway activity,
and gene expression boxplots. The heatmap.2 function
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from the ggplots R package and the Heatmap function
from the ComplexHeatmap R package were used for
generating pathway activity and pathway activity—drug
response correlation heatmaps [78, 79]. The /m function
from the stats R package was used to model principal
component values in TCGA using clinical subtypes,
intrinsic subtypes, and GFRN subgroups to determine R*
values. Models were compared using the anova function
from the stats package to determine significance of adding
additional features to the models. All analyses were
conducted in R and the code is available at https://github.
com/mumtahena/GFRN_signatures [80].

Results

Two dominant phenotypes in breast cancer patients and
cell lines

Gene expression signatures were developed and vali-
dated for the following GFRN pathways: AKT, BAD,
EGFR, HER2, IGF1R, KRAS (G12V mutation), and
RAF1. Signatures were generated in normal human
mammary epithelial cells (HMECs) by expressing these
genes using recombinant adenoviruses. The control
samples received green fluorescent protein (GFP) adeno-
virus. The overall goal of this approach was to capture
the downstream transcriptional events specific for each
expressed GFRN gene, or the gene expression signatures,
and to use these signatures to estimate pathway activity
in cell lines and patient samples. To determine if adeno-
virus infection led to pathway activation for each over-
expressed gene, protein levels of gene products and their
downstream targets were measured the using western
blotting (Additional file 1: Figure S1). Next, RNA-Seq
was performed on multiple replicates of HMECs over-
expressing GFRN genes and GFP controls. These data
were used to generate pathway-based gene expression
signatures for each overexpressed gene using the previ-
ously published ASSIGN pathway profiling approach
(Additional file 1: Figure S2a-g) [58]. Briefly, ASSIGN
prioritized genes that best discriminated GFP control
samples from samples overexpressing GFRN genes to
generate gene expression signatures. Next, ASSIGN was
used to estimate the activation of each GFRN member
(AKT, BAD, EGFR, HER2, IGF1R, KRAS (G12V), and
RAF1) in 1119 breast cancer patient samples from
TCGA and 55 samples from the ICBP panel of breast
cancer cell lines. ASSIGN was used to measure highly
correlated GFRN pathway activity more accurately in
patient samples with signatures generated in HMECs
since ASSIGN estimates correlated pathway activities
robustly by adapting pathway signatures into specific
disease context. The robustness of each pathway signa-
ture was validated with (1) leave-one-out cross-
validation (LOOCYV), (2) relevant reverse phase protein
array (RPPA) scores, (3) gene expression data for the
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overexpressed oncogenes, and (4) mutation data (Add-
itional file 1: Methods, Figure S3, and Table S2). After
validating the GFRN signatures, gene set enrichment
analysis was performed to identify enriched signaling
patterns within each signature (“Gene set enrichment
analysis on RNA-Seq signatures” in Additional file 1:
Supplementary results; Additional file 1: Tables S3-S9;
Additional file 3).

Finally, unsupervised hierarchical clustering of the
pathway activity estimates for all GFRN signatures in
both ICBP cell lines and TCGA patient data resulted in
a dichotomous pattern (Fig. 2a, b). The HER2, IGFIR,
and AKT pathways formed a cluster, as did the
remaining BAD, EGFR, KRAS, and RAF1 pathways
(Fig. 2a, b). There was some overlap between the two
clusters, likely due to the known crosstalk and compen-
sation that occurs between the PI3K and MAPK path-
ways [81]. In general, however, when one set of
pathways was high, the other set was low, which shows
that samples expressed a dominant phenotype of GFRN
activity. These results strongly suggest a pathway-level
dichotomization of the GFRN, which is represented by
two primary phenotypes: (1) activation of the HER2/
IGF1IR/AKT pathways or “survival phenotype”; (2)
activation of the BAD/EGFR/KRAS/RAF1 pathways or
“growth phenotype.”

After identifying the two main dichotomous GFRN
phenotypes, these phenotypes were investigated for how
they related to classic IHC-based subtypes, intrinsic
subtypes, and additional heterogeneity present within
each phenotype (Fig. 2). To investigate if these pheno-
types were independent of ER status, pathway activity
estimates were clustered for ER+ and ER- samples
separately for both ICBP and TCGA samples. The path-
way activity bifurcation pattern, as represented by GFRN
phenotypes, was consistent within ER+ and ER- samples,
indicating GFRN phenotypes are partially independent of
ER status (Additional file 1: Figure S4). The variability
between histological and intrinsic subtypes can also been
seen in the heatmap sidebars for TCGA and ICBP data
(Fig. 2a—d), and in boxplots of pathway activity estimates
across clinical and intrinsic subtypes in TCGA (Additional
file 1: Figures S5 and S6). Samples classified as the survival
phenotype included samples from all histological and in-
trinsic subtypes (Additional file 1: Tables S10 and S11 and
Figure S7). Of the 596 TCGA tumors from the survival
phenotype, 84.74% were ER+, 72.99% were PR+, 18.12%
were HER2+, and 26.51%, 17.79%, 6.88%, and 0.34% were
of luminal A, luminal B, HER2-enriched, and basal sub-
types, respectively. For the growth phenotype (n=523),
even more heterogeneity in ER, PR, and HER2 status was
observed (ER+, 53.54%; ER-, 37.67%; PR+, 46.85%; PR-,
43.98%; HER2+, 10.33%; HER2-, 56.41%; basal, 17.78%;
Her2 enriched, 3.06%; luminal A, 13.96%; and luminal B,
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4.02%). Hence, clinical and intrinsic subtypes varied in
each phenotype cluster, and the GFRN phenotypes pro-
vide additional information which complements existing
breast cancer clinical and intrinsic subtypes in both pa-
tient and cell line data [14, 37, 82, 83].

HER2 activity differences were also observed within
the survival phenotype, and differences in BAD activity
within the growth phenotype. To further classify samples
specifically on these differences, k-means clustering was
performed on the AKT, BAD, EGFR, and HER2 pathway
activity predictions in ICBP and TCGA. The four result-
ing clusters separated the survival phenotype into two
subsets of samples that had either high or low HER2
activity, and the growth phenotype into two subsets of
samples that had either high or low BAD activity. These
patterns were observed in both TCGA and ICBP data-
sets (Fig. 2¢, d). Again, subtype plotted against these four
subgroups as presented in the sidebars reveal there is
additional heterogeneity within ER and PR status that is
captured using GFRN subgroups. Of note, a survival
analysis of the four subgroups in TCGA did not show
significant differences in survival (\>=5.5, p value =
0.141; Additional file 1: Figure S8). This indicates that
these subgroups may not relate to survival directly.
Instead, these subgroups discriminate aberrant pathway
activity that may help select patient subgroups likely to
respond to specific drugs targeting those pathways.
GFRN phenotypes complement ER status and current
subtyping methods, but are more biologically focused
than current intrinsic subtypes and are useful in addition
to current IHC-based subtypes.

