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Abstract

Neuroimaging genomics is a relatively new field
focused on integrating genomic and imaging data in
order to investigate the mechanisms underlying brain
phenotypes and neuropsychiatric disorders. While early
work in neuroimaging genomics focused on mapping
the associations of candidate gene variants with
neuroimaging measures in small cohorts, the lack of
reproducible results inspired better-powered and
unbiased large-scale approaches. Notably, genome-
wide association studies (GWAS) of brain imaging in
thousands of individuals around the world have led
to a range of promising findings. Extensions of such
approaches are now addressing epigenetics, gene-
gene epistasis, and gene—environment interactions,
not only in brain structure, but also in brain function.
Complementary developments in systems biology
might facilitate the translation of findings from basic
neuroscience and neuroimaging genomics to clinical
practice. Here, we review recent approaches in
neuroimaging genomics—we highlight the latest
discoveries, discuss advantages and limitations of current
approaches, and consider directions by which the field
can move forward to shed light on brain disorders.

Background

Neuroimaging genomics is a relatively new and rapidly
evolving field that integrates brain imaging and
individual-level genetic data to investigate the genetic
risk factors shaping variations in brain phenotypes. Al-
though this covers a broad range of research, one of the
most important aims of the field is to improve under-
standing of the genetic and neurobiological mechanisms
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underlying various aspects of neuropsychiatric disor-
ders—from symptoms and etiology, to prognosis and
treatment. The goal is to identify key components in
biological pathways that can be evaluated or monitored
to improve diagnostic and prognostic assessments, and
that can ultimately be targeted by novel therapies.

Broadly speaking, existing brain imaging methods can
be divided into those that provide data on structure—for
example, computed tomography (CT), structural mag-
netic resonance imaging (MRI), and diffusion—tensor
imaging (DTI); function—for example, functional MRI
(fMRI), arterial spin labeling (ASL); and molecular ima-
ging—for example, single-photon emission computed
tomography (SPECT) and positron-emission tomog-
raphy (PET) using receptor-binding ligands and mag-
netic resonance spectroscopy (MRS) [1]. A range of
additional new methods have become available for ani-
mal and/or human brain imaging, including optical im-
aging, cranial ultrasound, and magnetoencephalography
(MEG), but to date these have been less widely studied
in relation to genomics. Future work in imaging genom-
ics will rely on further advances in neuroimaging tech-
nology, as well as on multi-modal approaches.

Progress in both neuroimaging and genomic methods
has contributed to important advances—from candidate-
gene (or more precisely, single-variant) approaches initi-
ated almost two decades ago [2, 3], to recent break-
throughs made by global collaborations focused on
GWAS [4], gene—gene effects [5], epigenetic findings [6],
and gene—environment interactions [7] (Fig. 1). Develop-
ments in the field of neuroimaging genomics have only
recently begun to provide biological insights through
replicated findings and overlapping links to disease—we
now know the field holds much promise, but further
work and developments are needed to translate findings
from neuroimaging genomics into clinical practice. In
this review, we discuss the most recent work in neuro-
imaging genomics, highlighting progress and pitfalls, and
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Fig. 1 Timeline of methodological approaches common in neuroimaging-genomics studies of neuropsychological disorders. The field of
neuroimaging genomics was initiated in the early 2000s using a hypothesis-driven candidate-gene approach to investigate brain and behavior
phenotypes [2, 3]. Towards the end of the decade, other candidate-gene approaches, investigating alternative genetic models, began to emerge. These
included gene-gene interactions [172], gene-environment interactions [7], and epigenetic effects [6]. Simultaneously, hypothesis-free approaches such
as genome-wide association studies (GWAS) were initiated [173] and the need for increased statistical power to detect variants of small individual
effects soon led to the formation of large-scale consortia and collaborations [36, 37]. The emergence of the “big data” era presented many statistical
challenges and drove the development of multivariate approaches to account for these [174]. GWAS of neuropsychological disorders soon identified
significant associations with genetic variants with unknown biological roles, resulting in candidate neuroimaging genomics studies to investigate and

validate the genetic effects on brain phenotypes [175]. The emergent polygenic nature of these traits encouraged the development of polygenic
models and strategies to leverage this for increased power in genetic-overlap studies between clinical and brain phenotypes [114]. Most recently,
hypothesis-free approaches are starting to extend to alternative genetic models, such as gene—gene interactions [70]

discussing the advantages and limitations of the different
approaches and methods now used in this field.

