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Abstract

Background: Genome-wide association studies are useful for discovering genotype–phenotype associations but
are limited because they require large cohorts to identify a signal, which can be population-specific. Mapping genetic
variation to genes improves power and allows the effects of both protein-coding variation as well as variation in
expression to be combined into “gene level” effects.

Methods: Previous work has shown that warfarin dose can be predicted using information from genetic variation that
affects protein-coding regions.
Here, we introduce a method that improves dose prediction by integrating tissue-specific gene expression. In particular,
we use drug pathways and expression quantitative trait loci knowledge to impute gene expression—on the assumption
that differential expression of key pathway genes may impact dose requirement. We focus on 116 genes from
the pharmacokinetic and pharmacodynamic pathways of warfarin within training and validation sets comprising
both European and African-descent individuals.

Results: We build gene-tissue signatures associated with warfarin dose in a cohort-specific manner and identify a
signature of 11 gene-tissue pairs that significantly augments the International Warfarin Pharmacogenetics Consortium
dosage-prediction algorithm in both populations.

Conclusions: Our results demonstrate that imputed expression can improve dose prediction and bridge population-
specific compositions.
MATLAB code is available at https://github.com/assafgo/warfarin-cohort

Keywords: Pharmacogenomics, Warfarin dose, International Warfarin Pharmacogenetics Consortium, African Americans

Background
A crucial component to implementing precision medi-
cine is elucidating how genetic variation affects drug re-
sponse. These gene–drug associations can then be used
for tailored drug selection and drug dosing [1, 2].
Genome-wide association studies (GWAS) allow the as-
sociation of genetic variants like single nucleotide polymor-
phisms (SNPs) with a drug phenotype. While GWAS have
successfully identified thousands of genotype–phenotype
associations, they suffer from three limitations [3]: testing a

large number of SNPs requires a large study cohort to
identify a statistically significant signal; SNPs can be
population-specific and findings from one population
may not be applicable to another population [4]; and
finally, finding the genes affected by phenotype-
associated SNPs is challenging [5, 6].
Approaches that aggregate SNPs into genes or path-

ways have been developed to circumvent some of these
drawbacks [7, 8]. Working within the gene or pathway
level typically decreases the number of hypotheses [5]
and may also bridge population-specific allelic composi-
tions. Beyond direct measurement of genetic variation,
approaches for using measured or imputed gene expres-
sion can potentially provide insight into biological
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mechanism [9]. For example, PrediXcan [10] imputes
the expected baseline expression of a gene based on the
allele composition of SNPs in proximity to that gene
(cis-SNPs) and uses these predicted baseline expression
values to identify gene associations to disease phenotypes.
One mechanism through which SNPs may affect drug

response is by modulating the expression level of genes
that are key for drug response. These SNP effects may
be population- and/or tissue-specific, and the Genotype-
Tissue Expression (GTEx) datasets [11] make it possible
to assess tissue-specific baseline levels of gene expres-
sion for specific ancestries. In this work, we evaluate the
degree to which estimation of baseline gene expression
can improve prediction of drug response. We use the
generic PrediXcan strategy in a modified way: (1) we im-
pute gene expression in a manner that is cohort-specific;
and (2) we impute genes only in tissues where expres-
sion quantitative loci (eQTLs) are associated with these
genes. In order to have a more interpretable model, we
focus on drug pathway genes relevant to the pharmaco-
logic problem (see also [12]). We impute gene expres-
sion in specific tissues for each individual using the
GTEx compendium [11] (Fig. 1) and learn a signature
that is predictive of warfarin dose comprising gene-
tissue pairs on a training cohort. We demonstrate the
utility of the signatures by predicting warfarin dose in
individuals of African American (AA) and European
(EUR) descent. Warfarin dose prediction in African Amer-
icans is especially challenging, as the currently known
genetic variations predict only a small amount of the dose
variability [13, 14]. In both populations, our new signa-
tures explain the additional 8–12% of the variance in war-
farin dose that is unexplained by the International
Warfarin Pharmacogenetics Consortium (IWPC) algo-
rithm. We also associate 20 novel genes with warfarin
dose, including two genes—LGALS2 and PLCG2—that
are common to signatures of EUR and AA populations.

Our method performs well on AA in contrast to the
generic strategy. Through these improvements, we offer a
general approach for prediction of drug response and dis-
covery of associated gene candidates.