GFRN phenotypes and subgroups contribute to variation
found in TCGA breast cancer gene expression data

In order to determine if the GFRN phenotypes and sub-
groups contributed to heterogeneity in the breast cancer
data using an unbiased approach, an unsupervised PCA
was performed on 1119 breast cancer RNA-Seq samples
from TCGA. PCA is a dimension reduction method
capable of identifying uncorrelated sources of variation
within a dataset as principal components (PCs) [84, 85].
The first five PCs identified in this dataset represented
the most significant amount of variability explaining
34.3% of the total variance. The remaining components,
each accounting for less than 4% of the total variation,
were not investigated due to their minor contribution to
total variance. Of note, PC 1 was significantly associated
with average gene expression of the samples (Spearman’s
correlation -0.786, p value <0.0001), potentially reflect-
ing technical and non-disease-related sample variation
(Additional file 1: Figure S9). However, PC 1 was included
in analyses to demonstrate its performance. To explain
variability as presented by PC values, currently used histo-
logical (ER, PR, and HER2) and intrinsic subtypes were
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compared to GFRN-based approaches. First, each classifi-
cation approach was investigated if it explained variability
in each PC. When comparing PC values, significant differ-
ences were found between ER+ and ER- samples and PR+
and PR- samples for PCs 1 through 5, between HER2+
and HER2- samples for PCs 3, 4, and 5, across intrinsic
subtypes for PCs 1 through 5 (ANOVA, p value <0.0001),
between growth and survival phenotypes for PCs 2
through 5, and across four GFRN subgroups for PCs 1
through 5 (ANOVA p value <0.0001). These results indi-
cate that significant variation underlying TCGA breast
cancer data may be contributed from multiple sources, in-
cluding GFRN phenotypes, subgroups, and histological
and intrinsic subtypes.

Second, a linear modeling approach was used to model
the first five PCs with GFRN subgroups, intrinsic sub-
types (PAM50), and histological (ER, PR, and HER2)
subtypes. Variance explained by each model was com-
pared in terms of R* values. We included 355 TCGA
tumor samples for which all of these variables were
available. ER (R*=0.56) and PR (R%=0.407) status ex-
plained a significant proportion of PC2 but explained
less than 10% of the total variability in the other PCs.
HER? status alone explained less than 4% of the variability
for any of the PCs. Both GFRN subgroups, and intrinsic
subtypes, explained additional variability in PCs 1-5. For
all five PCs, adding the GFRN subgroups or intrinsic sub-
types to clinical subtypes increased the R* values of the
model (p value <0.01 for all models tested; Additional file
1: Figure S10 and Table S12). Specifically, adding GFRN
subtypes to a model of PCs explained an additional 10—
35% (p value <0.00001) of the variation when compared to
a model of ER status alone while PAM50 explained only
4-20% of the variation (Additional file 1: Table S12).

On a more granular level, GFRN subgroups explained
an additional 13.5% (p value <0.00001) of the variability
for PC2, which was not explained by ER status alone.
For PC3, GFRN subtypes explained an additional 35% of
the variation when compared to a model of ER status
alone (ER R?% 0.052; ER+ GFRN subtype R? 0.398; p
value <0.00001) and intrinsic subtypes only explained an
additional 20% of the variation compared to the same
model of ER status alone (ER+ intrinsic subtype R?
0.254; p value <0.00001). Overall, the models that con-
tained GFRN subgroups explained a larger percentage of
the variance of PC 1, 3, and 4, and models that con-
tained intrinsic subgroups explained a larger percentage
of the variance of PCs 2 and 5 (Additional file 1: Figure S10).
These significant R* and p values confirm the non-
redundancy of GFRN subgroups in relation to commonly
used clinical features in breast cancer. Additionally, GFRN
subgroups explain additional variance in models of
PCs 1, 3, and 4 compared to models containing in-
trinsic subgroups.
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Next, the variability contributed by GFRN subgroups
was investigated in relation to biological signals, or path-
way activity in this case. PC values for PCs 1 through 5
were correlated with the GFRN pathway activation esti-
mates from TCGA (Fig. 3; Additional file 1: Table S13).
Again, a striking bifurcated pattern was found in the
correlations between pathway activity and PCs in this in-
dependent variability analysis. PC 2 was positively corre-
lated with EGFR, KRAS, RAF1, and BAD activation and
negatively correlated with HER2, IGFIR, and AKT acti-
vation. Therefore, PC 2 is demonstrating characters of
the growth phenotype. PCs 3 and 4 were positively
correlated with HER2, IGF1R, and AKT activation and
negatively correlated with EGFR, KRAS, RAF1, and
BAD activation, thus representing growth phenotype
characteristics (Fig. 3). Both PC 1 and PC5 were nega-
tively correlated with EGFR and RAF1 activation but
positively correlated with BAD activation. Since intrin-
sic subtypes are derived empirically without pointing to
any specific biological phenomenon, a correlation to in-
trinsic subtypes could not be performed.

In summary, these novel GFRN subgroups explained a
significant amount of variability in TCGA RNA-Seq data.
The GERN subgroups described variation beyond ER, PR,
and HER2 status in all cases, and beyond intrinsic sub-
types for three out of five cases. These results suggest that
variability in breast cancer data can be further explained
in terms of the GFRN pathway activity. Therefore, GFRN
subgroups can augment current breast cancer subtyping
methods by encompassing additional heterogeneity not
captured by traditional approaches. This pathway-based
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approach may further explain specific variation in terms
of pathway activity, which may point to identifying thera-
peutic targets.

Breast cancer growth phenotypes bifurcate in expression
of mitochondrial apoptotic proteins

Next, differences between the survival and growth phe-
notypes were examined at the biological level, specifically
in terms of mitochondrial-mediated intrinsic apoptosis
mechanisms. Although cytotoxic anticancer agents induce
cell death through various mechanisms, including intrinsic
or extrinsic apoptosis, necrosis, autophagy, or mitotic ca-
tastrophe [86, 87], we focused on mitochondrial-mediated
intrinsic apoptosis mediated by BCL-2 family proteins for
the following reasons. First, BCL-2 family members, which
regulate the commitment to mitochondrial apoptosis by
balancing pro-apoptotic proteins such as BAD and BIM,
and anti-apoptotic proteins such as BCL-2 or MCL-1 [20],
have been shown to contribute to the formation, progres-
sion, and therapeutic response in breast and other cancers
[21, 88]. Second, particular GFRN signaling pathways,
such as those found in the survival and growth pheno-
types, have the potential to induce apoptosis resistance by
dysregulating BCL-2 family proteins, suggesting that tar-
geting GFRN members may lead to increased apoptosis
[23-29, 89-91]. Third, several therapeutic strategies tar-
geting anti-apoptotic BCL-2 family members are currently
under investigation; therefore, understanding which BCL-
2 proteins each phenotype is expressing may provide
insight into additional treatment strategies for breast
cancer [22, 92-94].
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Fig. 3 Principal component analysis across TCGA breast tumors. Correlation heatmap between principal component (PC) values from PCs 1
through 5 and ASSIGN GFRN pathway estimates from TCGA breast cancer RNA-Seq data. Red colors represent a positive correlation and blue
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Here, Western blotting was used to investigate
whether protein expression of particular BCL-2 family
members differed in breast cancer cell lines classified as
the survival or growth phenotypes (Fig. 4). The pro-
apoptotic protein BIM and anti-apoptotic protein MCL-
1 were probed across ten breast cancer cell lines of the
survival phenotype (eight ER+, two ER-), and ten cell
lines of the growth phenotype (ten ER-) (see Additional
file 2 for cell line characteristics). Higher levels of MCL-
1 were found in cell lines of the growth phenotype, and
higher levels of BIM were found in the survival pheno-
type (Fig. 4b). To determine if differences in MCL-1 and
BIM protein expression between the survival and growth
phenotypes were due to other properties, such as ER
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status, a Western blot assay was performed using cell
lines with additional heterogeneity in ER status. Although
limited by the number of ER+ cell lines of the growth
phenotype, 12 cell lines belonging to the survival pheno-
type (five novel ER+, three ER+ repeats from previous
assay, and four novel ER-) and seven cell lines from the
growth phenotype (one novel ER+, two novel ER-, and
four ER- repeats) were included. The protein expression
of MCL-1 and BIM were not strictly dependent on the ER
status (Additional file 1: Figure S11).