Heritability estimates and candidate gene
associations with imaging-derived traits
Approximately two decades ago, neuroimaging genomics
had its inception—twin and family designs from population
genetics were used to calculate heritability estimates for
neuroimaging-derived measures, such as brain volume [8],
shape [9, 10], activity [11], connectivity [12], and white-
matter microstructure [13]. For almost all these imaging-
derived brain measures, monozygotic twin pairs showed
greater correlations than dizygotic twins, who in turn
showed greater correlations than more-distant relatives and
unrelated individuals. These studies confirm that brain
measures derived from non-invasive scans have a moderate
to strong genetic underpinning [14, 15] and open the doors
for more-targeted investigations. These brain features
might now be considered useful endophenotypes (using
only certain symptoms—for example, altered brain vo-
lume—of a trait such as schizophrenia, which might have a
more-robust genetic underpinning) for psychiatric disor-
ders [16]. A focus on the underlying mechanisms is central
to the now highly regarded Research Domain Criteria
(RDoC) research framework [17]. In contrast to classifica-
tions that focus on diagnoses or categories of disorders
[18, 19], RDoC emphasizes transdiagnostic mechanisms

(investigating overlapping symptoms across diagnoses) that
emerge from translational neuroscience [20].

Early imaging genomics work (from approximately 2000
to 2010; Fig. 1) focused predominantly on candidate-gene
approaches—in the absence of large GWAS datasets, in-
vestigators relied on biological knowledge to develop
hypotheses. Genetic variants or single-nucleotide poly-
morphisms (SNPs) identified through linkage studies or
located near or within genes with putative biological roles,
particularly those involved in neurotransmission, were in-
vestigated in brain imaging studies. Early candidate genes
studied in relation to brain phenotypes included the
sodium-dependent serotonin transporter gene (SLC6A4)
in individuals with anxiety and depression [21-23] and
the catechol-O-methyltransferase gene (COMT) in indi-
viduals with schizophrenia [24-28].

A key criticism of this early work was that candidate-
gene studies were insufficiently powered, with the possi-
bility that small false-positive studies were being
published, whereas larger negative analyses were being
“filed away” [29, 30]. In support of this view, several
meta-analyses have emphasized the inconsistency of
small candidate-gene studies [31-33]. These studies
noted that, given relatively small effect sizes, larger stud-
ies were needed and that a clear focus on harmonization
of methods across studies was needed for meaningful
meta-analyses. For example, a meta-analysis of candidate
studies of the rs25532 polymorphism of SLC6A4
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(commonly referred to as the “short variation”) and
amygdala activation, which incorporated unpublished
data, was unable to identify a significant association [31].
This finding cast doubt on the representativeness of effect
sizes reported in early studies with positive findings,
highlighting a potential “winner’s curse” and emphasized
the importance of publication bias in the field.

However, borrowing strategic approaches from studies
of anthropometric traits (GIANT consortium), psychi-
atric disorders (PGC, psychiatric genomics consortium
[34]), cancer (CGC, cancer genomics consortium [35]),
and cardiovascular health and aging (CHARGE [36]), the
imaging-genomics community has built large-scale col-
laborations and consortia in order to obtain the statis-
tical power necessary to disentangle the genetic
architecture of brain phenotypes [37].

