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Abstract

Background: Genome-wide loss-of-function profiling is widely used for systematic identification of genetic
dependencies in cancer cells; however, the poor reproducibility of RNA interference (RNAI) screens has been a major
concern due to frequent off-target effects. Currently, a detailed understanding of the key factors contributing to the
sub-optimal consistency is still a lacking, especially on how to improve the reliability of future RNAi screens
by controlling for factors that determine their off-target propensity.

Methods: We performed a systematic, quantitative analysis of the consistency between two genome-wide shRNA
screens conducted on a compendium of cancer cell lines, and also compared several gene summarization methods for
inferring gene essentiality from shRNA level data. We then devised novel concepts of seed essentiality and shRNA
family, based on seed region sequences of shRNAs, to study in-depth the contribution of seed-mediated off-target effects
to the consistency of the two screens. We further investigated two seed-sequence properties, seed pairing stability, and
target abundance in terms of their capability to minimize the off-target effects in post-screening data analysis. Finally, we
applied this novel methodology to identify genetic interactions and synthetic lethal partners of cancer drivers,
and confirmed differential essentiality phenotypes by detailed CRISPR/Cas9 experiments.

Results: Using the novel concepts of seed essentiality and shRNA family, we demonstrate how genome-wide
loss-of-function profiling of a common set of cancer cell lines can be actually made fairly reproducible when
considering seed-mediated off-target effects. Importantly, by excluding shRNAs having higher propensity for
off-target effects, based on their seed-sequence properties, one can remove noise from the genome-wide shRNA
datasets. As a translational application case, we demonstrate enhanced reproducibility of genetic interaction partners
of common cancer drivers, as well as identify novel synthetic lethal partners of a major oncogenic driver, PIK3CA,
supported by a complementary CRISPR/Cas9 experiment.

Conclusions: We provide practical guidelines for improved design and analysis of genome-wide loss-of-function
profiling and demonstrate how this novel strategy can be applied towards improved mapping of genetic
dependencies of cancer cells to aid development of targeted anticancer treatments.
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Background

RNA interference (RNAi) screening is a powerful tech-
nique for gene silencing that is widely applied for system-
atic profiling of loss-of-function phenotypes, for instance,
in establishing gene function [1], and identifying genetic
vulnerabilities in cancer cells [2—7]. Considerable efforts
have been devoted to designing efficient genome-wide
RNAI libraries, composed either of small interfering RNAs
(siRNA) or short hairpin RNAs (shRNA), using both
pooled and arrayed formats for cell-based screens [8].
While the CRISPR/Cas9 system has recently enabled
genome-wide knockout screening in human cells [9-11],
several technical factors, such as off-target effects [12],
DNA accessibility [13], and copy number status of target
genes [14, 15], may lead to increased variability of
CRISPR/Cas9 phenotypic readouts. Thus, the RNAi tech-
nique remains a valuable tool for functional genomic
screening, with many large-scale profiling datasets for
genetic dependencies emerging in various cancer cell line
panels [16-18].

However, multiple reports of high false discovery rates
have reduced the promised impact of genome-wide
RNAI screens [8, 18, 19], hence calling into question the
reliability of the findings, usefulness of the technique,
and reproducibility of the existing datasets. The rela-
tively low hit validation rate has been notable, for
instance, in the systematic identification of synthetic
lethal partners for “undruggable” cancer oncogenes [20].
The concept of synthetic lethality, based on finding
genetic interactions between cancer drivers and their
“druggable” partners [21], was proposed as a revolution-
ary approach to targeted anticancer treatment [22], but
so far only a few synthetic lethality-based treatments
have made it to the clinic [23]. In some cases, the identi-
fied synthetic lethal hits from large-scale RNAi screens
have been refuted by follow-up studies [24—26], leading
to wasted drug discovery efforts and increased confusion
about the reproducibility of the RNAi methodology.

The high false discovery rate observed in siRNA-based
screens has often been attributed to the presence of off-
target effects, mediated primarily through the “seed”
region, 2—8-nucleotide positions in the guide strand of
the RNAi molecule [27]. Such seed sequence-specific
off-target effects result in altered expression of a large
number of genes beyond the intended targets [28].
Further, down-regulated genes are enriched for seed
complementary sites in the 3" UTR region [29]. Since
the seed effects are known to be inherent in genome-wide
RNAI screens [30], it is likely that many of the conducted
loss-of-function studies in cancer cell lines, and other
cellular model systems, are also affected by the off-target
effects. Although various strategies have been developed
for analyzing and correcting siRNA-based screening data
[31-38], what are still lacking are a comprehensive,
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quantitative assessment of the reproducibility of shRNA-
based screens and a detailed characterization of the key
factors, including seed-mediated effects, heterogeneous
processing of shRNAs [39], disease models, and experi-
mental protocols, in terms of their contribution to the
sub-optimal consistency.

We present here a systematic comparison of the
consistency of two genome-wide shRNA screening data-
sets [5-7], conducted using a pool of identical shRNA
constructs from the same RNAI library across a matched
panel of cancer cell lines. We demonstrate that seed-
mediated off-target effects are widely prevalent in the
two datasets and, in fact, significantly more consistent
than the direct, intended on-target effects. In particular,
we identified factors based on seed-sequence compos-
ition that significantly influenced the consistency of
phenotypic outcomes in these shRNA datasets, which
should be considered when designing future loss-of-
function screens and their post-processing. We also
apply these results in post-screening analysis to identify
novel synthetic lethal partners of PIK3CA, which were
consistently detected in both of the datasets, as well as
confirmed by our CRISPR/Cas9 experiments, thereby
demonstrating a direct clinical application towards im-
proved mapping of functional vulnerabilities and genetic
dependencies in cancer cells.