Methods
Drug response is a complex phenotype and is regulated
by multiple genes and across multiple tissues. To iden-
tify which genes (in the context of a tissue) might
influence warfarin dosing, we: (1) imputed the expres-
sion of genes in warfarin pharmacokinetic (PK) and
pharmacodynamic (PD) pathways using SNPs in proxim-
ity to each gene; (2) used the imputed gene-tissue pairs
as features to learn a tissue-specific gene expression sig-
nature on the EUR or AA training cohort; and (3) valid-
ate the performance of the learned signature gene-tissue
pairs on the EUR or AA validation cohorts relative to
background models.
We compared a generic PrediXcan imputation of

expression [10] with an approach that: (1) builds cohort-
specific imputation models; and (2) imputes gene ex-
pression for each gene only in tissues where the gene
expression has associated eQTLs. We learn the tissue-
specific signatures on a EUR and AA cohorts and valid-
ate them by estimating warfarin dose on independent
validation cohorts.

Datasets
Gene-tissue expression data
Gene expression and eQTLs associated with 42 tissues
were extracted from GTEx consortium version 6 [15]
(excluding cell-lines of EBV-transformed lymphocytes
and transformed fibroblasts; tissue statistics are available
on the GTEx portal, http://www.gtexportal.org/home/
tissueSummaryPage).
We imputed the expression of 116 genes assembled

from the curated warfarin PD and PK pathways from

Fig. 1 Illustration of the use of SNPs, measured in GWAS, to impute expression of drug-associated genes
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PharmGKB [16] and from the predicted warfarin PD
pathway genes [17] (Additional file 1: Table S1). Predic-
tion of warfarin PD pathway was done by connecting cu-
rated warfarin-associated genes, including gene targets,
pharmacogenes (genes associated with differential drug
response) and disease genes, over the protein interaction
network.

Training and validation cohorts
We selected a signature comprising gene-tissue pairs,
predictive of warfarin dose, using a training cohort and
validated the signature performance in predicting war-
farin dose on a validation cohort. Table 1 lists cohort
statistics and Additional file 1: Figure S1 displays cohort
age distribution. The training set for the AA signature
comprised 103 previously exome-sequenced individuals
of AA descent which received either low dose (≤35 mg/
week) or high dose (>49 mg/week) warfarin [18]. The
EUR training cohort is the Cooper et al. dataset [19]
with 180 genotyped individuals (five of which are of His-
panic origin), followed by imputation against HapMap.
Validation was conducted on 225 genotyped individuals
of AA descent, imputed against HapMap Phase 2 Re-
lease 22 [13, 20] and 233 genotyped individuals of EUR
descent [21] imputed using HapMap3 (see Additional
file 1: Figure S2 for distribution of doses in each study).
The warfarin patient cohorts included 0.02–1.1% of
missing values, which were imputed using k-nearest
neighbors impute (k = 5). Based on 77 AA individuals,
common to the training exome-sequenced cohort and
the genotyped validation cohort, we were able to esti-
mate 1% allelic mismatches (including missing values)
between the two sequencing methods. These 77 individuals
were subsequently excluded from the validation set.

Imputing tissue-specific gene expression
We imputed gene expression by building a regression
model per gene in a given tissue from SNPs in cis with
the gene, defined as closer than 1 Mb to the outer
bounds of the gene using the GTEx compendium of

genotypes and gene expression. We built a model for
each gene-tissue pair using LASSO [22], either follow-
ing the original PrediXcan methodology (the “generic”
strategy) [10] or a “cohort-specific” strategy. For the
generic PrediXcan imputation, we used the software
package of PrediXcan with the weighted cis-SNPs in the
PredictDB database [23] to generate imputed gene-
tissue pairs.
In the cohort-specific strategy, we followed the Pre-

diXcan methodology to impute a gene using cis-SNPs
(gene and SNP positions extracted from the human gen-
ome reference sequence GRCh38 and dbSNP build 144).
Different from PrediXcan, we focused only on gene-
tissue pairs where the gene has at least one significant
eQTL (q-values ≤ 5%) in GTEx [11], resulting in 67,022
SNPs measured in any of the four warfarin studies and
in cis with the warfarin-pathway genes. The four im-
puted warfarin GWAS contain only a partial set of the
SNPs available in GTEx and partial overlap with each
other. To bridge these differences in SNP content, our
cohort-specific strategy was to build an independent
model per cohort, based only on the SNPs measured in
that cohort study (Fig. 2a). The gene expression regression
models where computed with LASSO [22] using fivefold
cross-validation to select the optimal regularization
parameters.
Between 111 and 114 genes were imputed using the