Genome-wide association studies in imaging
genomics

Imaging genomics has increasingly moved towards a
GWAS approach, using large-scale collaborations to im-
prove power for the detection of variants with small inde-
pendent effects [29]. Examples of such consortia include
the Enhancing Neuro-imaging through Meta-analysis
(ENIGMA) consortium [37], Cohorts for Heart and Aging
Research in Genomic Epidemiology (CHARGE) consor-
tium [36], Alzheimer's Disease Neuroimaging Initiative
(ADNI), IMAGEN, which is focused on adolescents [38],
and the Uniform Neuro-Imaging of Virchow-Robin
Spaces Enlargement (UNIVRSE) consortium [39]. The
growing number of GWAS of brain phenotypes and of
neuropsychiatric disorders has, on occasion, lent support
to previously reported candidate variants [40], but import-
antly has identified many new variants of interest [41].

An early study by the ENIGMA consortium consisted of
approximately 8000 participants, including healthy con-
trols and cases with psychiatric disorders [42]. This study
identified significant associations between intracranial vol-
ume and a high-mobility group AT-hook 2 (HMGA2)
polymorphism (rs10784502), and between hippocampal
volume and an intergenic variant (rs7294919). A sub-
sequent collaboration with the CHARGE consortium,
including over 9000 participants, replicated the associ-
ation between hippocampal volume and rs7294919, as
well as identifying another significant association with
rs17178006 [43]. In addition, this collaboration has further
validated and identified other variants associated with hip-
pocampal volume [44] and intracranial volume [45], with
cohorts of over 35,000 and 37,000 participants, respec-
tively. Another analysis of several subcortical volumes
(ENIGMA?2), with approximately 30,000 participants,
identified a significant association with a novel intergenic
variant (rs945270) and the volume of the putamen, a sub-
cortical structure of the basal ganglia [4]. More recently, a
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meta-analysis of GWAS of subcortical brain structures
from ENIGMA, CHARGE, and the United Kingdom Bio-
bank was conducted [46]. This study claims to identify 25
variants (20 novel) significantly associated with the vol-
umes of the nucleus accumbens, amygdala, brainstem,
caudate nucleus, globus pallidus, putamen, and thalamus
amongst 40,000 participants (see the “Emerging pathways”
section later for a more detailed discussion). Moreover,
many large-scale analyses [15, 46] are now first being
distributed through preprint servers and social media. In
another example, in over 9000 participants from the UK
Biobank, Elliot and colleagues [15] used six different
imaging modalities to perform a GWAS of more than
3000 imaging-derived phenotypes, and identified statisti-
cally significant heritability estimates for most of these
traits and implicated numerous associated single-
nucleotide polymorphisms (SNPs) [15]. Such works still
need to undergo rigorous peer-review and maintain strict
replication standards for a full understanding of findings,
yet this work highlights the fact that the depth of possibil-
ities now available within the field of neuroimaging gen-
omics appears to be outpacing the current rate of
publications. As of November 2017, ENIGMA is currently
undertaking GWAS of the change in regional brain vol-
umes over time (ENIGMA-Plasticity), cortical thickness
and surface area (ENIGMA-3), white-matter microstruc-
ture (ENIGMA-DTI), and brain function as measured by
EEG (ENIGMA-EEG).

Although neuroimaging measurements only indirectly
reflect the underlying biology of the brain, they remain
useful for in vivo validation of genes implicated in
GWAS and lend insight into their biological significance.
For example, the rs1006737 polymorphism in the gene
encoding voltage-dependent L-type calcium channel
subunit alpha-1C (CACNAIC) was identified in early
GWAS of bipolar disorder [47, 48] and schizophrenia
[49, 50], but its biology was unknown. Imaging-
genomics studies of healthy controls and individuals
with schizophrenia attempted to explain the underlying
biological mechanisms. Studies reported associations of
this variant with increased expression in the human
brain, altered hippocampal activity during emotional
processing, increased prefrontal activity during executive
cognition, and impaired working memory during the
n-back task [51-53], a series of task-based assessments
relying on recognition memory capacity. As the psychi-
atric genomics field advances and more reliable and
reproducible genetic risk factors are identified, imaging
genomics will continue to help understand the under-
lying biology.