Methods
shRNA datasets
Achilles 2.0 and Achilles 2.4 datasets originated from a
genome-wide pooled shRNA pan-cancer screen in 102
and 216 cancer cell lines, respectively [5, 6]. In both
screens, each cell line was infected in quadruplicate with
a lentiviral shRNA library comprising 54,020 shRNAs
targeting ~11,000 genes, derived from The RNAi Con-
sortium. The shRNA abundance was measured after
allowing the cells to grow for 16 population doublings
or 40 days in culture, whichever came first, and was
compared to the initial DNA plasmid pool. The abun-
dance of each shRNA constructs at both time points was
measured by microarray hybridization in Achilles 2.0
and next-generation sequencing (NGS) in Achilles 2.4.
Following a standard quality control (QC) and quantifi-
cation pipeline, the shRNA essentiality score (shES), a
measure of the effect of an shRNA on cell proliferation,
was estimated using normalized fold change between
initial and final time points averaged over the replicates.
The COLT-Cancer dataset consisted of a total of 72
cancer cell lines comprising three cell types: breast,
pancreatic, and ovarian cancer [7]. Each cell line was
screened in triplicate and three time points were assessed
for overall shRNA abundance during six to eight popula-
tion doublings. The shESs were estimated as the ratio of
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change in expression intensity of the shRNAs over
population doublings.

Gene essentiality scores

RIGER

Normalized enrichment scores for on-target genes were
calculated by RIGER (RNAi gene enrichment ranking) as
implemented in the GENE-E software package (http://
www.broadinstitute.org/cancer/software/ GENE-E/). Briefly,
normalized shES scores from both Achilles 2.4 and
COLT-cancer datasets were summarized to on-target
genes by using the Kolmogorov—Smirnov statistic.

ATARIS

Gene-level essentiality scores were calculated using the
ATARIS module as implemented in the Genepattern soft-
ware [40]. Normalized shES scores from both Achilles 2.4
and COLT-cancer datasets were given as input files. Since
ATARIS is dependent on the number of samples across
which shRNA data are provided, we used high quality cell
line data (i.e., the set of cell lines meeting QC criteria and
commonly screened between Achilles 2.4 and the COLT-
Cancer study). Only genes for which ATARiS was able
find solutions in both datasets were considered in the
correlation analysis.

GARP

Gene-level summary scores were calculated by averaging
over the top two most essential shRNAs against an
intended target gene [7]. In cases of only one shRNA
per target gene, the shES score was considered as the
GARP score.

gespeR

gespeR [36] fits a linear regression model of the
shRNA-gene target relationship on shES values using
elastic net regularization. Briefly, we obtained the
shRNA-target relationship matrix for all 46,474 shRNAs
using TargetScan [41], as suggested by the authors,
except for the mixing parameter («), which we set to 0
(i.e, ridge regression) in our analysis to obtain the
gespeR-based gene essentiality score (geneES), as the
default 0.5 led to numerical errors. We also reasoned
that the ridge regression formulation is more suitable
because our objective was to estimate geneES at the gen-
ome-wide scale for comparing the consistency between
the two screens, instead of selecting the essential genes
most predictive of shES.

Seed essentiality scores

All shRNAs were grouped by the identity of the nucleo-
tide seed sequence from positions 2—8. An illustration of
the concept is presented in Additional file 1: Figure S2.
A total of 9115 unique seed sequences were found in the
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46,474 shRNAs commonly screened in both studies.
Theoretically, the number of possible unique heptamers
is 16,384. For each unique seed sequence, we averaged
the shESs over all shRNAs having the same seed
sequence, which we termed the seed essentiality score
(seedES). We observed a wide distribution of shRNAs
with identical seed sequence identity, which we termed
as the shRNA family size. For instance, seedES estimates
for a family size of 14 indicates that 14 shRNAs have the
same seed sequence and their shESs were averaged to
get the seedES value. We removed those seeds with
family size >14 from analysis as there were not enough
data points (<50) for comparison.

Heptamer 12-18 essentiality score

Similar to the seedES, we considered here the heptamer
sequence identity from positions 12—-18 of the shRNAs,
as this region in the shRNA molecule does not play a
major role in target recognition [30]. All the shRNAs
were grouped by identity of the hepatmer 12-18
sequence and the heptamer 12-18 essentiality score
(heptamer12—18ES) was calculated by averaging over the
shES of all the shRNAs in that group. The correlation
between heptamer12—18ESs for matching cell lines was
then calculated as a reference. We repeated the same
analysis for all positions of shRNAs and calculated
hepatmerESs at each interval and estimated the correl-
ation between the screens based on these scores. Finally,
the correlation estimates at all other intervals except
for the seed interval, 2—8, were averaged and plotted
(Additional file 1: Figure S4).

Seed pairing stability and target abundance thresholds
We obtained seed pairing stability (SPS) and target
abundance (TA) values for 7-mer heptamers from
TargetScan [41], and extracted the information for the
9115 seeds that we found within the overlapping set of
46,474 shRNAs between the two studies. Strong and
weak SPS thresholds as well as low and high TA thresh-
olds were defined by the top and bottom tenth percentile
of the observed distribution of SPS and TA values,
respectively. In these analyses, strong SPS was defined as
SPS<-9.82, weak SPS as SPS>-5.16. Low TA was
defined as TA >3.72 and high TA as TA <2.89.

Overlap of genetic interaction and synthetic lethal
partners

To clean the genome-wide shRNA datasets, we removed
shRNAs with strong SPS and low TA seed sequences
from both the Achilles 2.4 and COLT-cancer datasets.
geneESs were calculated based on GARP, both before
and after cleaning. The lists of genetic interaction (GI)
hits and synthetic lethal (SL) hits were defined for each
driver gene in both the Achilles 2.4 and COLT-cancer
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datasets, separately. In these analyses, we considered the
full compendium of the cell lines, 216 in Achilles 2.4
and 47 in COLT-cancer, for the detection of robust GI
and SL partners, without restricting to the matching
high data quality cell lines only.

Statistical analysis

Because of the different scoring method for the shES in the
two screens, rank-based Spearman correlation was used to
assess the concordance of their phenotypic outcomes. A
Shapiro—Wilk test was used to assess the normality of
correlation distributions between the two screens. In case
of normality, a paired f-test was used to compare the
consistency calculated using different measures of essenti-
ality: shES, geneES, seedES, or heptamer12-18ES or
permuted seedES. Permuted seedES-based correlations
were calculated by permuting the shRNAs and their seed
mapping for 1000 times (Additional file 1: Figure S2). A
non-parametric Wilcoxon rank sum test was used to com-
pare the non-normal distributions of genes between
mutated and wild-type cell lines. A Wilcoxon signed rank
test was used to compare the increase in overlap of GI and
SL hits before and after cleaning.

