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Abstract

Background: Establishing the cancer type and site of origin is important in determining the most appropriate
course of treatment for cancer patients. Patients with cancer of unknown primary, where the site of origin cannot be
established from an examination of the metastatic cancer cells, typically have poor survival. Here, we evaluate the
potential and limitations of utilising gene alteration data from tumour DNA to identify cancer types.

Methods: Using sequenced tumour DNA downloaded via the cBioPortal for Cancer Genomics, we collected the
presence or absence of calls for gene alterations for 6640 tumour samples spanning 28 cancer types, as predictive
features. We employed three machine-learning techniques, namely linear support vector machines with recursive
feature selection, L1-regularised logistic regression and random forest, to select a small subset of gene alterations that
are most informative for cancer-type prediction. We then evaluated the predictive performance of the models in a
comparative manner.

Results: We found the linear support vector machine to be the most predictive model of cancer type from gene
alterations. Using only 100 somatic point-mutated genes for prediction, we achieved an overall accuracy of

49.4 + 0.4 % (95 % confidence interval). We observed a marked increase in the accuracy when copy number
alterations are included as predictors. With a combination of somatic point mutations and copy number alterations, a
mere 50 genes are enough to yield an overall accuracy of 77.7 £ 0.3 %.

Conclusions: A general cancer diagnostic tool that utilises either only somatic point mutations or only copy number
alterations is not sufficient for distinguishing a broad range of cancer types. The combination of both gene alteration
types can dramatically improve the performance.
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Background

Histopathologic examination of tumour tissues remains
the main method for diagnosing cancer in most cases.
When preliminary signs and symptoms indicate the pos-
sibility of tumour growth in a patient, a biopsy is carried
out to extract tissue samples from the patient for visual
examination under a microscope by a pathologist. If the
cells are identified as cancerous, they are categorised into
known cancer subtypes, based on the site where the can-
cer originates. Establishing the cancer type and site of
origin is important, because it helps to determine the
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most appropriate course of treatment for cancer patients.
Unfortunately, there are patients with cancer of unknown
primary, where the site of origin of the cancer cannot be
established from an examination of the metastatic cancer
cells. Most patients with cancer of unknown primary have
poor survival [1]. Since cancer is a genetic disease [2] and
progresses from normal cells via acquisition of somatic
alterations [3], a genomic analysis of tumour DNA could
potentially be used to identify cancer types and primary
sites.

There have been numerous studies on cancer-type iden-
tification through genomic analysis. Early work in this
area relied on gene expression profiles of patients to dif-
ferentiate between a relatively small number of cancer
types or subtypes [4-7]. More recent work used DNA
methylation profiles to predict the tissue of origin [8, 9].
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Other studies on the broader cancer genomic landscape
are also revealing. For example, Ciriello et al. identi-
fied a tree-like stratification of cancer types and their
oncogenic signatures, based on somatic mutation, copy
number alterations and methylation in tumour DNA [10].
From a joint analysis of cancer data sets and data gen-
erated by the Epigenome Roadmap consortium, Polak
et al. found a relationship between the chromatin organ-
isation of primary cancer cells and the distribution of
mutations along their cancer genome [11]. These stud-
ies uncovered the presence of genomic differences among
cancer types, thus pointing to the feasibility of predicting
the primary tumour tissue of origin from genomic data.
In this paper, we evaluate the potential and the limita-
tions of determining the cancer type from a small set of
genetic alterations in tumour DNA. Our aim is to develop
a genetic alteration-based diagnostic tool for patients who
have been diagnosed with cancer, such as when metas-
tases are found, but from whom the primary site remains
unknown.

In our computational proof-of-concept study, we make
use of sequenced tumour DNA from a cancer genome
database to explore subsets of all genes as predictors.
The establishment of cancer databases in recent years
has afforded an unprecedented opportunity to examine
thousands of tumour samples, spanning a wide range of
different cancer types, at once. Such large volumes of data
allow us to explore the feasibility of identifying the can-
cer types of tumour DNA based on alterations in the
genes, which is a classification problem. We are, how-
ever, not just interested in whether tumour DNA can
be correctly classified into the respective cancer types.
From a cost-effectiveness point of view, a practical cancer
diagnostic tool should ideally use as few genes as pos-
sible, so that it remains affordable. Hence, we are also
interested in whether a high level of accuracy can be
achieved using a small number of gene markers. This
can be cast as a feature selection problem in machine
learning: we will identify and select a small subset of the
gene alterations that are most informative about cancer
type.