The limitations of GWAS of complex traits and
neuropsychiatric disorders deserve acknowledgment. In
particular, although GWAS can identify statistically
significant associations, these have particularly small
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individual effect sizes and, even cumulatively, do not ac-
count for a substantial fraction of the heritability of the
relevant phenotype estimated from family models [54].
Furthermore, many associated variants are currently not
functionally annotated and most often are found in non-
coding regions of the genome, which are not always well
understood [55, 56]. Increasing power, through increas-
ing sample sizes, will likely implicate additional variants,
but these might not necessarily play a directly causal role
[57]. This could be because of the small effect sizes of
causative variants, linkage disequilibrium with other var-
iants, and the indirect effects of other variants in highly
interconnected pathways [57]. Currently, most studies
utilize participants of European ancestry, and replication
studies using alternative ethnic groups are required for
further discovery and validation of significant associa-
tions, which might be influenced by the populations
under investigation [58]. Thus, additional strategies are
needed to understand fully the genetic architecture of
brain phenotypes and neuropsychiatric disorders. These
methods can be summarized into three categories: first,
delving deeper into rarer genetic variations; second, in-
corporating models of interactions; and, third, investigat-
ing more than a single locus and instead expanding to
incorporate aggregate or multivariate effects; these
methods and more are discussed below [57].

Copy-number variation and brain variability
Growing recognition of the neuropsychiatric and devel-
opmental abnormalities that arise from rare genetic con-
ditions, such as 22ql1 deletion syndrome [59], has led
imaging-genomic studies to further explore the relation-
ships between copy-number variations (CNVs) and
neural phenotypes [60-63]. For example, in a recent
large-scale study of over 700 individuals, 71 individuals
with a deletion at 15q11.2 were studied to examine the
effects of the genetic deletion on cognitive variables [60].
These individuals also underwent brain MRI scans to de-
termine the patterns of altered brain structure and func-
tion in those with the genetic deletion. This study
identified significant associations between this CNV and
combined dyslexia and dyscalculia, and with a smaller
left fusiform gyrus and altered activation in the left fusi-
form and angular gyri (regions in the temporal and par-
ietal lobes of the brain, respectively). Another study
investigating the 16p11.2 CNV, with established associa-
tions with schizophrenia and autism, found that the
CNVs modulated brain networks associated with estab-
lished patterns of brain differences seen in patients with
clinical diagnoses of schizophrenia or autism [61]. These
studies indicate that CN'Vs might play an important role
in neural phenotypes, and initiatives such as ENIGMA-
CNV [63] aim to explore this further.
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Gene-gene interactions

Gene—gene interactions (epistasis), where the phenotypic
effect of one locus is affected by the genotype(s) of an-
other, can also play significant roles in the biology of
psychiatric disorders [64]; such interactions might help
account for the missing heritability observed with gen-
etic association testing [54]. Singe-locus tests and
GWAS might not detect these interactions as they use
additive genetic models [64]. The inclusion of inter-
action tests has also, for example, been shown to im-
prove the power for detection of the main effects in type
1 diabetes [65]. Recently, this has emerged as a focus of
imaging-genomic studies, predominantly using a
candidate-gene approach [66—69].

Studies of epistasis are, however, at an early stage and
currently have relatively small sample sizes and lack rep-
lication attempts, limiting the validity of these findings
[70]. Selecting candidate genes for investigation, usually
based on significance in previous association studies,
may miss important interactions with large effects [71].
Genome-wide interaction approaches may provide for a
more unbiased approach towards understanding epi-
static effects. As a proof of concept, one such study in-
vestigated genome wide SNP-SNP interactions using
participants from the ADNI cohort, and the Queensland
Twin Imaging study for replication [70]. While larger
scale studies are needed to confirm specific findings, this
study identified a significant association between a single
SNP-SNP interaction and temporal lobe volume, which
accounted for an additional 2% of the variance in tem-
poral lobe volume (additional to the main effects of
SNPs) [70]. As the power for GWAS in imaging genom-
ics increases through growing consortia and biobanks,
large-scale epistatic studies may become possible and ex-
plain more of the genetic variance underlying brain
structure and function.