To understand if similar results could be found in pa-
tient tumors, the expression of BCL-2 family member
genes was examined, and MCL-I gene expression was
found to be higher in the growth phenotype of TCGA
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patient tumors (n=523) versus the survival phenotype
(n =596, p <0.0001) (Fig. 4c). These results were consist-
ent with previous studies showing that EGFR signaling
can upregulate gene expression of MCL-1 [25, 89-91].
In addition to MCL-1 dysregulation, breast cancer cell
lines of the growth phenotype expressed lower levels of
the pro-apoptotic protein BIM (Fig. 4d). In support of
this assessment, lower levels of BIM (BCL2LI11) gene
expression were found in ICBP breast cancer cell lines
(p =0.0004) and TCGA tumors (p =0.0002), and RPPA
protein expression was lower in TCGA tumors (p<
0.0001) (Fig. 4d). These results concur with literature
showing that EGFR signaling through ERK activation
can lead to repression of BIM [27-29]. Also, the co-
occurrence of high MCL-1 levels and low BIM levels in
the growth phenotype are likely due to MCL-1’s known
ability to bind and neutralize BIM, which leads to pre-
vention of apoptosis death effector activation [21, 95].
In summary, these results show an interesting mitochon-
drial apoptotic pathway induction that is dependent on
GERN activity. Specifically, breast tumors classified as
the growth phenotype may overexpress MCL-1 and
inhibit BIM expression to achieve cell survival. These
findings illustrate that breast cancer phenotypes, defined
by activation of specific growth factor receptor path-
ways, express different apoptotic proteins and may resist
apoptosis differently.

GFRNs predict drug response in breast cancer
Since there was a clear dichotomy in the GFRN signaling
mechanisms between the survival and growth phenotypes,
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these phenotypes were investigated in relation to drug
response in breast cancer cell lines. Pathway activation
estimates were correlated with drug response data for
90 drugs from the ICBP breast cancer cell line panel
Importantly, a consistent bifurcation pattern was observed
for drug response in the cell line data that matched the
observed pathway-level bifurcation. Specifically, cancer
cells classified as expressing the survival phenotype were
sensitive to therapies that target AKT, PI3K, HER2, and
mTOR (Fig. 5a). Additionally, these cell lines were more
resistant to chemotherapies and targeted therapies that
block EGEFR and MEK. In contrast, cancer cells expressing
the growth phenotype were sensitive to chemotherapeu-
tics such as docetaxel, paclitaxel, and cisplatin. These cell
lines were also sensitive to EGFR- and MEK-targeted
therapies, but more resistant to AKT, PI3K, HER2, and
mTOR inhibitors (Fig. 5a).

This dichotomy in drug response of the survival and
growth phenotypes was further tested in an independent
drug response assay. Eight drugs on a panel of 23 breast
cancer cell lines were tested (see Additional file 2: Sheet 1
for cell lines), and cell viability was tested upon drug
treatment by measuring ATP levels. Drugs included were
obatoclax (BCL-2, BCL-XL, BCL-W, BAK inhibitor),
UMI-77 (selective MCL-1 inhibitor), erlotinib (EGFR
inhibitor), doxorubicin (topoisomerase II inhibitor), tra-
metinib (MEK inhibitor), neratinib (pan-HER tyrosine
kinase inhibitor), Sigma-Aldrich AKT1/2 inhibitor (dual
AKT1/2 inhibitor), and bafilomycin (apoptosis inducer
that inhibits PI3K/AKT signaling and autophagy inhibitor)
at different doses (Additional file 2: Sheet 2). Again, a
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discrete pattern was observed between the survival and
growth phenotypes that translated to a bifurcated drug re-
sponse pattern (Fig. 5b). Responses to the chemotherapy
(doxorubicin) and the EGFR pathway inhibitor (erlotinib)
were high for the growth phenotype. In contrast, cancer
cell lines classified as the survival phenotype responded
well to drugs targeting components of the PI3K path-
way, such as Sigma-Aldrich AKT1/2 inhibitor, nerati-
nib, and bafilomycin.

In addition to the bifurcation of GFRN and drug re-
sponse, breast tumor cells of the growth phenotype
showed a higher response to the specific MCL-1 inhibitor
UMI-77 (Fig. 5b). This is consistent with the findings that
samples within the growth phenotype have higher MCL-1
expression than the survival phenotype. Response to oba-
toclax could not be clearly distinguished based on these
phenotypes, likely due to its nonspecific binding to pro-
survival proteins, including BCL-2, BCL-XL, and MCL-1
[96]. Overall, the GFRN phenotype-based drug response
predictions were validated in this independent drug
response assay. Additionally, drug sensitivity of emerging
therapies such as UMI-77, neratinib, and bafilomycin
showed differences between the two phenotypes, further
highlighting the close relationship between GFRN signal-
ing activity and response to therapies directed at pathways
in this network.
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When GFRN phenotype subgroups were considered,
several drugs in the ICBP drug response assay showed
significantly different drug response profiles in the sub-
groups found in each GFRN phenotypic arm. For ex-
ample, the PI3K and mTOR inhibitor GSK1059615 and
HER2/EGFR-targeting drug lapatinib were more effective
in cell lines within the survival phenotype showing higher
HER2 activity (p=0.009 and p <0.000001, respectively;
Fig. 6a, b). Additionally, ICBP cell lines expressing the
growth phenotype responded better to EGFR-targeting
drugs AG1478 and gefitinib in the EGFR/BAD low cluster
compared to the EGFR/BAD high cluster (p = 0.001 and
p =0.001, respectively; Fig. 6¢, d).