generic PrediXcan and 96 genes were imputed using the
cohort-specific method (Table 1). Correspondingly, the
number of model SNPs is smaller with the cohort-specific
method except for the AA training cohort. The AA train-
ing cohort was measured with exome-sequencing array
and shares smaller number of SNPs with the genotype ar-
rays used in GTEx. Additional file 1: Figure S3 displays
the relative overlap of cis-SNPS measured in each warfarin
study that were used in imputing the genes.
Our method of validation was by comparing the per-

formance of the generic and the cohort-specific strate-
gies in predicting warfarin dose to background models
(R2 measures), which we describe in the next sections.

Table 1 Cohort statistics

Study cohort Patients (n) Females (%) Imputation method Model SNPs (n) Covered tissues (n) Imputed genes (n) Imputed gene-tissue
pairs (n)

AA training 103 68 Generic 1309 39 112 901

Cohort-specific 2175 41 96 539

AA validation 225 NA Generic 5384 39 114 1727

Cohort-specific 2480 41 96 539

EUR training 180 36 Generic 5305 39 114 1729

Cohort-specific 2519 41 96 539

EUR validation 233 52 Generic 5313 39 114 1729

Cohort-specific 2674 41 96 539
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In order to gain insights into the differences between the
imputation strategies, we also compared the imputed
gene-tissue expression in two ways: (1) overlap of im-
puted genes across the four warfarin study cohorts for
each imputation method independently (between-study
similarity); and (2) the consistency of each study cohort
across the two imputation strategies (between-strategy
similarity). For the between-study similarity, we com-
puted the mean imputed value of each gene-tissue pair
across the study individuals and computed the Pearson
correlation between the gene-tissue pairs’ means across
the cohorts. For the between-strategy similarity, we
computed the correlations of each gene-tissue pair
across individual patients and averaged across all gene-
tissue pair. All computations were performed using
MATLAB v8.4. MATLAB code is available at https://
github.com/assafgo/warfarin-cohort and the imputed
data in Additional file 2.

Learning signatures for warfarin dose
Imputed gene-tissue expression values were computed
per warfarin patient, using all GTEx data for the 39–41

tissues, resulting in 539–1727 gene-tissue pairs serving
as features (Table 1). We assume that variation in gene
expression affects warfarin dose, but this effect might in-
volve only a subset of the warfarin pathway genes and
could be tissue-specific. We thus learned a signature,
comprising gene-tissue pairs, that is predictive of
warfarin dose using the EUR and AA training cohorts.
Gene-tissue signatures were learned using LASSO re-
gression analysis with fivefold cross-validation, selecting
the shrinkage parameter which provided the minimal
mean square error (Fig. 2b). For robustness, we repeated
this procedure 100 times with different random cross-
validation partitions and selected for the signature gene-
tissue pairs appearing in more than half of the repeats.

Predicting warfarin dose
We measured the performance of the signatures based
on the R2 of the unexplained portion of the IWPC algo-
rithm. Specifically, we computed the predicted dose ac-
cording to the IWPC dosing algorithm for each
validation cohort and inferred the residual dose, i.e. the
difference between an individual’s actual therapeutic

Fig. 2 Illustration of the feature construction and signature selection methods. First, gene expression is imputed by regression models from cis-SNPs
(a). Then, a signature is learned by regressing the drug response on the imputed expression features (b)
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dose and the IWPC predicted dose. In the AA validation
dataset, the IWPC dose was computed without the in-
formation regarding use of enzyme reducers (phenytoin,
carbamazepine, or rifampin), which could potentially
change the predicted dose by up to 9% [20].
Signature performance was evaluated relative to two

background models: (1) a shuffled model, in which the
residual dose was shuffled 10,000 times; and (2) a ran-
dom signatures model, created from 10,000 equal-
sized randomly selected signatures, chosen from the
gene-tissue pairs not in the signature. P values of re-
gression R2 values were empirically computed relative
to these background models and corrected for false
discovery rate (FDR) [24] of 0.05 across the tested
signatures.