Gene-environment interactions

Most neuropsychiatric disorders have a multifactorial
etiology [72, 73], with varying heritability estimates
under different conditions [74]. Imaging-genomics stud-
ies have begun to investigate how genes and the environ-
ment interact (GxE) to influence brain structure and
function in relation to neuropsychiatric disorders [75].
These interactions are of further interest as emerging
evidence indicates that some individuals exposed to cer-
tain environmental factors have altered treatment re-
sponses [75]. For example, GXE studies of the rs25532
polymorphism within the SLC6A4 gene indicate that car-
riers with depression, and who are exposed to recent life
stressors, respond poorly to treatment with certain anti-
depressants [76-79], but have better responses to psy-
chotherapy compared to those with the alternative
genotype [80]. Therefore, imaging genomics is ideally
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suited to identify possible interactions that may affect
treatment responses, lend insight into these mechanisms
potentially leading to altered or new therapeutic regi-
mens, and identify at-risk individuals who may benefit
from early interventions [81, 82].

Small exploratory studies have suggested that po-
tentially interesting gene—gene interactions might exist
[7, 83-89]; however, the statistical power of published
analyses is low, and replication is key [90, 91].
Candidate-gene approaches to GxE studies have been
commonplace, but these might oversimplify genetic
models, as each of these variants contributes minimally
to disease risk [90, 91]. To ensure the effect is indeed an
interaction and not due to one component of the inter-
action, all terms (G, E, GxE) will need to be included in
a regression model. Naturally, this implies genome-wide
interaction studies would require even larger sample
sizes than GWAS if they are to be appropriately powered
[90, 91]. Concerns about the measures of both pheno-
type and the exposome (lifetime environmental expo-
sures) have also been raised, as studies using different
measures and at different stages of life can produce con-
flicting results [91-93]. Large-scale collaborations using
carefully harmonized protocols will likely be able to
mitigate these limitations.

Epigenetics

Approaches investigating the associations between epigen-
etic alterations and brain measures once again began with
candidate genes [94, 95]. However, disparities between the
methylation states of blood, saliva, and brain tissue remain
important limitations for untangling the discrepancies
found with epigenetic studies [96]. To illustrate this, sev-
eral projects, such as the Human Roadmap Epigenomics
project [97], the International Human Epigenome Consor-
tium [98], and Braincloud [99], have begun developing ref-
erence epigenomes, which could pave the way for
harmonizing and pooling data across independent data-
sets. These projects might also provide new biologically
based candidates for research—it has been suggested that
genes most similarly methylated between blood and brain
tissue be investigated first in neuroimaging studies
[100, 101]. Recently, imaging consortia such as ENIGMA
have begun epigenome-wide association studies for key
brain measures such as hippocampal volume, revealing
promising associations [102]. Longitudinal and trans-
generational studies of both healthy and at-risk individuals
might also prove useful for understanding the impact of
the environment on the epigenome [101].

Mapping the genetic structure of psychiatric
disease onto brain circuitry

Recent large-scale GWAS of psychiatric disorders
have begun to identify significantly associated variants
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[41, 103]—however, the effect sizes of these variants
are small (usually less than 1%) and do not account
for the predicted heritability of these traits (as high as
64—-80% in schizophrenia [104, 105]). It is hypothe-
sized that many psychiatric disorders have a polygenic
(effected by multiple genetic variants) and heteroge-
neous (disease-causing variants can differ between af-
fected individuals) genetic architecture, resulting in a
failure to reach statistical significance and contribu-
ting to the phenomenon of missing heritability [106].
GWAS of subcortical brain structure and cortical sur-
face area have also started to reveal significant genetic
associations and a polygenic etiology [44—46, 107], al-
though the extent of polygenicity appears to be less
than that predicted for psychiatric disorders [107].
Recent studies have begun to disentangle whether the
genetics of brain phenotypes overlap with that of psy-
chiatric disorders by making use of their polygenic
nature [108, 109].