To determine if this bifurcation pattern was inde-
pendent of clinical and intrinsic subtyping approaches,
the correlations between pathway activation and drug
response for ER+ and ER- and HER+ and HER- ICBP
cell lines were clustered separately. Again, cell lines
with high AKT/IGFIR/HER activity, i.e., the survival
phenotype, were more sensitive to HER2/AKT/PI3K-
targeted drugs even within ER- and HER- cell lines
(Additional file 1: Figure S12). In ER+ and HER+ cell
lines, many PI3K/AKT/HER2-targeting drugs are more
effective in the survival phenotype, as expected. How-
ever, there was additional drug response heterogeneity
within ER+ samples that is associated with variations in
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BAD and HER2 pathway activity. These subgroups are
thus helpful to further classify samples for better drug
response prediction. To assess drug response across
ER, PR, and HER?2 status and intrinsic subtypes, it was
found that out of 90 drugs studied in ICBP only 13
(14.4%), 12 (13.3%), and 19 (21.1%) showed significant
differences in drug response based on ER, PR, and
HER2 status, respectively, but growth/survival pheno-
types were significant for 27 (49%) (Additional file 1:
Table S14). As further evidence, while HER2 positive
status is a biomarker for effective HER2-targeted ther-
apy, drug sensitivity does not solely depend on HER2
status. For example, while HER2 status performs much
better in differentiating lapatinib’s response than ER
and PR status (p < 0.0001), some HER2- cell lines, such as
HCC70 and 184A1, may respond to lapatinib (Additional
file 1: Figure S13a—c). The subgroup analysis showed
the survival/HER2 high subgroup to be more sensitive
to lapatinib than any other subgroup (Fig. 6b). In con-
trast, intrinsic subgroup analysis showed, in general,
that the luminal subtype was more sensitive, but signifi-
cant variability in lapatinib sensitivity exists within the
luminal subtype (Additional file 1: Figure S13d). Other
detailed examples describing comparisons between the
GFRN phenotypes and other methods are included in
Fig. 6. In conclusion, the GFRN phenotypes provide
additional information to current approaches; GFRN
phenotypes and subgroups could be used to further stratify
samples and may help select more appropriate candidates
for effective drug response.
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Discussion

Targeted therapies directed against the key members of
the growth factor receptor network (GFRN), such as
EGFR, PI3K, AKT, and mTOR inhibitors, are currently
in preclinical development, clinical trials, or approved
for use in breast cancer [16]. However, predicting pa-
tients’ responses to therapies is challenging due to diffi-
culties in measuring complex signaling events in tumors.
Here, this issue was addressed by investigating global
GERN activity in breast cancer using these novel signa-
tures. Two discrete patterns of GFRN pathway activity,
or phenotypes, were found (Fig. 7). The survival pheno-
type was characterized by the activation of the HER2,
AKT, and IGFIR pathways, and the growth phenotype
by the activation of the EGFR, KRAS, RAF1, and BAD
pathways. Additional subgroups were also found within
the survival and growth phenotypes, including HER2
high and low activity groups within the survival pheno-
type and BAD high and low activity groups within the
growth phenotype. Although these discrete phenotypes
were named the survival and growth phenotypes for
simplicity, GFRN pathways comprising both groups can
contribute to growth and survival. To the best of our
knowledge, this is the first study to characterize GFRN
activity using signature-based representations of activity
across multiple pathways.

These discrete subgroups displayed differences in re-
sponse to targeted therapies and chemotherapies in breast
cancer cell lines. For example, conventional chemother-
apies such as docetaxel, paclitaxel, and doxorubicin were

EGFR
HER2 IGF1R %)
KRAS
Transcription
@ Level l:
i
- "
BIM
Pro-apoptotic T BIM Protein l’ BIM Pro-apoptotic
Anti-apoptotic l, @ Level T @ Anti-apoptotic
Drug EGFR/MEK
HER2/AKT/PI3BK/mTOR inhibitors
inhibitors Response &
Level chemotherapy
Fig. 7 Summary of the survival and growth phenotypes in breast cancer. The survival phenotype is characterized by high HER2, IGF1R, and AKT
pathway activation, high expression of pro-apoptotic BIM, low expression of anti-apoptotic MCL-1, and response to HER2, AKT, PI3K, and mTOR
inhibitors. The growth phenotype is characterized by high EGFR, KRAS, and RAF1 activation, high expression of MCL-1, low expression of BIM, and
response to EGFR/MEK-targeted therapies and chemotherapies
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more effective for the growth phenotype than the survival
phenotype. Sensitivity to PI3K, HER2, AKT, and mTOR
inhibitors and resistance to conventional chemotherapies
were also found in the survival phenotype. Among the
subgroups, the survival phenotype/high HER2 subgroup
was hypersensitive to lapatinib, a HER2 and EGFR dual
inhibitor. Similarly, the survival phenotype/high HER2
subgroup was more sensitive to GSK1059615, a PI3K/
mTOR inhibitor than the survival phenotype/low HER2
subgroup. Cell lines of the growth phenotype responded
better to EGFR and MEK inhibitors and to conventional
chemotherapies. The growth phenotype/low BAD subtype
was more sensitive to both AG1478 and gefitinib (EGFR
inhibitors) than the growth phenotype/high BAD subtype.
Overall, the GFRN pathway-based phenotyping contrib-
uted to information related to drug response.

Analysis of these novel phenotypes in breast cancer
cell lines and tumors also revealed interesting differences
in intrinsic apoptosis. For example, breast cancer cell
lines and tumors of the growth phenotype had higher
levels of the anti-apoptotic protein MCL-1 and lower
levels of the critical pro-apoptotic protein BIM. These
results are consistent with the notion that the MAPK
pathway can activate MCL-1 expression and that activa-
tion of ERK1/2 and the MAPK pathway can repress BIM
[25, 27-29]. An independent drug assay also showed
that the growth phenotypic cell lines responded better to
a MCL-1 inhibitor (UMI-77). These results suggest that
the patients with growth phenotypic expression may
benefit from treatments that increase BIM, i.e.,, MCL-1
inhibitors, in combination with chemotherapies, EGFR
inhibitors, or other inhibitors of the MAPK pathway
[97, 98]. Therefore, targeting GFRN members may be an
effective therapeutic strategy for inhibiting GFRN path-
ways and increasing apoptosis [22]. These results highlight
that mapping phenotypes, such as growth networks in
breast tumors, can be exploited to guide the use of tar-
geted therapies. This study was limited to how GFRN
activity related to drug response and cellular intrinsic
apoptosis, but it is understood that this is not the sole
mechanism by which cancer cells die, and other cell death
mechanisms, such as necrosis, autophagy, and mitotic ca-
tastrophe, should also be considered. In addition, as the
use of cell lines is limited, a larger-scale analysis of
apoptotic pathways dysregulation in patient tumor cells of all
subtypes will be informative in further detailing how these
pathways signal in cancer. These phenotypes many
correlate with other subtyping properties, and may also
be confounded by properties of intrinsic subtyping.