Finding genetic interactions and synthetic lethal partners
We summarized the shES-level data to geneES-level
using GARP and compared the distribution of geneESs
between the mutated and wild-type cancer cell lines for
each driver gene separately. The set of driver genes was
taken from a recent pan-cancer study of mutational
landscape in The Cancer Genome Atlas dataset [42]. We
considered only those driver genes mutated in at least
two cell lines in either of the datasets. The mutation
status of the driver genes was obtained from CCLE [43].
In each of the datasets, we performed a two-sided
Wilcoxon test to compare the differences in geneES
distribution between the mutated group of cell lines and
wild-type group of cell lines, and a significance threshold
of 0.05 was considered for detecting GIs. For detecting
SL interactions, only partners that were more essential
(more negative geneES) in the mutated group of cell
lines were considered using a one-sided Wilcoxon test,
with a significance threshold of 0.03.

Selection of novel SL partners of PIK3CA for experimental
validation

We first selected all the novel SL partners for PIK3CA
that were detected only after cleaning in both of the
shRNA datasets, but not when using the original datasets.
Based on improved statistical significance of GARP gen-
eES differences between the mutated and wild-type cell
lines, especially in the COLT-Cancer dataset, we selected
two PIK3CA partners, HMX3 and PKN3, for in house
experimental validation by CRISPR/Cas9 knockout. We
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confirmed that the selected genes were not reported as SL
partners of PIK3CA in either Pubmed or SynLethDB [44].

CRISPR/Cas9 knockout of HMX3 and PKN3

Cell lines and cell culture

Cell lines MCF10A PIK3CA (H1047R/+) and MCF10A
PIK3CA (E545K/+) and a corresponding isogenic control
were purchased from Horizon Discovery Group. The cells
were maintained in Dulbecco’s modified Eagle medium:
Nutrient Mixture F-12 (DMEM/F-12, Thermo Fisher
Scientific Inc., #11330-032), supplemented with 5% horse
serum (Thermo Fisher Scientific Inc., #16050-122),
20 ng/ml EGF, 0.5 mg/ml hydrocortisone, 10 pg/ml
insulin, 100 ng/ml cholera toxin, 100 U/ml penicillin, and
100 pg/ml streptomycin (Thermo Fisher Scientific Inc.), in
a humidified incubator with 5% CO, at 37 °C.

Lentiviral plasmid generation and packaging
Oligonucleotides encoding single-guide RNAs (sgRNAs)
against HMX3 and PKN3 were ordered from SigmaAldrich
(see Additional file 2: Table S1 for sequences). Lentiviral
vectors for sgRNA expression were produced by clon-
ing oligonucleotides encoding sgRNAs into LentiGuide
plasmid (Addgene plasmid #52963) as described [45, 46].
293 T cells were transfected with LentiGuide or LentiCas9
(Addgene plasmid #52962) lentiviral plasmids and pack-
aging plasmids pCMV-VSV-G (Addgene plasmid #8454)
and pCMV-dR8.2 dvpr (Addgene plasmid #8455) [3] using
Lipofectamine 2000 (Thermo Fisher Scientific) transfec-
tion reagent. Supernatants were collected on the second
day after transfection.

Generation of Cas9 expressing cell lines

Cells were seeded at a density of 5x 10* cells/cm?® in
96-well plate format; after 2 h seeding culture medium
was changed to medium containing lentiviral particles
(IentiCas9, MOI =5) and polybrene (8 pg ml™'). The
next day, the medium was replaced with medium con-
taining blasticidine (6 pg/ml) and cells were selected
for 7 days.

Knock-out cell line generation and proliferation assay
Cas9-expressing cell lines were seeded in a 96-well
plate format (1000 cells/well) and incubated with
sgRNA expressing lentivirus particles (MOI =20) and
polybrene (8 pg/ml). The next day, the medium was
changed for standard growth medium. Cells were
allowed to grow for 5 days and growth inhibition was
measured with a CellTiter-Glo Luminescent Cell Viability
Assay (Promega Inc.)
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Results

Summary of the screening datasets and rationale for their
comparison

We made use of genome-wide shRNA screens in a large
panel of cancer cell lines conducted at two different
laboratories, namely, Project Achilles study [5, 6] and
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COLT-Cancer study [7]. The Achilles datasets were
generated using a genome-wide pooled shRNA screen in
a pan-cancer cell line panel (Fig. 1a). Achilles 2.4 is an
extension of Achilles 2.0 with screening of additional cell
lines, totaling 216. Quantification of shRNA abundance
at different time points was based on microarray
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Fig. 1 Baseline reproducibility between the Project Achilles and COLT-Cancer genome-wide shRNA screens. a Overlap in shRNAs, target genes,
and cell lines screened in the Achilles and COLT-Cancer projects. Based on sequence identity, we found 46,474 shRNAs were commonly profiled
in Achilles 2.4 and COLT-Cancer (top Venn diagram); based on The RNAi Consortium clone identifier, 50,966 shRNAs were commonly profiled in
Achilles 2.0 and COLT-Cancer (bottom Venn diagram). b An example scatterplot of shRNA essentiality scores (shES) in Achilles 24 and COLT-Cancer
studies across overlapping shRNAs profiled in the CAL51 cell line. The between-study consistency was assessed using Spearman rank correlation (p).
The red and blue dots highlight those shRNAs having strong and weak seed pairing stability (SPS), respectively (see “Methods” for detailed description).
c Inter-study correlation (p) for shES across matched cell lines between Achilles 2.4, Achilles 2.0, and COLT-Cancer studies. The grey dashed line indicates
average correlation (p =0.38) over the 13 cell lines between Achilles 2.0 and COLT-Cancer; the black dashed line average correlation (p = 0.57) over the
23 cell lines between Achilles 2.4 and COLT-Cancer; and the red dashed line average correlation (p=0.61) over the 17 high data quality
cell lines between Achilles 24 and COLT-Cancer (asterisks indicate cell lines with low replicate correlation prep < 0.5). d Intra-study correlation (p) for shES
between Achilles 2.0 and 24. The black dashed line indicates average correlation over the 12 matching cell lines (p = 0.70). The baseline consistency
between the two screens was moderate based on the shES provided in the two studies; the Achilles study scores the shRNA essentiality
using normalized fold changes between initial and final time points, averaged over the replicates, whereas the COLT-cancer study uses
the so-called shARP score, which is estimated as the ratio of change in expression intensity of the shRNAs over population doublings
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hybridization in Achilles 2.0, and NGS in Achilles 2.4.
The COLT-Cancer dataset generated from a genome-
wide shRNA screen on 72 pan-cancer cell lines had an
overlap of 13 and 23 cell lines with Achilles 2.0 and 2.4,
respectively (Fig. 1la). In COLT-Cancer, shRNA abun-
dance was measured by microarray hybridization in at
least three time points during growth phase. Both the
Achilles and COLT screens utilized the same shRNAs
from The RNAi Consortium library. The raw data were
deconvoluted and processed further to estimate the
effect of each individual shRNA on cell proliferation
(see “Methods” for details).