Polygenic risk scoring (PRS) is one such analytical
technique that exploits the polygenic nature of complex
traits by generating a weighted sum of associated va-
riants [106, 110, 111]. PRS uses variants of small effect
(with p values below a given threshold), identified in a
GWAS from a discovery dataset to predict disease status
for each participant in an independent replication data-
set [111]. In large-scale GWAS of schizophrenia, for
example, the PRS now accounts for 18% of the variance
observed [41]. PRS in imaging genomics has the po-
tential advantage of addressing many confounders, such
as the effects of medication and the disease itself
through investigation of unaffected and at-risk individ-
uals [112, 113]. For example, PRS for major depressive
disorder (MDD; n = 18,749) has been associated with re-
duced cortical thickness in the left amygdala-medial pre-
frontal circuitry among healthy individuals (# =438) of
European descent [114].

However, as with other approaches, PRS is not without
limitations. For example, an additive model of variant
effects is assumed, disregarding potentially more-
complex genetic interactions [115]. The predictive cap-
acity of PRS is also largely dependent on the size of the
discovery dataset (ideally greater than 2000 individuals),
which is likely still underpowered in many instances
[106]. Furthermore, PRS does not provide proportionate
weight to biologically relevant genes for neural pheno-
types as it is also subject to the confounding elements of
GWAS emphasized earlier [57, 113, 116]. Thus, other
approaches such as linkage disequilibrium score regres-
sion for genetic correlation (a technique that uses
GWAS summary statistics to estimate the degree of gen-
etic overlap between traits) [117], Bayesian-type analyses
[118], and biologically informed multilocus profile scor-
ing [119, 120] might be alternatives worth exploring,
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perhaps in conjunction with PRS [121]. More recently,
an omnigenic model has been proposed—which takes into
account the interconnected nature of cellular regulatory
networks that can confound other polygenic models [57].

Linkage-disequilibrium score regression [117] did not
identify genetic overlap between schizophrenia (33,636
cases, 43,008 controls) and subcortical volumes (n=
11,840 healthy controls), but provided a useful proof-of-
principle of this approach [108]. A partitioning-based
heritability analysis [122], which estimates the variance
explained by all the SNPs on a chromosome or the
whole genome rather than testing the association of par-
ticular SNPs with the trait, indicated that variants associ-
ated with schizophrenia (n = 1750) overlapped with eight
brain structural phenotypes, including intracranial vol-
ume and superior frontal gyrus thickness [109]. Publicly
available GWAS data for several other psychiatric disor-
ders were also investigated and indicated that intracra-
nial volume was enriched for variants associated with
autism spectrum disorder (ASD), and right temporal
pole surface area was enriched for variants associated
with MDD, and left entorhinal cortex thickness showed
enrichment for bipolar disorder risk variants [109].
These types of analyses confirm a common genetic basis
between risk for altered brain structure and neuro-
psychiatric disorders [16].

Multivariate approaches

To explain more of the variance in gene-imaging find-
ings, techniques for data-driven discovery using multi-
variate approaches have begun to emerge in this field.
These techniques include methods such as independent
component analysis (ICA) [123], canonical correlation
analysis [124], sparse partial least squares [125], and
sparse reduced-rank regression [126]. To date, the in-
creased explanatory power provided by these approaches
has mainly been shown in single datasets or relatively

Table 1 Emerging pathways in neuroimaging-genomics studies

Page 6 of 12

small studies—these often claim to identify significant
associations at a genome-wide level [127-129]. Owing to
the large number of input variables and parameters
(many dimensions), often paired with limited data-
points and split-sample training and testing from the
same cohort, there can be concerns about overfitting
and models that do not generalize. Thus, dimensionality
reduction, in the imaging or genetic domain, is often ne-
cessary. Dimensionality-reduction techniques can group
or cluster these large sets of variables (dimensions) in ei-
ther domain; approaches guided by a priori knowledge
might prove useful as the field advances [130]. Each
multivariate approach has particular advantages and lim-
itations. Data-driven multivariate techniques, such as
ICA, in particular, can lead to sample-specific solutions
that are difficult to replicate in independent datasets.
The large datasets now available through collaborative
efforts provide the opportunity to assess and compare
the utility of these approaches [37]; on the other hand,
larger datasets can also overcome the need for
dimensionality-reduction methods if the sample sizes
prove sufficient for mass univariate testing.