Importantly, these newly discovered breast cancer
survival and growth phenotypes are biologically relevant
and offer a direct method for probing and targeting the
GERN in breast tumors. In addition, these phenotypes
complement widely used clinical and intrinsic subtypes,
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and stratification of cancers by these phenotypes leads
to enhanced drug response predictions compared to
classifying cancers by clinical subtyping approaches. This
is most likely because oncogenic pathway activation was
measured more comprehensively than relying on single
protein measurements. In addition, this approach con-
siders crosstalk between members of the GFRN and cor-
relates with biological processes such as cell survival.
This pathway-based approach for identifying phenotypes
allows for exploration of additional heterogeneity occur-
ring within the identified phenotypes, which can further
improve the ability to stratify breast cancers by pathway
activity, which then can be used to predict drug re-
sponse. Although this method has added to current ap-
proaches for predicting drug response in breast cancer,
most experiments were performed in breast cancer cell
lines with particular classes of drugs; additional drug
testing should be performed in breast cancer patient
cells in order to confirm these phenotypes.

In summary, a novel genomic pathway-based approach
of characterizing the interactive GFRN activation in
breast cancer was used to discover two discrete GFRN
phenotypes with significant differences in cell survival
mechanisms and drug response in breast cancer. These
phenotypes captured the distinct bifurcation pattern seen
in gene expression, the GFRN pathway activity, mitochon-
drial apoptotic network protein expression, and drug re-
sponse (Fig. 7). While ER, PR, HER2 status and, more
recently, intrinsic subtype are used to guide breast cancer
treatment, these subtyping or classifying approaches may
not describe signaling pathway dysregulation in tumor
cells. Pathway activity data provide additional information
about tumor cells that can be leveraged to predict drug re-
sponse. Characterizing individual tumors into these phe-
notypes can help determine which patients will benefit
from a treatment and select the appropriate subpopula-
tions for clinical trials. Importantly, these seven pathways
did not capture all the heterogeneity of the samples and
inclusion of other pathways may have additional benefits.
Although feasible, additional investigation is needed
before these phenotypes can be used in clinical trials
for patient selection, including the testing of these phe-
notypes in patient primary tumor cells.

Conclusions

A discriminating bifurcation pattern of key GFRN path-
ways was identified in breast tumors that expands beyond
histological and clinical subtypes. These phenotypes
correlated with unique apoptotic and drug response
mechanisms. The ability to measure signaling events more
accurately in patient tumors advances understanding of
the biological basis of cancer. These results may lead to
more effective and individualized treatment selection in
patients with breast cancer.



Rahman et al. Genome Medicine (2017) 9:40

Additional files

Additional file 1: Supplemental results, figures and tables. (PDF 2514 kb)

Additional file 2: The cell lines used in the independent drug assay and
the Western blotting experiments, and the drug doses and negative log
EC50 values for the independent drug assay. (XLSX 149 kb)

Additional file 3: Full results from the GSVA gene set enrichment
analysis for the HER2, IGF1R, AKT, BAD, EGFR, KRAS, and RAF1 signatures.
(XLS 1399 kb)

Additional file 4: Optimized gene lists for the AKT, IGF1R, BAD, EGFR,
HER2, KRAS, and RAF1 signatures. (XLSX 30 kb)

Additional file 5: Scaled ASSIGN pathway activity predictions, phenotype,
and k-means cluster calls for TCGA and ICBP samples. (XLSX 152 kb)

Acknowledgements
We thank Laurie Jackson for generation of gene expression data and Bai Luo
for assisting with the drug response assay.

Funding
MR was funded in part by a National Library of Medicine training fellowship
(T15LM007124). AHB, WEJ, DFJ, SMM, LH, and JG were funded by (U01CA164720).

Availability of data and materials

The datasets supporting the conclusions of this article and instructions
for how to download them are available in the Github repository titled
"GRFN_signatures” found at httpsz//github.com/mumtahena/GFRN_signatures.
Gene expression signatures can be found at the GEO under accessions
GSE83083 and GSE59765.

Authors’ contributions

AHB and WEJ conceived of the study; AHB, WEJ, MR, JWG, LH, and SMM
designed the study; SRP set up the initial bioinformatics pipeline; MR, SMM,
DFJ, and SRP performed bioinformatics and data analysis; SM, GS, SWR, and
JAM performed the experimental work. MR, SM, DFJ, AHB, and WEJ wrote
the manuscript; SRP, JAM, SWR, LWG, and JG provided crucial manuscript
feedback and suggestions. All authors read and approved the final manuscript.

Competing interests
The authors declare that they have no competing interests.

Consent for publication
Not applicable.

Ethics approval and consent to participate

All research involving human samples has been approved by the University
of Utah Institutional Review Board. All research conformed to principles of
the declaration of Helsinki. With informed consent, breast tissue samples
were collected from patients at the University of Utah at time of surgery
for Human Mammary Epithelial Cell preparations.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in
published maps and institutional affiliations.

Author details

'Department of Pharmacology and Toxicology, University of Utah, 30 S 2000
E, Salt Lake City, UT 84108, USA. 2Departmem of Biomedical Informatics,
University of Utah, Salt Lake City, UT, USA. *Department of Oncological
Sciences, University of Utah, Salt Lake City, UT, USA. “Division of
Computational Biomedicine, Boston University School of Medicine, Boston,
MA, USA. *Department of Biomedical Engineering, Center for Spatial Systems
Biomedicine, Knight Cancer Institute, Oregon Health and Sciences University,
Portland, OR, USA. ®Department of Biology, Brigham Young University, Provo,
UT, USA.

Page 17 of 19

Received: 23 August 2016 Accepted: 11 April 2017
Published online: 26 April 2017

References

1. DeSantis CE, Lin CC, Mariotto AB, Siegel RL, Stein KD, Kramer JL, et al.
Cancer treatment and survivorship statistics. CA Cancer J Clin. 2014,64:252-71.

2. Lemmon MA, Schlessinger J. Cell signaling by receptor tyrosine kinases.
Cell. 2010;141:1117-34.

3. Mosesson Y, Yarden Y. Oncogenic growth factor receptors: implications for
signal transduction therapy. Semin Cancer Biol. 2004;14:262-70.

4. Nahta R. Growth factor receptors in breast cancer: potential for therapeutic
intervention. Oncologist. 2003,8:5-17.

5. Hynes NE. Tyrosine kinase signalling in breast cancer. Breast Cancer Res
BioMed Central. 2000;2:154-7.

6. Masuda H, Zhang D, Bartholomeusz C, Doihara H, Hortobagyi GN, Ueno NT.
Role of epidermal growth factor receptor in breast cancer. Breast Cancer
Res Treat. 2012;136:331-45.

7. De Abreu F. Personalized therapy for breast cancer. Clin Genet. 2014,86:62-7.

8. Davis NM, Sokolosky M, Stadelman K, Abrams SL, Libra M, Candido S, et al.
Deregulation of the EGFR/PI3K/PTEN/Akt/mTORC1 pathway in breast
cancer: possibilities for therapeutic intervention. Oncotarget Impact J.
2014,5(13):4603-50.

9. Groenendijk FH, Bernards R. Drug resistance to targeted therapies: déja vu
all over again. Mol Oncol. 2014;8:1067-83.

10.  McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Franklin RA, Montalto G,
et al. Ras/Raf/MEK/ERK and PI3K/PTEN/Akt/mTOR cascade inhibitors: how
mutations can result in therapy resistance and how to overcome resistance.
Oncotarget Impact J. 2012;3(10):1068-111.