The two datasets provide a high-coverage and high-
quality matched resource for our comparative study in
terms of the use of identical shRNA libraries and similar
experimental protocols (Fig. 1a). Technical differences in
the screens include the estimation of shRNA abundance,
the number of population doublings allowed between
initial and final readouts, and quantification of shES, i.e.,
the quantitative estimate of the phenotypic effect of an
individual shRNA in a particular cell line; the Achilles
screens measured fold-change of shRNA abundance
between the initial and final time points, whereas the
COLT-Cancer study measured the slope of dropout of
shRNAs over different time points (the so-called shARP
score). Such technical differences, unless corrected for,
may lead to suboptimal consistency between the studies
(Fig. 1b). However, we reasoned that the substantial
overlap in the shRNAs screened across the matched cell
lines in the two studies provides a solid basis to perform
a quantitative assessment of between-study consistency
and explore ways for improving it by taking into account
especially the seed effects.

Moderate baseline reproducibility in genome-wide shRNA
screens

We observed only a moderate consistency for shESs
between the Achilles 2.4 and COLT-Cancer datasets,
showing extensive variation across the 23 matched cell
lines (average rank correlation p = 0.57, range = 0.36-0.72;
Fig. 1c). Notably, the consistency between Achilles 2.0 and
COLT-Cancer was even poorer among the 13 common
cell lines, despite their use of the same shRNA abundance
quantification platform (p = 0.37, range = 0.20-0.49, paired
ttest p=6.07x10""°). Reassuringly, the intra-study
reproducibility among the 12 matched cell lines
between Achilles 2.0 and 2.4 was higher (p=0.70,
range = 0.61-0.78; Fig. 1d). However, this is still far from
ideal technical reproducibility as the only major difference
between Achilles 2.0 and 2.4 was the method of quantifi-
cation of ShRNA abundance, microarray hybridization, or
NGS. Since NGS data are known to be more reliable
compared to array-based measurements [47], we focused
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only on Achilles 24 and COLT-Cancer datasets in the
subsequent analyses.

To understand the factors behind the observed
variability in correlation for identical cell lines, we first
investigated whether data quality affected the overall
consistency between the two screens. The Achilles 2.4
dataset was preprocessed and its QC already performed,
requiring no further quality adjustments [6]. From the
COLT-Cancer study, we excluded a subset of six cell
lines with low correlation between replicates (pyep < 0.5;
marked with asterisks in Fig. 1c), which also showed
significantly lower consistency between the two screens
(average p = 0.44, Student’s t-test p = 0.005). The remaining
set of 17 high data quality common cell lines resulted in
slightly increased between-study consistency (average
p =0.61; Fig. 1c). As expected, the pairwise correlation
of each cell line with the complementary set of non-
matching cell lines was systematically lower than the cor-
relation of identical cell lines between the two screens
(average p =042, Wilcoxon rank sum test, p<1x107%
Additional file 1: Figure S1), confirming that the identity
of the cell line, i.e., the genetic background, plays a major
role in the consistency of phenotypic effects of ShARNAs.

Decreased consistency in intended on-target geneESs

To study the consistency at the level of on-target genes,
we summarized the shES to gene-level estimates, the so-
called gene essentiality score (geneES). More specifically,
we calculated geneESs using a variety of existing gene
summarization methods: RIGER [5], GARP (7], ATARiS
[32] (see “Methods”). Surprisingly, the RIGER-based
geneES resulted in decreased rank correlation between
matched cell lines compared to that of shES (p =0.54,
range = 0.36-0.66, paired t-test p=7.0 x 10™%; Fig. 2a).
Similarly, there was an even sharper decline in the
correlation with the ATARiS-based geneES (p=0.28,
range = 0.16-0.47, paired t-test p =3.0 x 107'% Fig. 2b).
In contrast, we did not observe a significant decrease in
the correlation based on GARP-based geneES (p =0.58,
range = 0.40-0.71, paired t-test p =0.08; Fig. 2c). Taken
together, the standard approach of summarizing the
phenotypic effects of shRNA by their intended on-target
gene did not lead to an increase in consistency between
the two screens when compared to the shRNA level
consistency.