Results
We tested whether a modified PrediXcan approach
could improve inference of warfarin dose for EUR and
AA populations by imputing GWAS and constructing
population-specific signatures. We compared the generic
PrediXcan approach and the modified, cohort-specific,
version based on their ability to improve the gold
standard IWPC dosing algorithm.

Imputing tissue-specific gene expression
The first step involved creating features from imputed
gene tissue. We assessed the differences between the
two imputation strategies through between-study and
between-strategy tests (see “Methods”).
The between-study similarity shows the imputed gene

expression distributions across studies. It was high
between the EUR training and validation cohorts for
both the generic and cohort-specific imputation strategies
(Pearson ρ = 0.96, p~ 0 and ρ = 0.72, p < e–85, respectively).
It was significant between the AA training and validation
cohorts only for the cohort-specific method (Pearson
ρ = 0.54, p < 2e–41, Additional file 1: Figure S4).
The between-strategy similarity displays moderate

similarities between the two imputation methods–aver-
age Pearson correlations between imputed genes are in
the range of 0.52–0.59 (±0.39) across the AA and EUR
cohorts, with slightly higher similarities across the EUR
cohorts.

Learning gene-tissue signatures for warfarin dose
We next learned separate signatures using the generic
and the cohort-specific imputation strategies. The gen-
eric strategy produced a EUR signature with 16 gene-
tissue pairs but failed to produce a signature on the AA
training cohort. In contrast, the cohort-specific signatures
produced a EUR signature comprising 11 gene-tissue pairs
and an AA signature comprising 17 gene-tissue pairs
(Table 2).

Predicting warfarin dose
We estimated the signatures performance on the valid-
ation cohorts by regressing the signature gene-tissue
pairs against the residuals of the IWPC algorithm. We
report here the R2 explaining the variance of these
residuals.

Signatures for patients of EUR descent
Both the generic and the cohort-specific strategies pro-
duced signatures that performed better than the back-
ground, with the generic strategy obtaining higher R2

results on the EUR validation set (R2 = 0.2, p < 0.008 and
R2 = 0.08, p < 0.05 for generic and cohort-specific strate-
gies, respectively; Table 3, Fig. 3a). The cohort-specific
EUR signature performed well also on the AA validation
set (R2 = 0.09, p < 0.02; Table 3, Fig. 3b) while the generic
EUR signature was not better than the background.

Signatures for patients of AA descent
The generic imputation strategy failed to produce a
signature on the AA training cohort. While the cohort-
specific AA-trained signature was not better than
background on the AA validation set, it showed signifi-
cant improvement on both the EUR validation and
EUR training cohorts (R2 = 0.1, p < 0.01 and R2 = 0.24,
p < 0.0001 for the EUR validation and training, respectively;
Table 3, Fig. 3a).

Analysis of gene-tissue pair signatures
The imputed expression of three tissue-gene pairs dis-
played significant correlation with warfarin dose in the
EUR validation cohort: (1) VKORC1 in liver and in thy-
roid (Pearson correlation, ρ = 0.49, p < e–15 in liver and
ρ = 0.28, p < e–5 in thyroid); (2) STX4 in transverse colon
(ρ = 0.3, p < 2e–6); and (3) CYP2C18 in liver (ρ = 0.35,
p < 3e–8). Out of these three, VKORC1 in liver is the
only single predictor of dose that is better than the
background (R2 = 0.03, p < 0.005 for the cohort-specific
imputed expression and R2 = 0.03, p < 0.02 for the generic).
No AA signature gene-tissue pairs displayed individually
significant correlation to warfarin dose.
Three genes are common to the EUR and AA cohort-

specific signatures (Table 2): VKORC1 in liver; PLCG2
in muscularis esophagus; and LGALS2 in pancreas (EUR
signature) and transverse colon in (AA signature).
CUBN in adrenal gland is common to the EUR generic
and EUR cohort-specific signatures.