The type of gene alterations we employ to distinguish
one cancer type from another are somatic point muta-
tions and copy number alterations. Although studies on
cancer types such as colorectal and breast cancer have
shown that genetic alterations in tumours are mostly in
the form of somatic point mutations [3] and that somatic
mutations alone are sufficient for accurately predicting
cancer subtypes [12], there are cancer types where muta-
tions seem to occur predominantly in the form of copy
number alterations [10]. Hence, we are interested in inves-
tigating whether the inclusion of information on copy
number alterations can improve our classification results.
This interest is also motivated by a reported improvement
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in the detection of copy number alterations in tumour
DNA [13].

Our analysis indicates that linear support vector
machines (SVMs), coupled with recursive feature elimina-
tion, perform best in a cancer classification task. More-
over, we found that it is crucial to use copy number
alterations in addition to somatic point mutations for
improved diagnostic performance. With this optimised
approach, we found that a gene panel of as few as 50
genes allows cancer-type prediction with an accuracy of
around 77 %.

Methods

Data collection and preprocessing

The analysed data, consisting of somatic mutations and
copy number alterations in 6640 tumour samples from 28
cancer types (Table 1), were downloaded via the cBioPor-
tal for Cancer Genomics [14—16]. Most of the data were
generated by The Cancer Genome Atlas (TCGA) Research
Network.

We first identified 28 cancer types for our study based
on the availability of both somatic mutation and copy
number alteration information on the cBioPortal web-
site. We then compiled two separate lists of genes for
these cancer types from the same website: somatic point-
mutated genes and copy number altered genes. These
genes are either recurrently mutated or altered genes
detected by the MutSig and GISTIC algorithms [17, 18],
or known cancer genes listed in the Sanger Cancer Gene
Census [19]. In addition, we added a set of 572 genes
from the 76th release of the Catalogue of Somatic Muta-
tions in Cancer (COSMIC) [20] to our list of somatic
point-mutated genes.

Next, we compared these two gene lists against a list of
pseudogenes and non-coding genes downloaded from the
HUGO Gene Nomenclature Committee [21]. We found
20 pseudogenes and non-coding genes among the somatic
point-mutated genes and 1054 such genes among the copy
number altered genes. Since amplification and deletion
of chromosome regions affect the copy number of many
genes, which may not all be causally related to cancer,
it is not surprising that the GISTIC algorithm picked up
many more pseudogenes and non-coding genes among
the copy number altered genes. We chose to remove all the
pseudogenes and non-coding genes from our gene lists,
as we want the genes of our diagnostic gene panel to be
interpretable and relatable to other studies.

After trimming the two gene lists, we extracted the
gene alteration information for the 6653 tumour samples
belonging to the 28 cancer types. The data were arranged
into two binary matrices: a somatic point mutation matrix
and a copy number alteration matrix. In the former, each
column of the matrix corresponds to a somatic point-
mutated gene in our gene list, while each row corresponds
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Table 1 Cancer types and their respective sample sizes

Cancer type (data set) Class label Sample size
Bladder urothelial carcinoma (TCGA, Nature 2014) [47] 1 127
Breast invasive carcinoma (TCGA, Cell 2015) [48] 2 973
Colorectal adenocarcinoma (TCGA, Nature 2012) [49] 3 212
Glioblastoma (TCGA, Cell 2013) [50] 4 280
Head and neck squamous cell carcinoma (TCGA, Nature 2015) [51] 5 279
Kidney renal clear cell carcinoma (TCGA, Nature 2013) [52] 6 418
Acute myeloid leukaemia (TCGA, NEJM 2013) [53] 7 190
Lung adenocarcinoma (TCGA, Nature 2014) [54] 8 230
Lung squamous cell carcinoma (TCGA, Nature 2012) [55] 9 178
Ovarian serous cystadenocarcinoma (TCGA, Nature 2011) [56] 10 316
Uterine corpus endometrial carcinoma (TCGA, Nature 2013) [57] 11 240
Adenoid cystic carcinoma (MSKCC, Nat Genet 2013) [58] 12 55
Brain lower grade glioma (TCGA, Provisional) 13 279
Cervical squamous cell carcinoma and endocervical adenocarcinoma (TCGA, Provisional) 14 191
Kidney renal papillary cell carcinoma (TCGA, Provisional) 15 161
Liver hepatocellular carcinoma (AMC, Hepatology 2014) [59] 16 231
Pancreatic adenocarcinoma (TCGA, Provisional) 17 145
Prostate adenocarcinoma (TCGA, Cell 2015) [60] 18 332
Skin cutaneous melanoma (TCGA, Provisional) 19 278
Stomach adenocarcinoma (TCGA, Nature 2014) [61] 20 287
Papillary thyroid carcinoma (TCGA, Cell 2014) [62] 21 399
Adrenocortical carcinoma (TCGA, Provisional) 22 88
Kidney chromophobe (TCGA, Cancer Cell 2014) [63] 23 65
Pheochromocytoma and paraganglioma (TCGA, Provisional) 24 161
Sarcoma (TCGA, Provisional) 25 240
Testicular germ cell cancer (TCGA, Provisional) 26 149
Uterine carcinosarcoma (TCGA, Provisional) 27 56
Uveal melanoma (TCGA, Provisional) 28 80