Increased consistency after accounting for seed-mediated
off-target effects

We next investigated whether analyzing the shRNA
datasets by taking into account the seed-mediated effects
could lead to an increased consistency between the two
screens, as was observed in a recent study [30]. To that
end, shRNAs common to both the datasets were first
grouped based on the heptamer nucleotide sequence
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Fig. 2 Reproducibility of the genome-wide screens at the level of sShRNAs, on-target genes, and off-target seeds. Comparison of rank correlation
(p) between the two screens over the data from 17 high-quality cell lines, where each panel compares the between-study correlation of sShRNA
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scores (a—c) did not improve the consistency beyond the shES-level comparison, whereas accounting for off-target effects based on SeedES
improved the consistency among the matching cell lines (d). Statistical significance of correlation differences was assessed with paired t-test
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identity at seed region (nucleotides 2—8) of the guide
strand (Additional file 1: Figure S2). We then calculated
the average shES of all the sShRNAs having the same seed
sequence, which we term the seed essentiality score
(seedES). seedES is a seed-centric concept of shRNAs,
analogous to microRNA (miRNA) families, in which
several miRNAs having the same partial seed sequence
or full sequence or structural configuration are grouped
into a miRNA family [48], suggesting a similar function
due to a shared profile of target genes. Similarly, we
hypothesized that seedES should provide a quantitative
estimate of the phenotypic effect based on a group of
shRNAs having identical seed sequence, thus belonging
to the same seed family. Although the specific effects of
each individual shRNA in a seed family may differ in
terms of the target gene profile, we reasoned that the
seedES of a seed family is likely to capture the essenti-
ality signal of the shared off-target profile, which may
be more reproducible than the traditional on-target
geneESs.

Similar to the design principles of genome-wide
shRNA libraries, which often have five shRNAs per

intended target gene, we initially restricted the analysis
to seedES calculated for seed family sizes larger than five
sRNAs. Interestingly, we observed significantly higher
correlation between the two screens when analyzed
based on the seedES (p =0.71, range = 0.53-0.80, paired
t-test p = 8.6 x 107%; Fig. 2d). The correlation based on
all shRNA family sizes also showed an improvement
(p=0.64, range=0.41-0.74, paired t-test p=0.007;
Additional file 1: Figure S3a), but not so strong,
perhaps due to a large proportion of smaller shRNA
families. We further challenged these observations by
repeating the same analysis for nucleotide positions 12—18
of the guide shRNA. Similar to seedES, we calculated
heptamer12-18ES by averaging over shRNAs having iden-
tical nucleotide sequence at positions 12—-18 (Additional
file 1: Figure S2), but this did not lead to an improve-
ment in correlation between the two screens (p = 0.62,
range = 0.34—0.73, paired ¢-test p = 0.14; Additional file 1:
Figure S3b). Increased correlation based on seedES indi-
cates that the phenotypic effects in these two screens are
due not only to on-target effects but, more importantly,
also to the seed region-mediated off-target effects.



Jaiswal et al. Genome Medicine (2017) 9:51

Between-study consistency increases with increasing
shRNA family size

To further analyze the effect of seed family size on the
between-study consistency, we divided the two datasets
according to the number of shRNAs per seed family and
then calculated the correlation of seedES for each seed
family size among the matched cell line high-quality
data. Notably, we observed that the average correlation
increased with increasing family size; in particular, at
shRNA family size of 14, the average correlation
increased beyond the intra-study consistency observed
in the Achilles study (p = 0.77 versus p = 0.70, Wilcoxon
rank sum test p =0.001; Fig. 3a). In contrast, when we
again performed the same analysis based on the 12-18-
nucleotide region of shRNA sequence, the increase in
correlation was not so strong (Fig. 3a). We also noted
that the correlation based on all possible positions of
7-mer length over the shRNA sequence was lower
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than the correlation based on the seedES (Additional
file 1: Figure S4).

To further challenge the observed increase in correl-
ation based on the seed region, we permuted the seed
sequences for all shES data points in the whole dataset
(see “Methods” and Additional file 1: Figure S2 for
details) and checked whether the correlation based on
permuted seedES was of similar strength. As expected,
we did not observe an increase in correlation in the
permuted datasets (Fig. 3a). These results confirm that
the seed region-mediated off-target effects are consistent
between identical cell lines in the two shRNA screens,
and that increasingly accurate estimation of seed-
mediated off-target effects can be obtained by averaging
over multiple shRNAs, provided that the family size is
large enough.

It has previously been observed that shRNAs are proc-
essed heterogeneously by Dicer [39]. Further, shRNAs
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Fig. 3 Reproducibility of the seed essentiality scores with increasing shRNA family size of seed sequences. a Average rank correlation (p), with
standard error of mean over the 17 high data quality cell lines (error bars), calculated based on seed essentiality score (SeedES) as a function of
shRNA family size (x-axis). sShRNAs sharing the same seed sequence belong to the same shRNA family. The red trace indicates the observed correlation
based on seed region. The blue trace indicates the correlation based on heptamer12-18ES for positions 12-18. The black trace indicates correlations
based on 1000 permutations over the seed—shRNA mapping (see “Methods” for details). The gray dotted line indicates the intra-study correlation for
shES between Achilles 2.0 and 24 (p = 0.70). SeedES-based inter-study correlation reached its maximum at family size of 14 (p = 0.77), suggesting that
the consistency between the studies increases when off-target effects are more accurately estimated using larger family size. Asterisks indicate
statistically significant differences in correlations (p < 0.05, paired t-test), and their colors indicate the distribution against which the comparison
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may have various duplex RNAs as final products with a
different starting position for guide strands, and there-
fore different seed sequences may also contribute to
their off-target activity. Accordingly, we studied whether
the increase in correlation with increasing shRNA family
size at seed positions 2-8 is also observed if other posi-
tions of the shRNA are considered as a seed sequence.
Indeed, we observed a similar trend of increase in the
correlation between the two screens at other positions of
the guide strand sequence (Additional file 1: Figure S5),
especially in the 5° end, suggesting shRNA processing
makes a profound contribution to the observed variabil-
ity between the screens.

Effect of SPS and TA on the consistency

Because seed-mediated effects influence the consistency
of the two shRNA screens so prominently, we next
examined whether there are seed properties indicative of
lower phenotypic consistency of shRNAs, which there-
fore could be used for cleaning up the current shRNA
screening datasets. Previous literature suggests that
thermodynamic stability of duplex formation between
the seed region of siRNAs and target mRNA is a major
determinant of their targeting proficiency, and hence the
off-target activity of siRNAs [41, 49]. Reporter activity
studies have shown that a strong pairing leads to stronger
repression of bound target and hence proficient down-
regulation of off-target transcripts [49]. We utilized SPS
here as a measure of thermodynamic stability calculated
for heptamers after taking into account biochemical
parameters and base composition [41]. Another important
property that also determines the targeting proficiency of
shRNAs is TA, i.e., the availability of transcripts for pairing
based on seed complementarity [41, 50].