11. Perona R. Cell signalling: growth factors and tyrosine kinase receptors.
Clin Transl Oncol. 2006;8:77-82.

12. Igbal N, Igbal N. Human epidermal growth factor receptor 2 (HER2) in
cancers: overexpression and therapeutic implications. Mol Biol Int.
2014;2014:852748.

13. Farabaugh SM, Boone DN, Lee AV. Role of IGF1R in breast cancer subtypes,
stemness, and lineage differentiation. Front Endocrinol (Lausanne). 2015;6:59.

14.  Perou CM. Molecular stratification of triple-negative breast cancers. Oncologist.
2010;15 Suppl 5:39-48.

15.  Baselga J. Targeting the phosphoinositide-3 (PI3) kinase pathway in breast
cancer. Oncologist. AlphaMed Press. 2011;16 Suppl 1:12-9.

16.  Paplomata E, ORegan R. The PI3K/AKT/mTOR pathway in breast cancer: targets,
trials and biomarkers. Ther Adv Med Oncol. 2014;6:154-66.

17. Saini KS, Loi S, de Azambuja E, Metzger-Filho O, Saini ML, Ignatiadis M, et al.
Targeting the PI3K/AKT/mTOR and Raf/MEK/ERK pathways in the treatment
of breast cancer. Cancer Treat Rev. 2013;39:935-46.

18. Santen RJ, Song RX, McPherson R, Kumar R, Adam L, Jeng M-H, et al. The
role of mitogen-activated protein (MAP) kinase in breast cancer. J Steroid
Biochem Mol Biol. 2002,80:239-56.

19. Roberts PJ, Der CJ. Targeting the Raf-MEK-ERK mitogen-activated protein
kinase cascade for the treatment of cancer. Oncogene. 2007,26:3291-310.

20. Czabotar PE, Lessene G, Strasser A, Adams JM. Control of apoptosis by the
BCL-2 protein family: implications for physiology and therapy. Nat Rev Mol
Cell Biol. 2014;15:49-63.

21. Vo T-T, Letai A. BH3-only proteins and their effects on cancer. Adv Exp Med Biol.
2010,687:49-63.

22.  Letai AG. Diagnosing and exploiting cancer's addiction to blocks in apoptosis.
Nat Rev Cancer. 2008;8:121-32.

23. Datta SR, Dudek H, Tao X, Masters S, Fu H, Gotoh Y, et al. Akt phosphorylation
of BAD couples survival signals to the cell-intrinsic death machinery.

Cell. 1997,91:231-41.

24.  Franke TF, Hornik CP, Segev L, Shostak GA, Sugimoto C. PI3K/Akt and
apoptosis: size matters. Oncogene. 2003;22:8983-98.

25. Townsend KJ, Trusty JL, Traupman MA, Eastman A, Craig RW. Expression of
the antiapoptotic MCL1 gene product is regulated by a mitogen activated
protein kinase-mediated pathway triggered through microtubule disruption
and protein kinase C. Oncogene. 1998;17:1223-34.

26. Carpenter RL, Lo HW. Regulation of Apoptosis by HER2 in Breast Cancer.

J Carcinogene Mutagene. 2013;57:003. doi:10.4172/2157-2518.57-003.

27. Weston CR, Balmanno K, Chalmers C, Hadfield K, Molton SA, Ley R, et al.
Activation of ERK1/2 by deltaRaf-1:ER* represses Bim expression independently
of the JNK or PI3K pathways. Oncogene. 2003;22:1281-93.


dx.doi.org/10.1186/s13073-017-0429-x
dx.doi.org/10.1186/s13073-017-0429-x
dx.doi.org/10.1186/s13073-017-0429-x
dx.doi.org/10.1186/s13073-017-0429-x
dx.doi.org/10.1186/s13073-017-0429-x
https://github.com/mumtahena/GFRN_signatures
http://dx.doi.org/10.4172/2157-2518.S7-003

Rahman et al. Genome Medicine (2017) 9:40

28.

29.

30.

32.

33.

34

35.

36.

37.

38.

39.

40.

41.

42.

43.

44,

45,

46.

47.

48.

49.

50.

51.

Ley R, Balmanno K, Hadfield K, Weston C, Cook SJ. Activation of the ERK1/2
signaling pathway promotes phosphorylation and proteasome-dependent
degradation of the BH3-only protein. Bim J Biol Chem. 2003;278:18811-6.
Deng J, Shimamura T, Perera S, Carlson NE, Cai D, Shapiro Gl, et al.
Proapoptotic BH3-only BCL-2 family protein BIM connects death signaling
from epidermal growth factor receptor inhibition to the mitochondrion.
Cancer Res. 2007,67:11867-75.

Arteaga CL, Engelman JA. ERBB receptors: from oncogene discovery to
basic science to mechanism-based cancer therapeutics. Cancer Cell.
2014,25:282-303.

Yarden Y, Sliwkowski MX. Untangling the ErbB signalling network. Nat Rev
Mol Cell Biol. 2001;2:127-37.

Faber AC, Li D, Song Y, Liang M-C, Yeap BY, Bronson RT, et al. Differential
induction of apoptosis in HER2 and EGFR addicted cancers following PI3K
inhibition. Proc Natl Acad Sci U S A. 2009;106:19503-8.

Weigel MT, Dowsett M. Current and emerging biomarkers in breast cancer:
prognosis and prediction. Endocr Relat Cancer. 2010;17:R245-62.

Hammond MEH, Hayes DF, Dowsett M, Allred DC, Hagerty KL, Badve S, et al.

American Society of Clinical Oncology/College of American Pathologists
guideline recommendations for immunohistochemical testing of estrogen
and progesterone receptors in breast cancer. J Clin Oncol. 2010;28:2784-95.
Wolff AC, Hammond MEH, Hicks DG, Dowsett M, McShane LM, Allison KH,
et al. Recommendations for human epidermal growth factor receptor 2
testing in breast cancer: American Society of Clinical Oncology/College
of American Pathologists clinical practice guideline update. J Clin Oncol.
2013;31:3997-4013.

Parker JS, Mullins M, Cheang MCU, Leung S, Voduc D, Vickery T, et al.
Supervised risk predictor of breast cancer based on intrinsic subtypes.

J Clin Oncol. 2009;27:1160-7.

Serlie T, Perou CM, Tibshirani R, Aas T, Geisler S, Johnsen H, et al. Gene
expression patterns of breast carcinomas distinguish tumor subclasses
with clinical implications. Proc Natl Acad Sci U S A. 2001;98:10869-74.
Patani N, Martin L-A, Dowsett M. Biomarkers for the clinical management of
breast cancer: international perspective. Int J Cancer. 2013;133:1-13.
Herschkowitz JI, Simin K, Weigman VJ, Mikaelian |, Usary J, Hu Z, et al.
Identification of conserved gene expression features between murine
mammary carcinoma models and human breast tumors. Genome Biol.
2007,8:R76.