The data were downloaded via the cBioPortal for Cancer Genomics

to a tumour sample. A 1 at position (i, j) of the matrix indi-
cates that the jth gene carries a somatic mutation in the ith
tumour sample. For the copy number alteration matrix,
the rows still correspond to the tumour samples, but each
of our copy number altered genes is represented by two
columns, one for amplification and one for deletion. We
chose to characterise gene amplification and deletion as
two separate variables because they can be thought of as
different forms of gene alteration that do not necessarily
result in opposing biological effects. We did not further
divide the categories into high and low levels of amplifica-
tions and losses, as this did not lead to improved results
and increased the run time due to the larger data matrix.
We removed all the columns that contain only zeros,
since they correspond to genes that carry no form of alter-
ation in any of the tumour samples. We also removed

duplicated columns from the copy number alteration
matrix. Finally, we filtered out all rows with only zeros as
they corresponded to tumour samples without an aber-
ration in any of the genes we tested. These are tumour
samples that cannot be distinguished from healthy
samples.

As a result, we obtained a 6640 x 7673 somatic point
mutation matrix and a 6640 x 5477 copy number alter-
ation matrix. The somatic point mutation matrix was used
to assess cancer classification using only somatic point-
mutated genes. To take into account the copy number
alterations, we simply concatenated the two matrices to
yield a 6640 x 13151 binary matrix, in which the first 7673
columns carry information on somatic mutations, while
the last 5477 columns carry information on copy number
alterations.
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Cancer-type classification and feature selection
approaches

We used three different popular machine-learning meth-
ods for multiclass classification to classify tumour samples
into cancer types. We selected SVMs with a linear kernel
[22] and logistic regression [23], both of which are well-
known linear methods. We also picked random forests
[24] as a third method to test whether its non-linear deci-
sion boundaries result in increased discriminatory power
between cancer types. Random forests have become pop-
ular in bioinformatics in recent years because there is
empirical evidence that they perform well in a wide vari-
ety of situations [25]. We did not consider deep learning
methods, which have recently been proved to be success-
ful in various applications, as they typically require larger
sample sizes than what is available to us.

Each algorithm was paired with a feature selection
method to identify the top predictor genes. For the SVM,
we employed the multiclass version of SVM recursive
feature elimination (SVM-RFE) as the feature selection
method [26, 27]. SVM-RFE assesses the value of a fea-
ture based on its weights in the linear model and discards
the least predictive feature in each iteration. The order in
which the features are eliminated defines a ranking of the
features according to their importance; the least impor-
tant feature is discarded first while the most important is
discarded last. SVM-RFE was implemented with the help
of the LiblineaR R package for SVM [28, 29].

To select features in the logistic regression model, we
used the glmnet implementation of L -regularised logis-
tic regression [30], which follows Zhu and Hastie’s sym-
metric formulation of multiclass logistic regression [31].
The L; regularisation term, which is tuned by a user-
defined parameter A, shrinks the coefficients of less rele-
vant features down to zero, thus discarding them.

Random forests measure the importance of each feature
by the impact that a random permutation of its values in
out-of-the-bag samples has on the classification of those
out-of-the-bag samples [23]. To perform feature selec-
tion for random forests, we applied an approach from
Diaz-Uriarte and de Andrés that utilises these importance
measures [32], using the ranger package [33].