Discussion
We have introduced a strategy to use imputed gene ex-
pression in the context of drug pathways to select a sig-
nature of gene-tissue pairs predictive of warfarin dose.
By focusing on drug response-associated genes, we in-
crease the likelihood of finding biologically relevant
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variants that influence transcriptional regulation in the
context of a drug and reduce the size of the hypothesis
space. We used the LASSO linear model to provide an
interpretable model signature, noting that the LASSO
with non-linear measurements is equivalent to one with
linear measurements [25]. We compared the perform-
ance of the current state of the art, PrediXcan, to a
modified, cohort-specific strategy on patients of AA and
EUR descent.
We evaluated our performance by inferring the re-

sidual variation of the IWPC algorithm. The generic
strategy better explained warfarin dose than our modi-
fied method on individuals of EUR descent, but per-
formed poorly on African Americans. This is not
surprising, given the preponderance of EUR-descent in-
dividuals used to generate the imputation model. Indeed,
the population sampled in GTEx includes 84% white
and only 14% African Americans. The results are

consistent with previous findings that warfarin dose
models trained on individuals of EUR descent have poor
performance on African Americans [13, 26–28]. Since
the AA training cohort was measured using exome-
sequencing while the other studies used genotyping, it is
possible that these platform differences also affected the
ability of the generic strategy to perform well on the AA
cohort as the performance of the cohort-specific AA sig-
nature to perform better than the EUR signature on the
AA validation set.
While the cohort-specific strategy performed worse on

the EUR population, its signatures generalized better
across populations and sequencing platforms, where
EUR-trained signatures performing well on African
Americans and vice versa, explaining an R2 of 0.08–0.1
of the variability over the IWPC algorithm. Our results
suggest that cohort-specific models are advantageous in
cases where the set of SNPs measured for the cohort

Table 2 Predictive signatures for warfarin dose

Cohort-specific Generica

African American Central European Central European

Gene Tissue Gene Tissue Gene Tissue

CYP1A1 Adipose, subcutaneous ARRB1 Adipose, subcutaneous CCND1 Adrenal gland

AKT1 Pancreas CUBN Adrenal gland ABL1 Skin not-sun-exposed suprapubic

ALOX5 Adrenal gland; brain, cortex GCLC Spleen ATF2 Brain, cerebellar hemisphere; brain,
cerebellum

EPHX1 Heart, left ventricle; thyroid GGCX Brain, cerebellar hemisphere AURKA Brain, frontal cortex BA9

GNAI2 Whole blood LGALS2 Pancreas CCND1 Esophagus mucosa

ITGB1 Tibial nerve PLCG2 Esophagus, muscularis CUBN Adrenal gland

LGALS2 Colon transverse PSMA6 Skeletal muscle CYP2C18 Liver

NCOA1 Brain, caudate basal ganglia PTK2 Skeletal muscle GCLM Brain, cerebellum

PLCG2 Esophagus, muscularis; pancreas UBE2I Esophagus, muscularis ITGA2B Thyroid

PROZ Spleen VKORC1 Liver; thyroid JUN Tibial artery

SERPINF2 Thyroid MGP Esophagus gastroesophageal junction

SMAD3 Esophagus, mucosa PSEN1 Pituitary

STX4 Colon transverse SMAD2 Testis

VKORC1 Liver VKORC1 Thyroid; heart atrial appendage
aThe generic methods did not produce a signature on the AA training cohort

Table 3 Performance of the generic and cohort-specific signatures on different warfarin studies

Validation cohort Signature R2 regression against
IWPC residuals

P value of difference
from the backgrounda

EUR validation EUR, generic 0.2 0.008 (e–4)

EUR, cohort-specific 0.08 0.004 (0.05)

AA, cohort-specific 0.1 0.004 (0.03)

AA validation EUR, cohort-specific 0.09 0.0009 (0.02)

The R2 coefficient is measured on the IWPC residuals
P values below FDR of 0.05 are bolded
aBackground computed as random signatures. P values of shuffled signatures in parentheses
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differ from the set used for building the models and calls
for diversifying the sampled populations in GTEx to pro-
duce better pharmacogenomic models. As the gender
and age distributions in GTEx (34% women and majority
of individuals aged 50–70 years) differ from the distri-
butions in the warfarin cohorts (Table 1 and Additional
file 1: Figure S1), we estimate that models that further
stratify the GTEx population based on these covariates
may produce more accurate imputation models and im-
prove the pharmacogenomics models.
Warfarin acts as an inhibitor of VKORC1 and is part