Using predicted SPS and TA levels for 16,384 heptamers
obtained from TargetScan [41, 51], we investigated
whether these factors influenced the consistency between
the two screens. Interestingly, correlation of shESs in the
high data quality cell lines for the subset of shRNAs
having stronger SPS seed sequences was significantly
lower than that of the entire set of overlapping shRNAs
(p=0.51, paired t-test p = 4.8 x 10™%; Fig. 4a). In contrast,
for shRNAs having weaker SPS seed sequences, we
observed a significant increase in correlation (p =0.65,
paired t-test p = 7.0 x 10~°% Fig. 4a). Similarly, the correl-
ation decreased significantly for low TA shRNAs (p = 0.52,
paired t-test p = 3.3 x 10~%’; Fig. 4b), whereas there was no
shift in correlation distribution for high TA shRNAs. We
again tested the wvalidity of these observations by re-
analyzing the dataset based on SPS and TA properties of
heptamers from the 12-18-nucleotide region of the shRNA
sequence, but did not observe a similar magnitude of
change in the consistency (Fig. 4a, b). Further, we explored
the inter-relationship between SPS and TA by categorizing
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shRNAs into stronger or weaker SPS in combination with
low or high TA and found that the seed-duplex formation
is more likely to influence the off-target proficiency com-
pared to the availability of target mRNAs (Fig. 4c). These
analyses suggest that when the off-target activity of a
shRNA is more dominant than the on-target activity, the
estimated shES is likely to be inaccurate, and therefore the
consistency decreases. In contrast, when the on-target
activity is more dominant, the shES provides an accurate
estimate of the phenotypic effect of such shRNAs through
its intended target gene.

Improved reproducibility of Gl partners of cancer drivers
An important biomedical application of genome-wide
RNAI screens is to identify, often in a large compendium
of cancer cell lines, what are the unique differences in
genetic dependencies of cancer cells with a specific gen-
etic background (e.g., those harboring driver mutation
versus wild-type cells). Such differential gene essentiali-
ties are also known as synthetic lethal (SL) interactions,
when they lie in the negative end of the genetic inter-
action (GI) phenotypic spectrum, and are therefore
important for anticancer treatment opportunities. In
contrast, positive genetic interactions are likely to con-
tribute to the fitness advantage of cancer cells during
disease progression. We therefore sought to find repro-
ducible positive and negative GI partners of major
cancer driver genes [42], which are consistently detected
in the two independent shRNA screens (see “Methods”
for details).

Since accurate estimation of gene essentiality is of
more practical interest than seed-level relationships in
the genetic interaction analyses, we investigated whether
cleaning the datasets by removing shRNAs having seeds
with a high propensity for off-target activity (i.e., strong
SPS and low TA values) could increase the consistency
at the geneES level. In these analyses we used the
GARP-based geneES as it did not lead to a decrease in
consistency compared to the shES-based consistency
(Fig. 2c). Indeed, we observed that the geneES correl-
ation of the shRNA screens improved significantly after
cleaning the datasets (average p = 0.63 after cleaning ver-
sus p = 0.58 before cleaning, paired t-test p = 1.7 x 10™%),
suggesting an improvement in the inference of gene
essentiality after accounting for the seed-mediated
off-target effects.

For detecting GI partners, we performed statistical test-
ing of the difference in GARP-based geneES phenotypes
between mutated and wild-type cell lines for each driver
gene in both studies separately. We did not limit these
analyses to the high data quality cell lines only because we
wanted to identify robust genetic interaction partners of
the driver genes that are consistent across the variable cell
types (so-called pan-cancer GlIs). Notably, we found a
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Fig. 4 Reproducibility of the genome-wide shRNA screens after
accounting for seed sequence properties. Two seed sequence
properties were investigated: seed pairing stability (SPS) and target site
abundance (TA). Rank correlation (p) over the 17 high data quality cell
lines for shES of shRNAs a with strong (S) or weak (W) SPS, b with low
(L) or high (H) TA, or ¢ combined. Correlation for shES of shRNAs with
position 12-18 heptamers after the same categorization is also shown
as a reference. shRNAs with higher off-target seed sequence proficiency
(ie, strong SPS and low TA) show decreased consistency between the
two studies. Asterisks denote statistically significant differences in
correlation (p < 0.05, paired t-test). Strong SPS was defined as the
top 10% percentile (SPS < —9.82), and weak SPS as the bottom 10%
percentile (SPS > —5.16). Low TA >3.72 and high TA <2.89 were defined
similarly, as shown at the top of each panel

statistically significant increase in the overlap of identified
GI partners between the two datasets after cleaning for
many well-established cancer driver genes (one-sided
Wilcoxon signed rank test p =0.007; Fig. 5), suggesting
that cleaning the datasets by removing shRNAs with high
off-target propensity can help us to identify more reliable
genotype-specific dependencies of cancer cells. We also
observed after cleaning a trend of increases in the overlap
of SL partners for most driver genes, including KRAS
(Additional file 1: Figure S6).

CRISPR/Cas9 validation of novel synthetic lethal partners
of PIK3CA

Finally, we experimentally tested whether our analytic
approach for cleaning the shRNA datasets could lead to
the identification of novel SL partners that would not
have been detected without taking into account the
seed-mediated off-target effects. We chose to study the
SL partners of PIK3CA, as it is a frequently mutated
oncogenic driver in many cancers; in particular, the PI3K
pathway is a promising target for development of targeted
therapies against breast tumors [52]. We selected two pre-
dicted SL partners of PIK3CA (Fig. 5), protein kinase
PKN3 and the DNA binding transcription factor HMX3,
which were consistently detected in both the Achilles 2.4
and COLT-cancer datasets with improved statistical
significance after cleaning (Additional file 1: Figure S7; see
“Methods” for details of the selection criteria).