The tuning parameters for SVM were optimised via
tenfold cross-validation while the out-of-the-bag error of
the training data set was used to guide the choice of
parameters for the random forest [23].

Data partitioning and sampling

For an impartial assessment of the classifiers, it is impor-
tant to test them on a previously unseen data set that
is independent of the data set used to train them. If
the number of samples is small compared to the num-
ber of predictors, many predictors may correlate with the
response variable and the results of gene selection can
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change drastically when different data are used as the
training set [34]. To minimise this dependency of gene
selection on a single random partitioning of the data into
training and test sets, we derived our results from an
ensemble of training and test sets.

We first set aside 1/4 of the data (1661 tumour samples)
for the final validation of our best classifier. These 1661
tumour samples were randomly picked from the data,
with all classes, i.e. tumour types, represented proportion-
ately. We then further divided the remaining 3/4 of the
original data set into two sets: a training set and a test
data set. We randomly sampled 4/5 of it (again, with all
classes represented proportionately) to train the classi-
fiers and tested the optimised classifier on the last 1/5 of
the data. This splitting of the data into four parts training
and one part testing was repeated 50 times. Any compu-
tation we subsequently did was carried out independently
on each of these 50 sets. The results were then aggregated
by averaging them.

Assessing classifier performance

We assessed the performance of the classifiers by trac-
ing their overall accuracy as a function of the number of
selected predictors. For SVM-RFE and random forests, for
each training data set and its corresponding gene rank-
ing by importance, we trained a series of classifiers using
an increasing number of the top-ranked genes. We then
evaluated the performance of those models using the cor-
responding test data and averaged the results across the
50 test data sets. For L;-penalised logistic regression, gene
selection was accomplished by varying the regularisation
parameter L. We used each of the 50 training data sets to
construct a series of logistic regression models by vary-
ing A. The corresponding test data sets were then used to
estimate the accuracy of each model. For each A value, we
averaged the accuracies from the 50 test data sets as well
as the number of genes selected.

The overall accuracy of a classifier is not very informa-
tive by itself because it does not tell us how well each
cancer type is classified. Therefore, we also consider preci-
sion and recall. For multiclass classification, precision and
recall of a cancer type i are defined as:

Number of samples correctly
classified as cancer type i

Precision; = Number of samples classi-
fied as cancer type i
Number of samples correctly
Recall; = classified as cancer type i

Number of samples
of cancer type i

In all calculations, we computed the 95% confidence
interval of each quantity by multiplying the standard devi-
ation of its estimate based on the 50 values by +1.96/+/50.
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Assessing top feature sets

To verify that the top predictor genes selected by the best
classifier are optimal, in the sense that using other genes
as the predictor set results in a drop in the performance
of the classifier, we compared the performance of the top
predictor set selected by our best classifier with that of the
second and third best predictor sets, averaged over the 50
training data sets. For each top gene set of size 1, we took
the (n+1)th to 2nth genes as the second best predictor set,
and the (27+1)th to 3nth genes as the third best predictor
set. We then varied # and computed the overall accuracy
of the classifier for these three gene sets.

Stability selection

We analysed the genes selected in the top predictor set
as follows. Since we have 50 different training data sets,
the list of top genes selected for each of the training sets
will, in general, be different. Meinshausen and Bithlmann
demonstrated that stability selection, i.e. choosing fea-
tures that are frequently selected when using different
training sets, yields a robust set of predictive features [35].
We followed this approach to find the most frequently
selected top genes among the 50 gene lists. Besides exam-
ining them in greater detail, we also tested them on the
1661 unseen tumour samples that we set aside at the
beginning.

Results

Performance of classifiers using somatic point-mutated
genes, with and without copy number altered genes
Figure 1 summarises the performance of the different clas-
sifiers as a function of the number of genes used in the
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predictor set. We included a random classifier in all the
figure panels to provide a baseline for comparison. The
random classifier assigns a tumour sample to the different
cancer classes with probabilities proportional to the size
of those classes in the training data set.

In Fig. 1a, only somatic point-mutated genes were used
as predictors. We observe a sharp increase in the over-
all accuracy of the classifiers in the initial stage when the
number of genes in the predictor set is small. There is,
however, a diminishing increase in classifier accuracy with
each additional gene used. When the number of genes
used reaches 200—300, the overall accuracy of the classi-
fiers starts to level off. When we used only copy number
altered genes as the sole predictors of cancer types, we
achieved an overall accuracy that is about 20 % better
on average than using only somatic point-mutated genes
(Fig. 1b). This observation suggests that combining the
two types of gene alterations can further improve per-
formance, which is shown in Fig. 1c. A comparison of
Fig. 1a, b and c clearly shows that the use of somatic
point-mutated genes with copy number altered genes sig-
nificantly boosts the overall accuracy of the classifiers and
gives the best performance.