Emerging pathways

Understanding the pathways involved in brain develop-
ment, structure, function, and plasticity will ultimately
lead to an improved ability to navigate neuropsychiatric
disease pathophysiology. Investigation of the signatures
of selection affecting neuropsychiatric, behavioral, and
brain phenotypes have indicated both recent and evolu-
tionarily conserved polygenic adaptation, with enrich-
ment in genes affecting neurodevelopment or immune
pathways [131] (Table 1). Annotation of the loci associated
with subcortical brain volumes has already identified an en-
richment of genes related to neurodevelopment, synaptic
signaling, ion transport and storage, axonal transport, neur-
onal apoptosis, and neural growth and differentiation

Neural phenotype Clinical manifestations

Enriched pathways Examples of studies that identified

these associated pathways in humans

Subcortical brain
volumes

On average, hippocampal volumes are smaller in
patients with depression [176], bipolar disorder
[177], and schizophrenia [178] compared with
healthy controls

Brain connectivity Brain white matter microstructure is disrupted

globally in schizophrenia [179]

Transcriptional profiles  Transcription factor EGR1 significantly
downregulated in brains of schizophrenic

patients compared with controls [180]

« Neurodevelopment Hibar et al. 2015, 2017 [4, 44]
+ Synaptic signaling

« lon transport and storage

+ Axonal transport

- Neuronal apoptosis

« Neural growth

« Neural differentiation

+ Immune pathways

Fornito et al. 2015 [133]
Vértes et al. 2016 [134]

« ATP synthesis and metabolism

+ Axon guidance

- Fasciculation during
development

« lon channels
+ Synaptic activity
« ATP metabolism

Wang et al. 2015 [136]
Richiardi et al. 2015 [137]
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[4, 15, 46] (Table 1). Studies have also implicated pleiotropy
(a single locus that affects multiple phenotypes) amongst
these loci [46]. Furthermore, many of the associated neuro-
developmental genes are conserved across species, provid-
ing a foundation for translational research in imaging
genomics [46].

Advances in our concepts of brain connectivity can
provide a useful framework for further integration of im-
aging and genomics data. Recent work has emphasized
that hubs of neural connectivity are associated with tran-
scriptional differences in genes affecting ATP synthesis
and metabolism in mice [132], consistent with their high
energy demands [132]. Analogous findings have been
found in humans [133, 134]. Studies of the transcrip-
tome and the metabolome, now curated by efforts such
as the Allen Brain atlas [135], increasingly allow study of
issues such as the relationship between resting-state
functional connectivity and gene-expression profiles,
with early work indicating enrichment in hubs of genes
related to ion channels, synaptic activity, and ATP me-
tabolism [136, 137].

Key considerations in imaging-genomic analyses
While imaging genomics has great potential, the limita-
tions associated with both genetic [57, 138] and imaging
[139] studies, as well as some unique concerns, deserve
consideration. Here we discuss three important issues,
namely (i) possible confounders of heritability estimates
in imaging measures, (ii) the necessity of methodological
harmonization for cross-site collaborations, and (iii) ac-
counting for the multiple testing burden.

Environmental, physiological, and demographic influ-
ences can affect heritability estimates and measurements
of brain-related features [72, 73, 140]. Most psychiatric
disorders produce subtle changes in brain phenotypes
and multiple potential confounding factors might ob-
scure disease-related effects, limiting their utility as
endophenotypes. Examples of such potential factors in-
clude motion [141, 142] and dehydration [143, 144], to
name a few. Differences in data acquisition and analysis
types might also contribute to variation between studies
[145], particularly for small structures and grey-matter
volumes [146—-148]. These potential confounding factors
can, however, be included as covariates and adjusted.
This approach was used, for example, to control for the
effects of height in the largest imaging-genetics meta-
analysis of intracranial volume [45]. The distribution of
these covariates can also be balanced between cases and
controls. Furthermore, potential confounders can be
mitigated by investigating healthy individuals only or a
single ethnic group, sex, or age group, for example [149].
However, healthy individuals with certain genotypes
might be more susceptible to certain confounding
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factors, such as smoking, which could lead to spurious
associations [139].