Using MCF10A as a model system, we tested the com-
binatorial SL interaction strength of PIK3CA-PKN3 and
PIK3CA-HMX3 pairs with CRISPR/Cas9, as we reasoned
that the true SL interactions should be detectable by two
complementary loss-of-function techniques (RNAi and
CRISPR). Using three lentivirally delivered sgRNAs to
knock out the selected genes in two isogenic MCF10A cell
lines, mutated for PIK3CA either at E545K or H1074R,
we observed a systematically lower rate of proliferation in
the mutated cells compared to the wild-type cells (Fig. 6),
hence confirming a true SL interaction with the PIK3CA
oncogene. This proof-of-concept study suggests that
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indicates the Achilles 2.4 study. The Venn diagrams illustrate the number of overlapping Gl partners of TP53 and PIK3CA, as examples of loss-of-function
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% inhibition

PKN3 g1
PKN3 g2
PKN3 g3
PKN3 mix
HMX3 g1
HMX3 g2
HMX3 g3
HMX3 mix
GFP control



https://www.intogen.org/

Jaiswal et al. Genome Medicine (2017) 9:51

shRNA screens and provide practical means to increase
their consistency in the future. In particular, based on
the concepts of seed essentiality and shRNA family, we
demonstrate that the consistency between shRNA
screens is significantly higher for seed-mediated off-
target effects compared to the intended on-target effects.
As such, this suggests that reproducible seed effects are
pervasive in genome-wide shRNA screens, although we
also observed a moderate level of consistency for the on-
target effects. Second, we provide straightforward proce-
dures for the improved analysis of already conducted
genome-wide RNAIi screening efforts to extract the most
reproducible biological information from the existing
datasets. Towards that end, we identified shRNAs that
are associated with a higher likelihood of off-target
effects, based on the properties of thermodynamic stabil-
ity and target abundance of their seed sequences. Such
shRNAs consequently contribute to a noisy phenotype
and, therefore, to inconsistent gene essentiality estimates.
Removing such shRNAs with off-target propensity in the
post-processing of genome-wide shRNA screens led to
improved reproducibility of genetic interactions and
synthetic lethal partners of major cancer driver genes.
Consistent with a previous study [30], we also found
that the consistency between RNAi screens increases
when analyzed based on seed essentiality. However, we
observed an even higher level of correlation between the
genome-wide shRNA screens in a matched panel of
cancer cell lines compared to a previous study [30] that
explored the consistency of genome-wide siRNA screens
to find host factors required for infection of pathogens.
In particular, we show the consistency based on the seed
essentiality scores can increase up to 77% between the
two independent shRNA screens. This is significantly
higher than the within-Achilles study correlation
between the shRNA-level essentiality scores (p=0.70),
which was considered the maximum level of consistency
that can be achieved for genome-wide shRNA screens
when using the same set of shRNAs. Since Achilles 2.4
and Achilles 2.0 differed only in their method for quanti-
fication of shRNA abundance, the observed within-study
variation is likely due to the assay procedure and measure-
ment noise. Importantly, we also observed an increase in
correlation between the two screens based on other seed
positions of the shRNA guide strand sequence, suggesting
that heterogeneous processing of shRNAs is likely to
contribute substantially to the variation of phenotypic
outcomes in shRNA screens, which further complicates
the deconvolution of off-target effects when estimating
gene level activity. Further, we also confirmed that our
observations are generalizable to other datasets by ana-
lyzing the consistency between Achilles 2.4 and the
Breast Functional Genomics dataset [16], produced
from an independent genome-wide shRNA screen in a
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collection of breast cancer cell lines (Additional file 1:
Figures S10-S13).

In contrast to previous studies that have reported poor
reproducibility of genome-wide RNAI screens [18, 19, 53],
we found a moderately consistent signal already in
shRNA-level data (p=0.61). This improved consistency
was achieved by using a common panel of cancer cell lines
screened using the same RNAI library, as well as proper
concordance metrics, such as genome-wide rank correl-
ation, that consider the whole spectrum of phenotypic
effects, instead of focusing on the top hits only. The
current methods for summarizing shES into geneES,
which do not take into account the seed-mediated off-
target effects, were not able to fully extract the reprodu-
cible signal from the shRNA data, thereby leading to
suboptimal consistency. We also tried the recent gespeR
method [36] that models the shRNA—target gene relation-
ships based on the seed sequence complementarity to the
3" UTR of transcripts to estimate geneESs. After tailoring
its parameters for these datasets (see “Methods”), it pro-
vided a consistency similar to using shESs (p =0.66),
further supporting the importance of accounting for the
seed effects. Only after using the seedES modeling did we
reach the maximal consistency between the two technic-
ally similar shRNA screens (p = 0.77). However, although
the gene-level phenotypic estimates derived from gespeR
[36] were correlated between the two datasets, we found
that the estimates for the gold standard core-essential
genes [54] were not that different from the overall pheno-
typic distribution (Additional file 1: Figure S8).

The higher consistency of seed mediated off-target
effects suggests that although the specific effects of
each individual shRNA within a shRNA family might
differ in terms of the target profile of down-regulated
genes, averaging over the shRNA members is likely to
capture the combined essentiality of the shared off-
target profile of genes, determined by its identical seed
sequence. The phenotypic effect of down-regulating
multiple off-targets compared to a single intended on-
target gene is likely to be similar due to the perturb-
ation effect on many players in a cellular system. In
contrast, summary estimates from conventional on-
target gene essentiality profiles are likely to have more
variation due to the variable effects of each shRNA
against its intended target. Based on our observations,
we therefore recommend the use of multiple shRNAs
with identical seed sequences when designing future
genome-wide shRNA libraries, as this enables one to
accurately estimate the seed-level essentiality scores.
Sampling over multiple shRNAs with the same seed
sequence to estimate the seed essentiality, followed by
modeling the target genes based on seed sequence
complementarity, should allow us to derive more accur-
ate geneESs in such improved screens.
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The role of seed-mediated effects has been studied
previously in various biological contexts other than
cancer, including host factors required for pathogen infec-
tions [30], regulators of TRAIL-induced apoptosis [38],
and genes responsible for spindle assembly checkpoint
[33]. Various computational methods for modeling seed-
mediated effects in siRNA screens have also been designed
to identify off-target genes/pathways [33-35, 37]. How-
ever, these existing methods do not account for other
factors that are specific to shRNA screens, such as hetero-
geneous processing of shRNAs. It has been observed
previously that shRNAs expressed under different pro-
moter architecture, pol II or pol III, yield mature guide
strands that are shifted in their sequence, resulting in
altered seed sequences [55]. Instead, we focused on
enrichment of the on-target activity of shRNAs in the can-
cer context and derived better estimates of gene-level
essentiality phenotypes that can be adopted and imple-
mented easily for wider use.