The linear classifiers generally perform better than the
non-linear classifier on the gene alteration data matrices
(Fig. 1). In both cases, SVM-RFE and L, -penalised logistic
regression can achieve a higher overall accuracy than ran-
dom forests. The overall accuracy of SVM-RFE improves
more rapidly that that of L;-penalised logistic regression
with the number of genes used. From these observations,
we concluded that SVM-REFE is best suited for our data. It
achieves the highest overall accuracy of 88.4 + 0.2 % when

a b c
90% - 90% 90% -
75% - 75% = 75% - r/_\
3 7
5 60% A 60% - 60% -
3 (
T 45% - 60% ] 45% - 45% E SVM-RFE
© 50% E L1-logistic regression
Q 30% - / 30% - 30% Hr
O 40% andom forest
15% 3 15% - 15% E Random classifier
0% = 0% - 0%
T T T T T T T T T T T T
0 1500 3000 4500 0 1500 3000 4500 0 1500 3000 4500

Number of genes used

Fig. 1 Performance of different classifiers. Using (@) only somatic point-mutated genes, (b) only copy number altered genes and (c) both somatic
point-mutated genes and copy number altered genes as the predictors. The mean overall accuracy, with its 95 % confidence interval band, was
computed using the results from 50 sets of randomly subsampled training data and their corresponding test data. For SYM-RFE and random forest,
we first ranked the genes in decreasing order of their importance, before using an increasing number of them to train and test the classifiers. For
Ly-logistic regression, we varied the parameter A to control the number of genes selected. The accuracy of a random classifier is also plotted to
provide a baseline for comparison. The random classifier assigns a tumour sample to the different cancer classes with probabilities proportional to

the size of those classes in the training data set

Number of genes used

Number of genes used
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trained using 900 top-ranked genes consisting of both
somatic point-mutated genes and copy number altered
genes.

A closer look at the precision and recall of each can-
cer type, for the SVM model trained on 900 top-ranked
genes, reveals that the classifier does not classify all cancer
types equally well (Fig. 2). The precision values are gen-
erally high for all the cancer types. With the exception of
uterine carcinosarcoma, which has a precision of 5946 %,
all other cancer types have precision values exceeding
70 %. The recall values among the different cancer types
vary more. Adenoid cystic carcinoma and uterine carci-
nosarcoma, the two smallest cancer classes, have recall
values of 42 + 5% and 40 + 4%, respectively, while the
rest of the cancer types have recall values equal to or
greater than 65 %. In other words, a relatively large frac-
tion of tumour samples that have been classified as uterine
carcinosarcoma are misclassified, while the proportion
of adenoid cystic carcinoma and uterine carcinosarcoma
samples that are classified correctly is low. These results
suggest that larger sample numbers than the available 55
for adenoid cystic carcinoma and 56 for uterine carci-
nosarcoma are necessary to improve the classification of
these cancer types.

Out of the 28 cancer types, seven of them — glioblas-
toma, kidney renal clear cell carcinoma, lung squamous
cell carcinoma, ovarian serous cystadenocarcinoma, uter-
ine corpus endometrioid carcinoma, prostate adenocarci-
noma and kidney chromophobe — have both precision and
recall values exceeding 90 %. These results indicate that
the somatic mutation and copy number alteration pro-
files of the top-ranked genes are characteristic of and can
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correctly differentiate these nine cancers. The precision
averaged over the 28 cancer types is 88 &+ 2 %, while the
average recall is 84 2 %.

Performance of SVM-RFE for small predictor gene sets
When we compared the performance of the top predictor
set with that of the second and third best sets, the differ-
ences are substantial (Fig. 3). Even when the number of
genes used is smaller than 500, the overall accuracy of the
top predictor set is still markedly higher than those of the
second and third best sets. We computed the overall accu-
racy of SVM using a top predictor set of size 10, 20, 50, 70
and 100 (Table 2).