Furthermore, caution should be taken when interpret-
ing results from fMRI studies, owing to the dependence
on quality of both the control and task of interest [150].
These tasks should improve sensitivity and power of
genetic effects, adequately stimulate regions of interest,
be appropriate for the disorder of interest, reliably evoke
reactions amongst individuals, and highlight variability
between them [150-152]. Resting-state fMRI studies also
require consideration as these might be experienced dif-
ferently between patients and controls [153]. Studies of
unaffected siblings could be beneficial to minimize the
potential confounders of disease on brain measures
[154]. Meta-analytical approaches need to take the com-
parability of tasks into account, as apparently slight dif-
ferences can considerably confound associations [155].
ENIGMA, for example, attempts to reduce these effects
through predetermined protocols and criteria for study
inclusion [37].

There is often a need to account for multiple testing
in imaging genomics beyond that which is done in gen-
etics alone. This is an important issue to emphasize
[149, 156]. Studies performing a greater number of tests,
especially genome-wide analyses [157] and multimodal
and multivariate approaches [130], might require more-
stringent corrections. Approaches to reduce the dimen-
sions of these datasets are being developed and include
the use of imaging or genetic clusters [66, 158—162] and
machine learning methods [163]. However, replication
studies and meta-analyses of highly harmonized studies
remain the most reliable method for reducing false-
positive associations [164].

Conclusions and future directions

The field of imaging genomics is moving forward in sev-
eral research directions to overcome the initial lack of
reproducible findings and to identify true findings that
can be used in clinical practice. First, well-powered
hypothesis-free genome-wide approaches remain key.
Research groups are now routinely collaborating to en-
sure adequate power to investigate CNVs and epigenetic,
gene—gene, and gene—environment interactions. Second,
advances in both imaging and genetic technologies are
being used to refine the brain—gene associations; next-
generation sequencing (NGS) approaches now allow for
more-in-depth investigation of the genome and deeper
sequencing (whole-exome and genome); and more-
refined brain mapping will ideally allow the field to
localize genetic effects to specific tissue layers and sub-
fields as opposed to global structural volumes. Third,
replication attempts are crucial, and investigations in
various population groups might validate associations
and discover new targets that lend further insights into
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the biological pathways involved in these traits. Finally,
specific initiatives to integrate neurogenetics and neuro-
imaging data for translation into clinical practice are be-
ing routinely advocated. These might include efforts in
translational neuroscience [165], a systems-biology per-
spective [16, 166—168], and longitudinal data collection
in community and clinical contexts [169].

Current psychiatric treatments have important limita-
tions. First, many patients are refractory to treatment.
For example, only approximately 60% of patients with
depression achieve remission after either, or a combin-
ation of, psychotherapy and pharmacotherapy [170]. Sec-
ond, clinical guidelines often focus on the “typical”
patient, with relatively little ability to tailor individual
treatments to the specific individual. Such limitations
speak to the complex nature of the brain and of psychi-
atric disorders, and the multiple mechanisms that under-
lie the relevant phenotypes and dysfunctions. [20]. In
order to progress into an era of personalized medicine,
addressing the unique environmental exposures and
genetic makeup of individuals [171], further efforts to
improve statistical power and analyses are needed.

Ultimately, understanding the mechanisms involved in
associated and interconnected pathways could lead to
identification of biological markers for more-refined
diagnostic assessment and new, more effective, and pre-
cise pharmacological targets [20, 171]. These goals can
be fostered through continued efforts to strengthen col-
laboration and data sharing. Indeed, such efforts have
led to a growing hope that findings in imaging genomics
might well be translated into clinical practice [166—168].
The studies reviewed here provide important initial in-
sights into the complex architecture of brain pheno-
types; ongoing efforts in imaging genetics are well
positioned to advance our understanding of the brain
and of the underlying neurobiology of complex mental
disorders, but, at the same time, continued and ex-
panded efforts in neuroimaging genomics are required
to ensure that this work has clinical impact.
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