Prat A, Parker JS, Karginova O, Fan C, Livasy C, Herschkowitz JI, et al.
Phenotypic and molecular characterization of the claudin-low intrinsic
subtype of breast cancer. Breast Cancer Res. 2010;12:R68.

Vera-Badillo FE, Templeton AJ, de Gouveia P, Diaz-Padilla |, Bedard PL,
Al-Mubarak M, et al. Androgen receptor expression and outcomes in early
breast cancer: a systematic review and meta-analysis. J Natl Cancer Inst.
2014;106:djt319.

Farmer P, Bonnefoi H, Becette V, Tubiana-Hulin M, Fumoleau P, Larsimont D,
et al. Identification of molecular apocrine breast tumours by microarray
analysis. Oncogene. 2005;24:4660-71.

Guedj M, Marisa L, de Reynies A, Orsetti B, Schiappa R, Bibeau F, et al. A
refined molecular taxonomy of breast cancer. Oncogene. 2012;31:1196-206.
Dvorkin-Gheva A, Hassell JA. Identification of a novel luminal molecular
subtype of breast cancer. PLoS One. 2014;9:e103514.

Marusyk A, Polyak K. Tumor heterogeneity: causes and consequences.
Biochim Biophys Acta Rev Cancer. 2010;1805:105-17.

Huang C-C, Tu S-H, Lien H-H, Jeng J-Y, Liu J-S, Huang C-S, et al. Prediction
consistency and clinical presentations of breast cancer molecular subtypes
for Han Chinese population. J Transl Med. 2012;10 Suppl 1:510.

Cheang MCU, Martin M, Nielsen TO, Prat A, Voduc D, Rodriguez-Lescure A,
et al. Defining breast cancer intrinsic subtypes by quantitative receptor
expression. Oncologist. 2015;,20:474-82.

Tang P, Tse GM. Immunohistochemical surrogates for molecular
classification of breast carcinoma: a 2015 update. Arch Pathol Lab Med.
2016;140:806-14.

Badve S, Dabbs DJ, Schnitt SJ, Baehner FL, Decker T, Eusebi V, et al.
Basal-like and triple-negative breast cancers: a critical review with an emphasis on
the implications for pathologists and oncologists. Mod Pathol. 2011,24:157-67.
Bild AH, Yao G, Chang JT, Wang Q, Potti A, Chasse D, et al. Oncogenic
pathway signatures in human cancers as a guide to targeted therapies.
Nature. 2006;439:353-7.

Watters JW, Roberts CJ. Developing gene expression signatures of pathway
deregulation in tumors. Mol Cancer Ther. 2006;5:2444-9.

52.

53.

54.

55.

56.

57.

58.

59.

60.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71,

72.

73.

74.

75.

76.

77.

78.

79.

Page 18 of 19

Cohen AL, Soldi R, Zhang H, Gustafson AM, Wilcox R, Welm BE, et al.

A pharmacogenomic method for individualized prediction of drug sensitivity.
Mol Syst Biol. 2011;7:513.

Soldi R, Cohen AL, Cheng L, Sun'Y, Moos PJ, Bild AH. A genomic approach
to predict synergistic combinations for breast cancer treatment.
Pharmacogenomics J. 2013;13:94-104.

El-Chaar NN, Piccolo SR, Boucher KM, Cohen AL, Chang JT, Moos PJ, et al.
Genomic classification of the RAS network identifies a personalized
treatment strategy for lung cancer. Mol Oncol. 2014;8:1339-54.

Gustafson AM, Soldi R, Anderlind C, Scholand MB, Qian J, Zhang X, et al.
Airway PI3K pathway activation is an early and reversible event in lung
cancer development. Sci Transl Med. 2010;2:26ra25.

Comprehensive molecular portraits of human breast tumours. Nature.
2012;490:61-70.

Daemen A, Griffith OL, Heiser LM, Wang NJ, Enache OM, Sanborn Z, et al.
Modeling precision treatment of breast cancer. Genome Biol. 2013;14:R110.
Shen Y, Rahman M, Piccolo SR, Gusenleitner D, El-Chaar NN, Cheng L, et al.
ASSIGN: context-specific genomic profiling of multiple heterogeneous
biological pathways. Bioinformatics. 2015;31:1745-53.

Zhang W, Liu HT. MAPK signal pathways in the regulation of cell proliferation
in mammalian cells. Cell Res. 2002;12:9-18.

McCubrey JA, Steelman LS, Chappell WH, Abrams SL, Wong EWT, Chang F,
et al. Roles of the Raf/MEK/ERK pathway in cell growth, malignant transformation
and drug resistance. Biochim Biophys Acta. 2007;1773:1263-84.

Culture of Epithelial Cells. Eds. Freshney RI, Freshney MG. CRC Beatson
Laboratories Glasgow, Scotland: Wiley; 2004.

Luo J, Deng Z-L, Luo X, Tang N, Song W-X, Chen J, et al. A protocol for
rapid generation of recombinant adenoviruses using the AdEasy system.
Nat Protoc. 2007;2:1236-47.

Liao Y, Smyth GK; Shi W. featureCounts: an efficient general purpose program for
assigning sequence reads to genomic features. Bioinformatics. 2014;30:923-30.
Liao Y, Smyth GK, Shi W. The Subread aligner: fast, accurate and scalable
read mapping by seed-and-vote. Nucleic Acids Res. 2013;41:¢108.

Johnson WE, Li C, Rabinovic A. Adjusting batch effects in microarray
expression data using empirical Bayes methods. Biostatistics. 2007,8:118-27.
Héanzelmann S, Castelo R, Guinney J. GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf. 2013;14:7.

Liberzon A, Subramanian A, Pinchback R, Thorvaldsdéttir H, Tamayo P, Mesirov JP.
Molecular signatures database (MSigDB) 3.0. Bioinformatics. 2011;27:1739-40.
Ritchie ME, Phipson B, Wu D, Hu Y, Law CW, Shi W, et al. limma powers
differential expression analyses for RNA-sequencing and microarray studies.
Nucleic Acids Res. 2015/43:e47.

Leek JT, Johnson WE, Parker HS, Jaffe AE, Storey JD. The sva package for
removing batch effects and other unwanted variation in high-throughput
experiments. Bioinformatics. 2012;28:882-3.

Hennessy BT, Lu Y, Gonzalez-Angulo AM, Carey MS, Myhre S, Ju Z, et al.

A technical assessment of the utility of reverse phase protein arrays for the
study of the functional proteome in non-microdissected human breast
cancers. Clin Proteomics. 2010;6:129-51.

Paweletz CP, Charboneau L, Bichsel VE, Simone NL, Chen T, Gillespie JW, et al.
Reverse phase protein microarrays which capture disease progression show activation
of pro-survival pathways at the cancer invasion front. Oncogene. 2001,20:1981-9.
Corbit KC, Trakul N, Eves EM, Diaz B, Marshall M, Rosner MR. Activation
of Raf-1 signaling by protein kinase C through a mechanism involving
Raf kinase inhibitory protein. J Biol Chem. 2003;278:13061-8.