With both somatic point-mutated genes and copy num-
ber altered genes, a mere 50 genes is enough to achieve
an overall accuracy of 77.7 £ 0.3 %. We carried out sta-
bility selection to select 50 genes that are most frequently
ranked high in our ranked lists of gene predictors. We
found that out of these 50 genes, 18 are associated with
somatic point mutations while the remaining 32 are asso-
ciated with copy number alterations. Furthermore, 13-15
of the 50 genes are cancer driver genes, depending on
which list of driver genes we compared to [3, 36, 37].
We note that after manual inspection, we found two
non-coding genes in this list, despite our earlier attempt
to remove them. Although we were not able to remove
all pseudogenes and non-coding genes exhaustively, the
remaining ones do not affect the generality of our results
presented here. A compilation of the brief descriptions
from RefSeqGene [38], as well as the relevant pathways
from the Reactome pathway database [39, 40], of our list
of 50 genes can be found in Additional file 1.
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Fig. 3 Performance of the top predictor sets when both somatic
point-mutated genes and copy number altered genes were used as
predictors. The genes were ranked using SVM-RFE. For each top gene
set of size n, we considered the (n + 1)th to 2nth genes as the
second best predictor set, and the (2n + 1)th to 3nth genes as the
third best predictor set. We then varied n and computed the accuracy

of SVM for these three gene sets. SVM support vector machine

Training a SVM using these 50 genes and testing it on
the 1661 unseen tumour samples that we set aside at the
beginning yields an overall accuracy of 77.4 %, which is
in good agreement with our results in Table 2. Since the
number of genes used here is a small fraction of the 900
genes in the best SVM model, we generally observe a drop
in the precision and recall values for each cancer type
(Fig. 4). Adenoid cystic carcinoma, which has the small-
est sample size in our data set, has 25 % for precision and
7 % for recall. In addition, liver hepatocellular carcinoma
has a precision of less than 50 % while bladder urothelial
carcinoma, acute myeloid leukaemia and uterine carci-
nosarcoma have recall values of less than or equal to 50 %.

Table 2 Overall accuracy of SVM for small gene sets selected by

RFE

Number Only  somatic Only copy num- Somatic  point-
of genes point mutated ber altered genes mutated  genes
used genes as as predictors and copy number

predictors altered genes

10 288+ 05% 393+08% 406 +09%

20 353+0.5% 534+ 04% 61.5+06%

50 443+£04% 67.7 £04% 777 £03%

70 472 +04% 71.7£03% 81.2+03%

100 494 +04% 747 £03% 83.8+03%
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Still, the precision and recall for glioblastoma and kid-
ney renal clear cell carcinoma remain above 90 %. The
average precision and recall values fall to 78 % and 72 %,
respectively.

Comparison with other gene panels

A few recent studies have used different methods to select
genes for cancer gene panels of different sizes designed to
meet slightly different needs. For example, Martinez et al.
[41] proposed a panel of 25 somatic point-mutated genes
for detecting cancer, but not for identifying the cancer
type. These genes were selected based on their relatively
high mutation rates in a data set of ten cancer types.
Rubio-Perez et al. [42] compiled a list of known cancer
driver genes and calculated the cumulative mutational fre-
quency of those genes in a data set of 28 cancer types.
They then designed a web interface called OncoPaD that
could suggest the most relevant set of genes for differ-
ent cancer types chosen by the user. These genes were
further classified into tiers 1, 2 and 3, with tier 1 genes
contributing the most towards the slope of the cumulative
mutational frequency distribution.

We compared the effectiveness of our gene selection
approach using SVM-RFE and stability selection to the
methods used in Martinez et al. and Rubio-Perez et al., in
terms of the performance of the gene panels in differen-
tiating tumour types based on gene alteration data. Thus,
we used our data set to train two SVM classifiers, one
using the 25 genes in Martinez et al. and the other using
the 277 genes in the tier 1 set suggested by OncoPaD.
We then tested the SVM classifiers on the 1661 unseen
tumour samples that we set aside at the beginning. Select-
ing the same number of somatic point-mutated genes for
our gene panel for a fair comparison, our gene panel per-
formed better by about 3-9% in classifying 28 tumour
types, as well as classifying only the tumour types that are
common between our and the studies compared (Tables 3
and 4). This result indicates that the gene panels in
Martinez et al. and Rubio-Perez et al. are not optimal
for differentiating tumour DNA into tumour type. Fur-
thermore, the overall accuracy of our classifier markedly
increased when we included copy number alterations,
which underscores our earlier results presented in Fig. 1.