As a straightforward outcome of these results, we pro-
vide a practical solution for cleaning up the existing
genome-wide shRNA datasets by effectively removing
those shRNAs with seed sequences having a higher likeli-
hood of off-target effects from the downstream post-
screening data analysis. In these analyses, we made use of
previously identified determinants of targeting proficiency
of miRNAs and siRNAs [41, 49, 50], namely SPS and TA.
As a novel contribution, we quantitatively showed their
relevance to increased consistency of genome-wide shRNA
screening data. We promote the use of these practical
guidelines (summarized in Additional file 1: Figure S9)
with the aim of addressing the current problems of
off-target effects and to make the most of the existing
and emerging genome-wide shRNA screens. These
guidelines should be updated in the future once more
actionable insights into the shRNA biology become
available; for instance, information on the frequency
of seed complementary sites in the full transcript, not
only restricted to 3" UTR, as well as taking into
account pairing based on the 3’ region of the shRNA
sequence, might further improve the prediction of
relevant off-target sites.

To demonstrate the potential of this strategy in the
identification of novel genetic interaction partners of
major cancer driver genes, we experimentally validated
the predicted synthetic lethality partners of PIK3CA
using CRISPR/Cas9 knockout screening as a case study
of potential anticancer treatments for PIK3CA driven
cancers. One of the confirmed partners, PKN3, has been
reported to be involved in tumor angiogenesis and
metastasis [56], and having a role as a downstream
effector of PI3K signaling [57]. Similarly, the other con-
firmed partner, HMX3, is an activated transcription factor
regulator in the HER2 subtype of breast cancer [58].
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Although these examples demonstrated the potential of
this strategy to (i) increase the overall reproducibility of
pan-cancer GI detections and (ii) find novel SL partners of
major cancer drivers in a particular cell context (here,
MCF10A), the practical implications of these findings for
identification of druggable synthetic lethal partners for
targeted therapeutic interventions need to be validated in
further pre-clinical or clinical studies.

These results on the reproducibility of genome-wide
shRNA screens resemble the recent debate about the
consistency of large-scale drug response profiling in
cancer cell lines, where the first comparative study
reported poor consistency in the drug response pheno-
types between two laboratories [59]. However, follow-up
analyses demonstrated that when robust response calcu-
lations are used, and when the evaluation metrics are
aligned with the objectives of the functional profiling,
acceptable consistency can be achieved, provided that
the screening assays and experimental protocols are
similar enough [60—62]. Off-target effects have also been
observed with the CRISPR/Cas9 system [63], making
these lessons likely useful also for improving future
CRISPR/Cas9 study designs. A number of computational
tools have already been implemented for off-target pre-
diction and gene essentiality scoring in genome-wide
CRISPR/Cas9 knockout screens, which make use of
similar concepts as those for RNAi experiments [63—65].
Distinct advantages and limitations of both RNAi and
CRISPR/Cas9 screening technologies seem to remain,
making their complementary use warranted in future
loss-of-function profiling studies [66].

Conclusions

Despite the pervasive off-target effects in genome-wide
shRNA screens, we observed a moderate between-study
consistency that can be improved by controlling for
factors that determine off-target propensity. After control-
ling for such factors in the post-processing of genome-
wide shRNA screens, one can improve the reproducibility
of identified genetic interactions and synthetic lethal
partners of cancer driver genes, a finding that has direct
implication for better development of targeted anticancer
treatment options and studying the functional landscape
of cancer cells.

Additional files

Additional file 1: Figure S1. Correlation based on shESs in high data
quality cell lines. Figure S2. Examples of seed essentiality (seedES)
calculations in an artificial dataset. Figure S3. Rank correlation (p) for
high data quality cell lines based on shES and seedES over all shRNA
family sizes. Figure S4. Reproducibility of the seed essentiality scores
with increasing shRNA family size of seed sequences. As shown in
Fig. 3, we added the gray trace indicating the correlation based on
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the average of correlations from all positions. Figure S5. Heatmap of
average Spearman correlation of seedES scores with increasing family
size, between the matched cell lines, by considering different positions along
the shRNA molecule as the seed sequence. Figure S6. As shown in Fig. 5,
the number of overlapping SL partners of major cancer driver genes
observed in both datasets, before and after cleaning, where the cleaning
was based on removal of shRNAs with a high tendency for off-target seed
effects (defined by SPS and TA properties of seed sequences; Fig. 4).
Figure S7. GARP-based geneES for PKN3 and HMX3 before and after
cleaning in PIK3CA mutant and wild-type (WT) cell lines, separately
for the Achilles 24 and COLT-cancer datasets. Figure S8. Density plots of
geneES scores for all the genes and gold-standard constitutive core essential
(CCE) genes. Gene-specific phenotypes were calculated based on gespeR
and GARP scores in both Achilles and COLT-Cancer datasets, respectively.
Figure S9. A stepwise procedure for cleaning genome-wide shRNA
datasets. Figure S10. Baseline reproducibility between the Achilles
24 and BFG genome-wide shRNA screens. Figure S11. Reproducibility of
Achilles 2.4 and BFG genome-wide screens at the level of shRNAs, on-target
genes, and off-target seeds. Figure S12. Reproducibility of seed essentiality
scores with increasing shRNA family size of seed sequences in additional
datasets. Figure S13. Reproducibility of Achilles 24 and BFG datasets after
accounting for seed sequence properties. (DOCX 1588 kb)

Additional file 2: Table S1. Sequences of sgRNAs used against HMX3
and PKN3. (DOCX 13 kb)
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