Kolch W, Heidecker G, Kochs G, Hummel R, Vahidi H, Mischak H, et al.
Protein kinase C alpha activates RAF-1 by direct phosphorylation. Nature.
1993,364:249-52.

Matallanas D, Birtwistle M, Romano D, Zebisch A, Rauch J, von Kriegsheim A, et al. Raf
family kinases: old dogs have leamed new tricks. Genes Cancer. 2011;2232-60.
Hollander M, Douglas A, Wolfe EC. NonparamelSBN: 1118553292,
9781118553299tric statistical methods. New York: Wiley; 1973.

Hollander M, Douglas A, Wolfe EC. Nonparametric Statistical Methods Wiley
Series in Probability and Statistics. Wiley; 2013. 1SBN: 1118553292, 9781118553299.
Best DJ, Roberts DE. Algorithm AS 89: the upper tail probabilities of
Spearman’s Rho. J R Stat Soc: Ser C: Appl Stat. 1975;24:377-9.
Wickham H. ggplot2: elegant graphics for data analysis. New York:
Springer-Verlag; 2009.

Zuguang Gu, Roland Eils, Matthias Schlesner; Complex heatmaps reveal
patterns and correlations in multidimensional genomic data. Bioinformatics.
2016;32(18): 2847-9. doi:10.1093/bioinformatics/btw313.


http://dx.doi.org/10.1093/bioinformatics/btw313

Rahman et al. Genome Medicine (2017) 9:40

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91

92.

93.

94.

95.

96.

97.

98.

R Core Team. R: A language and environment for statistical computing.

R Foundation for Statistical Computing, Vienna, Austria. 2013. http://www.R-
project.org/.

Mendoza MC, Er EE, Blenis J. The Ras-ERK and PI3K-mTOR pathways:
cross-talk and compensation. Trends Biochem Sci. 2011;36:320-8.

Sotiriou C, Neo S-Y, McShane LM, Korn EL, Long PM, Jazaeri A, et al.

Breast cancer classification and prognosis based on gene expression profiles
from a population-based study. Proc Natl Acad Sci U S A. 2003;100:10393-8.
Perou CM, Serlie T, Eisen MB, van de Rijn M, Jeffrey SS, Rees CA, et al.
Molecular portraits of human breast tumours. Nature. 2000;406:747-52.
Pearson K. LIIl. On lines and planes of closest fit to systems of points in space.
Philos Mag Ser 6. 1901;2:559-72

Hotelling H. Analysis of a complex of statistical variables into principal
components. J Educ Psychology. 1933,24(6):417-41. doi:10.1037/h0071325.
Ricci MS, Zong W-X. Chemotherapeutic approaches for targeting cell
death pathways. Oncologist. 2006;11:342-57.

Fulda S, Debatin K-M. Extrinsic versus intrinsic apoptosis pathways in
anticancer chemotherapy. Oncogene. 2006;25:4798-811.

Williams MM, Cook RS. Bcl-2 family proteins in breast development and
cancer: could Mcl-1 targeting overcome therapeutic resistance? Oncotarget.
2015;6:3519-30.

Nalluri S, Peirce SK, Tanos R, Abdella HA, Karmali D, Hogarty MD, et al.

EGFR signaling defines Mcl-1 survival dependency in neuroblastoma.
Cancer Biol Ther. 2015:16(2):276-86.

Boucher MJ, Morisset J, Vachon PH, Reed JC, Lainé J, Rivard N. MEK/ERK
signaling pathway regulates the expression of Bcl-2, Bcl-X(L), and Mcl-1
and promotes survival of human pancreatic cancer cells. J Cell Biochem.
2000;79:355-69.

Booy EP, Henson ES, Gibson SB. Epidermal growth factor regulates Mcl-1
expression through the MAPK-Elk-1 signalling pathway contributing to
cell survival in breast cancer. Oncogene. 2011;30:2367-78.

Montero J, Sarosiek KA, DeAngelo JD, Maertens O, Ryan J, Ercan D, et al.
Drug-induced death signaling strategy rapidly predicts cancer response
to chemotherapy. Cell. 2015;160:977-89.

Hassan M, Watari H, Abualmaaty A, Ohba Y, Sakuragi N. Apoptosis and
molecular targeting therapy in cancer. Biomed Res Int. 2014;2014:150845.
Vogler M. Targeting BCL2-proteins for the treatment of solid tumours.
Adv Med. 2014;2014:1-14.

Wuilleme-Toumi S, Trichet V, Gomez-Bougie P, Gratas C, Bataille R, Amiot M.
Reciprocal protection of Mcl-1 and Bim from ubiquitin-proteasome degradation.
Biochem Biophys Res Commun. 2007;361:865-9.

Goard CA, Schimmer AD. An evidence-based review of obatoclax mesylate
in the treatment of hematological malignancies. Core Evid. 2013;8:15-26.
Akiyama T, Dass CR, Choong PFM. Bim-targeted cancer therapy: a link
between drug action and underlying molecular changes. Mol Cancer Ther.
2009;8:3173-80.

Faber AC, Corcoran RB, Ebi H, Sequist LV, Waltman BA, Chung E, et al.

BIM expression in treatment-naive cancers predicts responsiveness to kinase
inhibitors. Cancer Discov. 2011;1:352-65.

Page 19 of 19

Submit your next manuscript to BioMed Central
and we will help you at every step:

* We accept pre-submission inquiries

e Our selector tool helps you to find the most relevant journal

* We provide round the clock customer support

e Convenient online submission

e Thorough peer review

e Inclusion in PubMed and all major indexing services

e Maximum visibility for your research

Submit your manuscript at

www.biomedcentral.com/submit () BiolMed Central



http://www.R-project.org/
http://www.R-project.org/
http://dx.doi.org/10.1037/h0071325

	Abstract
	Background
	Methods
	Results
	Conclusions

	Background
	Methods
	Overexpression of genes of interest in human mammary epithelial cells
	Western blot analysis for expression of growth factor proteins in HMECs and apoptotic proteins in breast cancer cell lines
	Dose response assay
	RNA preparation and RNA sequencing
	Gene expression data processing, normalization, and datasets
	Generation of gene expression signatures
	Gene set enrichment analysis on RNA-Seq signatures
	Batch adjustment and estimation of pathway activity in ICBP and TCGA BRCA patient samples
	Optimization of single-pathway estimates in ICBP cell line and TCGA BRCA patient data
	Software implementation of pathway activity prediction with generated signatures
	Determination of growth factor phenotypes in ICBP and TCGA
	Identification of additional drug response heterogeneity within growth factor phenotypes
	Statistical analyses

	Results
	Two dominant phenotypes in breast cancer patients and cell lines
	GFRN phenotypes and subgroups contribute to variation found in TCGA breast cancer gene expression data
	Breast cancer growth phenotypes bifurcate in expression of mitochondrial apoptotic proteins
	GFRNs predict drug response in breast cancer

	Discussion
	Conclusions
	Additional files
	Acknowledgements
	Funding
	Availability of data and materials
	Authors’ contributions
	Competing interests
	Consent for publication
	Ethics approval and consent to participate
	Publisher’s Note
	Author details
	References