Discussion

The goal of this study is to explore the potential of utilising
tumour DNA as a cancer diagnostic tool. Thus, we tried
to quantify the performance of using genetic alterations in
sequenced tumour samples to identify cancer type. This
is accomplished by first using machine learning to select
informative genes for cancer-type prediction, then using
those genes as biomarkers to classify sequenced tumour
samples that span 28 different cancer types. In addi-
tion, we demonstrated that the selected genes outperform
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other gene subsets, and that the classification accuracy
remains robust when we select genes that are consistently
ranked high.

Our results show that by testing 50 genes for somatic
point mutations and copy number alterations, the can-
cer type of an unknown tumour DNA can be identified
with an accuracy of around 77 %. Considering the hetero-
geneity of cancer genomes, it is encouraging that we can
achieve such a high accuracy using only a relatively small
number of genes. We have seen, however, that the pre-
cision and recall for some cancer types can drop to very
low values. This is due to two reasons. First, there is an
unavoidable trade-off between making the diagnostic tool
more useful by increasing the coverage of cancer types on
the one hand and reducing the cost of the tool by using
fewer genes on the other. Second, cancer types that are
consistently classified badly, notably adenoid cystic carci-
noma and uterine carcinosarcoma, also have the smallest

Table 3 Overall accuracy of the SVM classifier trained using the
genes proposed by Martinez et al. and the genes selected via
SVM-RFE and stability selection in this study

Classification 25-gene panelin  Top 25 SVM-  Top 25 SVM-
task Martinez et al. RFE-based RFE-based
SPM genes SPM and CNA
genes
28 cancer types 304 % 39.0% 67.7 %
of this study
10 cancer types  54.6% 574% 85.4%

of Martinez et
al.

The classifier was tested on 1661 unseen tumour samples
CNA copy number altered, SPM somatic point-mutated, SVM support vector
machine, SVM-RFE SVM recursive feature eliminatio

sample size in our data set. It is expected that with more
samples available, predictive diagnostic tools obtained via
a similar analysis will become more accurate.

More importantly, our results in Table 2 show that the
identification of cancer type using only a small number of
somatic point mutations or copy number alterations does
not yield satisfactory results. This suggests that a diagnos-
tic tool that depends solely on somatic point mutations
might not be very useful. The inclusion of copy number
alterations can dramatically improve the results of cancer-
type identification. Given the continuing drop in the cost
of sequencing, which is the underlying technology for
detecting copy number alterations [43], our results sug-
gest that copy number analysis should be part of a cancer
diagnostic tool.

Table 4 Overall accuracy of the SVM classifier trained using the
gene panel proposed by OncoPaD and the genes selected in this
study via SVM-RFE and stability selection

Classification 277 0ncoPaD  Top 277 SVM-  Top 277 SVM-

task tier 1 genes RFE-based RFE-based
SPM genes SPM and CNA

genes

28 cancer types  49.6% 573% 88.1%

of

this study

19 cancer types 56.0% 63.4% 90.3 %

common

between this

study and

OncoPaD

The 19 tumour types that are common to our data set and OncoPaD are those
labelled 1-11,13, 14, and 16-21in Table 1

CNA copy number altered, SPM somatic point-mutated, SVM support vector
machine, SVM-RFE SVM recursive feature elimination
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Our final 50-gene panel contains genes that were
not previously known to be cancer-related. To under-
stand why this may be so, note that the SVM-RFE
algorithm selects genes that contribute to differenti-
ating cancer types. These genes may not necessarily
be cancer driver genes or genes with high mutation
rates. SVM-RFE tends to select complementary genes
that, by themselves, may not be the most relevant [26].
Several genes with highly correlated mutation profiles
would provide redundant information, even if they are
all cancer-related. During the early part of the recursive
elimination process, the highly correlated genes will be
randomly selected and discarded one by one, until only
one of them remains. Hence, the top-ranked genes tend to
be less correlated and more complementary. The assort-
ment of genes in our gene panel might explain why they
perform better than the genes shortlisted by Martinez
et al. and Rubio-Perez et al. Since the gene panels pro-
posed by Martinez et al. and Rubio-Perez et al. are all
cancer driver genes, there may be redundancy in the infor-
mation captured by those genes, hence their suboptimal
performance.