of the IWPC dose algorithm. Polymorphisms in its cis-
SNP rs9923231 account for approximately 25% of the
variance in stabilized warfarin dose and is currently con-
sidered the single largest predictor of warfarin dose [29].
While the generic and cohort-specific models for
VKORC1, in both the AA and EUR training cohorts, do
not include this SNP, they include SNPs in linkage dis-
equilibrium with it, such as rs2855475, rs2359612, and
rs749767 (R2 > 0.96) along with 13–31 additional SNPs
in both models. It is encouraging that imputed expres-
sion of VKORC1 in liver was found to be a strong dose
predictor, suggesting that a significant component in
VKORC1 effect on dose is through transcriptional
regulation.
Only three genes, VKORC1, STX4, and CYP2C18, are

individually correlated with warfarin dose, accounting
together for less than one-third of the entire signature
explained dose (R2 = 0.035, p < 0.02 on the EUR cohort
and insignificant on the AA cohort), which suggests that
gene expression associated with dose is combinatorial in
nature and supports our pathway-directed multivariate

analysis methodology. Specifically, STX4 resides close to
VKORC1 (~50 Kb apart) and some of the warfarin-
associated SNPs like rs10871454 [19] could be attributed
to either genes or affect both gene expression. Additionally,
the cohort-specific signatures include genes with
known polymorphism associated with warfarin dose
such as GGCX, within African Americans [30] and
EPHX1 within Caucasians [31]. Lastly, CYP2C18,
appearing in the generic signature, was previously re-
ported to be associated with warfarin dose [32]. The
report explained this association by linkage disequilib-
rium of CYP2C18-associated SNP rs7896133 with
CYP2C9*3 (PredictDB does not include a CYP2C9
model in liver). rs7896133 is indeed moderately linked
to CYP2C9*3 (r2 = 0.68, using SNAP tool [33]) and is
included in PredictDB models for CYP2C18 in liver
but the generic models include additional eight cis-
SNPs, four of them (rs7067881, rs9332214, rs7920801,
and rs7088784) with similar or larger weights than
rs7896133 and only two of these in LD with
CYP2C9*3 (rs9332214 and rs7088784, r2 = 0.87 and
0.68, respectively), suggesting that CYP2C18 might
have another mechanism of association with warfarin
dose. Notably, rs12777823, associated with warfarin
dose in African Americans and independent of
CYP2C9*2 and CYP2C9*3 [34] was not measured in
any of the four cohorts in our study and was also not
part of the generic models in PredictDB.
Liver is associated with two (out of three) gene-tissue

pairs correlated with warfarin dose (VKORC1 and
CYP2C18). Liver indeed plays a role in the metabolism
of warfarin [35]. We have not a priori filtered tissues
based on estimated relevance to warfarin response. Our
signatures thus include tissues that are not typically con-
sidered relevant to warfarin’s mode of action. The rea-
sons may be that these expression values in the selected
tissues may correlate with expression in other relevant
tissues or may represent genuine evidence of an unex-
pected role of new tissues in warfarin response. Tissue-
specific knowledge may improve our methodology and
should be considered in follow-up work, taking into ac-
count also tissue-specific detection sensitivity [15].

Conclusions
Imputation of gene expression for genes relevant to drug
action can increase the power of GWAS in explaining
drug response such as warfarin dose. Focusing on genes
with genetically driven (vs environmentally driven) ex-
pression in the form of eQTLs allows us to build models
of drug response that reflect the expected effects of criti-
cal genes in particular tissues. We have further shown
that these models can be computed using a cohort-
specific strategy to improve their predictive power.

Fig. 3 R2 results of the predicted unexplained variance in warfarin
dose by the IWPC algorithm for the EUR (a) and AA (b) validation
cohorts. Represented are the signatures (dark blue), random signatures
(red), and signatures on shuffled data (light blue) as the background
models for the AA and EUR signatures. EUR and AA in parentheses are
the training cohort for the signature; G generic imputation method,
CS cohort-specific imputation
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We chose to use previous knowledge in the form of
pre-selected genes in order to avoid overfitting and for
interpretability of the results. However, imputing all the
genes can potentially improve the model further and
identify novel genes associated with warfarin dose. For
the same reason of interpretability, we used the LASSO
linear regression model that results in relatively short
and robust signatures, notably showing that the LASSO
with non-linear measurements is in many cases equiva-
lent to one with linear measurements [25]. Nevertheless,
it would be worthwhile in future works to compare the
performance of other non-linear regression models in
predicting warfarin dose.

Additional files
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