On a separate but related note, the panel of 50 genes
that we presented should not be regarded as the final word
on what a 50-gene panel should be, since in a repeated
run of the SVM-RFE algorithm, the correlated genes will
be eliminated randomly in a different order, producing a
slightly different final gene set. Notwithstanding any dif-
ference, the final gene set will still yield a comparable level
of performance.

In compiling the genes for our study, we first relied on
the MutSig and GISTIC scores, then filtered out pseu-
dogenes and non-coding genes, such that our final list
of genes consisted only of protein-coding genes and,
therefore, was more interpretable and relatable to other
studies. To determine if the removal of the pseudo-
genes and non-coding genes was justifiable, we ran the
whole procedure without removing those genes. Com-
paring the overall accuracy of SVM on this new data
set against our earlier results in Fig. 1, we note that
there is a general drop of about 1.4% in the overall
accuracy when pseudogenes and non-coding genes are
removed from the somatic point mutation and copy
number alteration genes (Additional file 2: Figure Al).
On the one hand, this relatively small drop in accuracy
shows that we had not filtered out all the useful predic-
tors of cancer types when we removed the pseudogenes
and non-coding genes early in our procedure. Since our
results were not adversely affected, we think that it is
worth removing these genes in exchange for a more inter-
pretable and relatable final gene panel. On the other hand,
the drop in accuracy also suggests that at least some of
the pseudogenes and non-coding genes might be be help-
ful in classifying tumour samples into different cancer
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types. These genes may play a previously overlooked role
in cancer progression, such as regulating the expression of
cancer-related genes [44].

Since genetic alterations in tumour DNA can be
obtained reliably and cost-effectively from circulating
tumour DNA (ctDNA), which is released into the blood-
stream from viable or ruptured tumour cells, ctDNA is
regarded as having potential for cancer-type detection
and identification [43, 45]. However, to our knowledge,
there is as yet no study that tries to quantify the per-
formance of utilising ctDNA for cancer-type prediction
across a broad range of cancer types. Our results in
this study can be regarded as providing an estimate of
the performance of ctDNA in identifying cancer type
under idealised conditions. Such a diagnostic tool would
likely not perform as well in reality, because studies have
shown that the level of detectable ctDNA is different
for different cancer types and in general, the level of
ctDNA in the blood correlates with disease stage [46].
This implies that at present, ctDNA might be less useful
for certain cancer types and as an early diagnostic tool. We
are hopeful that further advances in technology allowing
the detection of even lower levels of ctDNA will eventu-
ally allow the hypothesised diagnostic tool to approach the
level of accuracy we achieved in this study.

Our results and insights should also apply equally well to
circulating tumour cells since they contain all the tumour
DNA. Hence, the 50 biomarkers that we have identified
could potentially be used to determine the cancer types
of circulating tumour cells with a comparable level of
accuracy.

Conclusions

Our findings can be interpreted on several levels. First,
they increase our understanding of cancer heterogeneity.
Genomic alterations in tumours are extremely complex,
and large differences occur between tumour genotypes
of not only different cancer types but also within
the same type. Effectively, judging from somatic alter-
ations, each patient seems to carry a different disease
of the genome. However, in clinics, the location of
the primary tumour and its histology can be used to
give a clear categorisation of patients by cancer type.
Thus, out of the numerous mutational and copy num-
ber changes that their tumour genomes acquired, some
are likely to be involved in disease progression. Machine-
learning algorithms, in contrast to manual inspec-
tion, offer an efficient means of examining thousands
of altered genes across thousands of tumour samples
and of dealing with the complexity of genomic alter-
ations and the heterogeneity. In this view, the question
of classifying cancer types from genomic alterations
can be regarded as deciphering one aspect of the
genotype-to-phenotype map.
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Second, our study aims at cancer-type prediction using
data that are different from those in most of the previ-
ous works. Previous studies accumulated evidence that
cancer types are distinguishable based on gene expres-
sion signatures [4—7] and methylation profiles [8, 9]. To
our knowledge, our work is the first to show system-
atically that cancer types can also be identified from
somatic point mutations and copy number alterations.
The two earlier studies on genomic alteration data
[41, 42] explored related but different questions, and our
comparison clearly shows that our top genes outperform
their gene sets in distinguishing cancer types.

Finally, from a biological point of view, our results indi-
cate that the most discriminatory power comes from
copy number alterations. This indicates that somatic point
mutations may have general carcinogenic effects that
will be more similar across cancer types. In contrast,
copy number variants are more specific for each cancer

type.
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